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ABSTRACT The frequency-domain constrained broadband space-time beamformer has been widely used
in many fields because of its excellent performance and no need for pre-steering delay. However, the beam
response of the frequency-domain constrained space-time broadband beamformer depends heavily on the
phase center location of the array. The wrong phase center location of the array will lead to undesirable
wide main lobe and high side lobe. To choose the location of the phase center of the array correctly, this
paper makes an in-depth theoretical discussion on this dependency based on the uniform linear array. First,
the dependence of the quiescent beam response of the frequency-domain constrained space-time broadband
beamformer on the phase center location of the array is theoretically derived, and it is proved that there is an
optimal phase center location of the array which can make the beamformer obtain the best quiescent beam
response. Then, a selection criterion of the optimal array phase center location is proposed, and based on
this criterion, the closed-form solution of the optimal array phase center location is theoretically derived
when the constraint matrix contains two pre-selected points. Finally, based on the closed-form solution,
through correct extrapolation, the suboptimal solution for the optimal array phase center location is obtained
when the constraint matrix contains any preselected points. Numerical simulations verify the correctness and
effectiveness of the proposed methods.

INDEX TERMS Quiescent beam response, array phase center, space-time broadband beamformer,
frequency-domain constraints.

I. INTRODUCTION
Broadband beamforming has been an important research
topic over the past few decades, and its applications cover
many different fields, such as sonar, radar, wireless commu-
nications, microphone arrays, and medical imaging [1], [2],
[3], [4], [5].

According to the choice of weights, broadband
beamforming can be classified as data-independent and
statistically optimum [6], [7]. The weight solution of the
data-independent broadband beamformer is independent of
array data, and the desired azimuth/frequency response is
designed by a linear constraint method or a pattern synthesis
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method [8], [9], [10], [11], [12]. The weight selection of the
statistically optimum broadband beamformer is to optimize
the array response based on statistics of the array data [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22]. The array
statistics are usually unknown and time-varying, so adaptive
algorithms are usually used to update the weights. In addition,
the design technology of data-independent beamformer is
typically applied to statistically optimum beamforming.

According to whether array data is processed in frequency-
domain or time-domain broadband beamforming methods
can be divided into two categories, namely, the space-
frequency method based on discrete Fourier transform (DFT)
and the space-time method based on finite impulse response
(FIR). The space-frequency method divides the time-domain
array data into frequency-domain data of multiple sub-bands
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by DFT. DFT can reduce the correlation between frequency
domain data in different frequency sub-bands. Frequency-
domain narrowband beamforming can be performed in each
sub-band under the condition that the frequency range of
each sub-band satisfies the narrowband requirement [12],
[13], [14]. After obtaining all the output data from the
narrowband beamformer, the DFT-based beamformer con-
verts the frequency-domain output data into the time-domain
output through the inverse discrete Fourier transform (IDFT)
processor. However, DFT-based space-frequency methods
usually need many data samples to meet the narrowband
conditions [15].

The FIR-based space-time method adds tapped delay lines
after each array element. It uses a linear constrainedminimum
variance method to control the gain of the beamformer
on the desired broadband signal, while suppressing other
interference signals [16], [17], [18], [19], [20]. The Frost
beamformer is the most classical space-time broadband
beamformer (STBB) [16]. The linear constraint of STBB
requires that the phase of the desired signal is consistent at
the output of each array element, so the beamformer needs
to pre-steer the array data in advance. Moreover, the Frost
beamformer requires that the pre-steering delay must have
very high delay accuracy, otherwise the delay error may cause
the desired signal to be mistakenly suppressed as interference
[21]. In order to eliminate the delay of pre-steering, some
new linear constraint design methods are proposed. Buckley
proposed the real data point constraint (RDPC) [22], which
controls the gain of the single-tone cosine function by
designing linear constraints, so as to achieve gain control
of the desired signal. The RDPC completes the design and
execution of linear constraints directly in the time-domain.
Gadara proposed the Convolution Constraints (CC) [23],
which design linear constraints in the frequency-domain
and implement linear constraints in the time-domain by
convolution operation. However, the length of the tapped
delay line in the CC determines the frequency of the
preselected points. Reducing the frequency interval of the
preselected points must increase the length of the tapped
delay line, which increases the computational complexity
of the algorithm. Then Ebrahimi proposed the frequency-
domain constraints (FC) [24]. It can realize the linear
constraints designed in the frequency-domain with low
complexity in the time-domain, and can arbitrarily select
the frequency of the preselected points without changing the
length of the tapped delay line.

The quiescent beam response refers to the optimal beam
response when the input of the array contains only white
noise [8], which determines the initial state of the adaptive
array beam response. The resulting array weight vector is
called quiescent solution. The quiescent solution of the space-
time broadband beamformer is determined by the geometric
shape of the array and the design of the linear constraints.
It has been proved in [25], [26], [27], and [28] that when
the linear constraint is the derivative constraint, the quiescent
beam response depends on the array phase center. Buckley

has studied the influence of this dependence on the beam
response of a generalized sidelobe canceller [26], and at the
same time, it has eliminated this influence by finding the
phase center of the array that minimizes the output power
of the array under white noise conditions. However, when
the linear constraint is the frequency-domain constraint, the
dependence of the quiescent beam response on the phase
center of the array has not been thoroughly studied, and even
its existence has not been pointed out.

In this paper, in order to solve the problem of selecting the
optimal phase center location of the array of the frequency-
domain constrained space-time broadband beamforming
(FCSTBB), the dependence of its quiescent beam response
on the array phase center is deeply studied. First, we point
out that the quiescent beam response of the FCSTBB depends
on the phase center of the array, and the accuracy of
this dependence is verified by theoretical derivation and
numerical simulation. Then, minimizing the quiescent output
power of the array under white noise input is selected as
the selection criterion of the optimal phase center location
of the array. On this basis, the closed-form solution of the
optimal phase center location of the array is theoretically
derived when the constraint matrix contains two preselected
points. The closed-form solution can make the quiescent
beam response of the beamformer obtain the narrowest main
lobe width and the lowest side lobe level. Finally, since the
inverse of the matrix exceeding the second order can not
be expanded, the closed-form solution of the optimal phase
center location of the array can not be solved when the
constraint matrix contains more than two preselected points.
Based on the closed-form solution of the optimal phase center
location of the array when the constraint matrix contains two
preselected points, we correctly extrapolate the suboptimal
solution for the optimal phase center location when the
constraint matrix contains any number of preselected points.

The main contributions of this paper are summarized as
follows:

1) The dependence of the quiescent beam response of
FCSSTBB on the location of the phase center of the
array is derived theoretically.

2) The closed-form solution of the optimal array phase
center location of FCSTBB is theoretically derived
when the constraint matrix contains two pre-selected
points. This solution can achieve the narrowest main
lobewidth and the lowest sidelobe level in the quiescent
beam response of the beamformer.

3) The sub-optimal solution of the beamformer is cor-
rectly extrapolated when the constraint matrix contains
any number of preselected points.

The structure of this article is as follows. Section II
briefly introduces space-time broadband beamforming and
frequency-domain constraints. Section III introduces the
dependence of quiescent beam response on the phase center
of the array. The closed-form solution and the extrapolated
suboptimal solution are given in section IV. Section V
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provides the simulation results and analysis. At last, the
conclusion is given in section VI.
Symbols: Bold characters represent vectors or matrices.

[·]T and [·]H represent the transpose and conjugate transpose
of a matrix or vector, respectively. E {·} denotes the statistical
expectation. 8(·) means the phase. |·| represents the
modulus. ⊗ marks the Kronecker product.

FIGURE 1. The basic array structure of the space-time broadband
beamformer without pre-steering delays.

II. PROBLEM BACKGROUND
A. SPACE-TIME BROADBAND BEAMFORMING
Considering a uniform linear array (ULA) consisting of
M omnidirectional sensors, a tapped delay line of length
L is connected after each sensor. Fig. 1 shows the basic
array structure of the STBB without pre-steering delays
[24]. The input data of the sensor channel at the n-th data
sample is x1 (n) , x2 (n) , . . . , xM (n). xml is the input data of
each tap, wml is the weight coefficient of each tap, where
m = 1, 2, . . . ,M , l = 1, 2, . . . ,L. The output of the
beamformer can be expressed as

y =
M∑
m=1

L∑
l=1

wmlxml (1)

represented in vector form as

y = wHx (2)

where

w = [w11, . . . ,w1L ,w21, . . . ,w2L , . . . ,wM1, . . . ,wML]T

(3)

is the ML-dimensional weight coefficient vector.

x = [x11, . . . , x1L , x21, . . . , x2L , . . . , xM1, . . . , xML]T (4)

is theML-dimensional input data vector. For the case that the
array data is generalized stationary in time, the equation of the
optimal weight vector can be expressed by the beamformer
data covariance matrix Rxx = E

{
x (n) xT (n)

}
.

The optimal weight of a space-time broadband beam-
former can be found by the following linear constrained
minimum variance problem{

min wHRxxw
s.t. CHw = F

(5)

where matrix C and vector F are the KL×J dimensional
constraint matrix and the J -dimensional response vector,
respectively. Each column in constraint matrix C imposes a
constraint on the weight vector w, which is termed stacked
constraint vector. The optimal weight vector satisfying (5) is
given by

wopt = R−1xx C
(
CHR−1xx C

)−1
F (6)

FIGURE 2. ML-dimensional source observation and weight vector space.

As shown in Fig. 2, the optimal weight vector wopt can be
orthogonally decomposed into a data-independent quiescent
(white noise data) solution vector g and a data-dependent
solution vector w̄ [16], [22], [25].

where the constraint hyperplane 3 composed of all ML-
dimensional vectors satisfying the constraint is defined as

3 =
{
w|CHw = F

}
(7)

the constraint subspace6 orthogonal to all stacked constraint
vectors is defined as

6 =
{
w|CHw = 0

}
(8)

The quiescent solution vector g is perpendicular to and
terminates in the constraint hyperplane 3, so it is a linear
combination of stacked constraint vectors and satisfies
the constraint conditions. The unique expression for the
quiescent solution vector g can be expressed as [16]

g = C
(
CHC

)−1
F (9)

The quiescent solution vector g is equivalent to the optimal
weight vector when the data covariancematrix is proportional
to the unit matrix. Therefore, when the input is white noise,
gHx is the optimal response output of the array, and its
corresponding beam response is the quiescent beam response.
The quiescent solution vector g not only controls the unit gain
response of the beamformer to the preselected points, but also
controls the main lobe width and sidelobe level of the beam
response.
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The solution vector w̄ is a function of the data covariance
matrix Rxx , which is orthogonal to all stacked constraint
vectors. Substituting the two orthogonal decomposed optimal
weight vectors into (2) to obtain the final array beam output

y = gHx+ w̄Hx (10)

B. FREQUENCY-DOMAIN CONSTRAINTS
Frequency-domain constraint refers to the gain of control
over a set of preselected points (representing the direction
and frequency of the desired signal) in the frequency domain.
A stacked constraint vector in the constraintmatrixC can only
achieve one preselected point gain control. Stack constraint
vector a

(
θp, fq

)
based on frequency-domain constraint is

defined as

a
(
θp, fq

)
= St

(
fq
)
⊗ Ss

(
θp, fq

)
(11)

where θp (p = 1, 2, . . . ,P) denotes the direction of the
preselected point, fq (q = 1, 2, . . . ,Q) denotes the frequency
of the preselected point. a

(
θp, fq

)
is also referred to as

the space-time steering vector of the preselected point. The
L-dimensional frequency steering vector St

(
fq
)

can be
written as

St
(
fq
)
=

[
1, e−j2π fqTs , · · · , e−j2π fq(L−1)Ts

]T
(12)

where j is the imaginary unit, Ts is the sampling interval of
the data sample. The frequency steering vector can transform
the weight coefficient from the time domain to the frequency
domain. TheM -dimensional space steering vector Ss

(
θp, fq

)
is expressed as

Ss
(
θp, fq

)
=

[
e−j2π fqτ1,θp , e−j2π fqτ2,θp , · · · , e−j2π fqτM ,θp

]T
(13)

where τm,θp represents the propagation delay between the m-
th sensor and the array phase center when the source direction
is θp. The space steering vector can compensate for the phase
of the weight coefficient that has been transformed to the
frequency domain.

FIGURE 3. Coordinate distribution of uniform linear array.

The coordinate distribution of the ULA is shown in Fig. 3,
with the origin of the coordinates located at the location of the
first array element and one coordinate axis coinciding with
the line where the sensor is located. Let x be the coordinate
of the array phase center, then the propagation delay of the
source impacted from the azimuth angle θp can be constructed
as

τm,θ = − [(m− 1) d − x]
sin θp
c

(m = 1, 2, . . . ,M) (14)

where d is the distance between two adjacent elements of the
ULA, and c is the propagation velocity of the wave.
In space-time broadband beamforming, it is usually

necessary to control the gain over the entire desired frequency
band in the desired direction. Suppose the desired direction
is θp. The desired frequency band is decomposed into Q
frequency bins, fq ∈ [fl, fh], q = 1, 2, . . . ,Q, fl and fh
represent the minimum and maximum endpoints of the signal
bandwidth, respectively. Considering the weight coefficient
is a complex number, the constraint matrix C for achieving
preselected point gain control can be expressed as

C =
[
a
(
θp, f1

)
, a
(
θp, f2

)
, . . . , a

(
θp, fQ

)]
(15)

the corresponding response vector F is given by

F = [1, 1, . . . , 1]T (16)

III. DEPENDENCE OF BEAM RESPONSE ON ARRAY
PHASE CENTER
Regarding the dependence of the beam response on the array
phase center for FCSTBB, the following proposition is given
in this paper.
Proposition 1: The quiescent beam response of FCSTBB

depends on the phase center location of the array.
Proof: The mathematical expression of the quiescent

beam response power of FCSTBB is can be calculated as

P (θ, f ) =

∣∣∣∣FH (CHC
)−1

CHa (θ, f )
∣∣∣∣2 (17)

where the constraint matrix C and the response vector F
are given by (15) and (16), respectively. θ representing
direction and f representing frequency. LetV =

(
CHC

)−1
F,

which is aQ-dimensional complex vector. Substitute (15)(16)
into (17) and expand to obtain

P (θ, f ) =

∣∣∣∣∣∣
Q∑
q=1

VqaH
(
θp, fq

)
a (θ, f )

∣∣∣∣∣∣
2

(18)

where Vq denotes the q-th element of the complex vec-
tor V. Joint (11) (12) (13) (14) expansion calculation
aH
(
θp, fq

)
a (θ, f ) get

aH
(
θp, fq

)
a (θ, f )

=
[
St
(
fq
)
⊗ Ss

(
θp, fq

)]H [St (f )⊗ Ss (θ, f )]

=

[
SHt

(
fq
)
St (f )

]
⊗

[
SHs

(
θp, fq

)
Ss (θ, f )

]
=

sin (Lϕt/2)
sin (ϕt/2)

sin (Mϕs/2)
sin (ϕs/2)

e
−j
(
L−1
2 ϕt+ϕ0+

M−1
2 ϕs

)
(19)

where 
ϕt = 2πTs

(
f − fq

)
ϕ0 = −

2πx
c

(
f sin θ − fq sin θp

)
ϕs =

2πd
c

(
f sin θ − fq sin θp

) (20)
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The modulus of aH
(
θp, fq

)
a (θ, f ) is independent of

array phase center x but its phase function depends on
array phase center x. The phase difference 1u,v between
aH
(
θp, fq

)
a (θ, f ) for different preselected frequencies fu, fv

can be calculated as

1u,v

= (fu − fv)

×

[
πTs (L − 1)−

2πx
c

sin θp +
πd sin θp (M − 1)

c

]
(21)

When θp 6= 0◦, the phase difference 1u,v is a function of
the phase center location of the array x. Therefore, the value
of
∣∣∣∑Q

q=1 a
H
(
θp, fq

)
a (θ, f )

∣∣∣ depends on the phase center
location of the array x.

Now consider the influence of complex weighted vector
V. According to the solution procedure of complex weighted
vector V, {

g = CV
CHg = F

⇒ V =
(
CHC

)−1
F (22)

it can be found that the complex weighted vector V can only
control the array response of the preselected points to meet
the unit gain, but can not control the array response in other
directions and frequencies outside the preselected points.
Therefore, in addition to the unit gain of the preselected
points, the values of P (θ, f ) will depend on the phase center
location of the array x.
Remarks 1:When θp = 0◦, the phase center location of the

array x does not affect the calculation results in (18)(19)(21),
so the quiescent beam response is not affected by the phase
center location of the array x.
This concludes the proof.
Theoretical derivation proves the accuracy of the depen-

dence between the stationary beam response and the phase
center of the array. In order to further understand the impact
of the array phase center on the quiescent beam response of
FCSTBB, the following numerical simulation is designed.

FIGURE 4. Quiescent beam pattern: (a) different array phase center
position; (b) different desired wave directions.

Firstly, Fig. 4(a) simulates the quiescent beam pattern
for three different phase center locations of the array x =
0, 7.5d, 15d . The sampling frequency fs used is equal to two
times the maximum array frequency, the signal processing

bandwidth is extended from 0.2fs to 0.4fs. M = 16,L =
11, θp = 30◦, and Q = 21 were selected in simulation.
The quiescent beam pattern only shows the beam response
at f = 0.3fs. As shown in Fig. 4(a), the beam pattern at
x = 0 has serious distortion, the sidelobe level is significantly
higher than the other two beam patterns, and it is difficult to
distinguish the location of the main lobe of the beam pattern.
The main lobe width and sidelobe level of the beam pattern
at x = 7.5d have been greatly improved compared to x = 0,
but the beam pattern at x = 15d has narrower main lobe
width and lower sidelobe level. Therefore, the phase center
of the array has a significant influence on the quiescent beam
response, and there is an optimal phase center of the array,
which makes the beamformer get the best beam response.

Secondly, Fig. 4(b) simulates the quiescent beam pattern
of a set of desired signals with symmetric incoming wave
direction (θp = −30◦, 30◦) at the same phase center location
of the array x = 15d , respectively. As shown in Fig. 4(b),
when the array phase center is selected as x = 15d , although
a better quiescent beam response is obtained when θp = 30◦,
the beam pattern is seriously distorted when θp = −30◦.
At the same phase center location of the array, selecting
a different incoming direction θp of the desired signal will
cause a significant change in the quiescent beam response.
Therefore, different phase center locations of the array should
be selected for different desired wave directions.

IV. OPTIMAL ARRAY PHASE CENTER
In order to quantify the optimal phase center of the array for
the optimal beam response of the FCSTBB, it is necessary
to select an evaluation n index to establish the variable
relationship between the best beam response and the array
phase center. three commonly used evaluation indices of
beam response are considered to apply to the theoretical
design criteria of optimal beam response: the main lobe width
and sidelobe level of the beam pattern, the output signal to
interference and noise ratio (SINR) and the quiescent output
power of the array under white noise input.

First of all, due to the lack of quantitative criteria, the main
lobe width and side lobe level of beam response can not be
used as a theoretical design criterion. Second, The output
SINR of the beamformer can be expressed as

SINR =
wHoptRswopt

wHopt
(
σ 2
n I + Ri

)
wopt

=
σ 2
s

(g+ w̄)H
(
σ 2
n I + Ri

)
(g+ w̄)

(23)

where Rs and Ri represent the space-time covariance matrix
of the desired signal and the space-time covariance matrix
of the interference, respectively. σ 2

s and σ 2
n respectively

represent the power of the desired signal and the power of
white noise. Because the solution vector w̄ is a function of the
inverse matrix of data covariance, the relationship between
SINR and the location of the phase center is highly nonlinear
and depends on the location of interference. Therefore, SINR
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can not be used as a theoretical design criterion. Finally,
Considering the quiescent condition without interference, the
output SNR of the beamformer can be calculated as

SNR =
σ 2
s

σ 2
n gHg

(24)

where σ 2
n g

Hg represents the quiescent output power of the
array under white noise input. It can be found that minimizing
the quiescent output power is equivalent to maximizing the
output SNR. Therefore, the quiescent output power of the
array can be selected as the evaluation index of the design
criterion for the best quiescent beam response. The optimal
phase center of the array should minimize the quiescent
output power of the array.

Under white noise input, the theoretical equation of the
quiescent output power of the array is

Pn = σ 2
n g

Hg

= σ 2
nF

H
(
CHC

)−1
F (25)

in which the constraint matrix C and the response vector
F are given by (15) and (16), respectively. σ 2

n is the white
noise power. In order to obtain the functional relationship
between the quiescent output power of the array and the
phase center of the array, it is necessary to expand (25)
for theoretical derivation. However, when the order of CHC
is greater than two, the expansion of its inverse matrix
is complicated. Theoretically, the functional relationship
between the quiescent output power of the array and the phase
center of the array can only be obtained when the constraint
matrix C contains two preselected points.

A. THE CLOSED-FORM SOLUTION OF THE OPTIMAL
PHASE CENTER LOCATION WHEN THE CONSTRAINT
MATRIX CONTAINS TWO PRESELECTED POINTS
Considering the constraint matrix contains two preselected
points, their desired wave directions are θp, and the frequen-
cies are fu and fv, respectively. The corresponding constraint
matrix C′ and response vector F′ can be obtained as follows{

C′
=
[
a
(
θp, fu

)
, a
(
θp, fv

)]
F′
= [1, 1]

(26)

Substitute (26) into (25), expand the inverse matrix of C′

and simplify the result, we obtain

Pn = σ 2
n
2ML − 2

∣∣aH (θp, fu) a (θp, fv)∣∣ cos8u,v

(ML)2 −
∣∣aH (θp, fu) a (θp, fv)∣∣2 (27)

where

8u,v = 8
[
aH
(
θp, fu

)
a
(
θp, fv

)]
(28)

Calculate aH
(
θp, fu

)
a
(
θp, fv

)
according to (19)(20),

where (20) can be rewritten as
ϕt =

2π
fs
(fv − fu)

ϕ0 = −
x
d
α
(
sin θp

)
ϕt

ϕs = α
(
sin θp

)
ϕt

(29)

where α = fs/ (2f0), and f0 is the maximum frequency of the
array. Substituting (29) into (19), we obtain

aH
(
θp, fu

)
a
(
θp, fv

)
=

sin (Lϕt/2)
sin (ϕt/2)

sin (Mϕs/2)
sin (ϕs/2)

e
−jϕt

[
L−1
2 +(α sin θp)

(
M−1
2 −

x
d

)]
(30)

When θp 6= 0◦, the array quiescent output power Pn is a
multivariate function as follows.

Pn = P
(
fv − fu, α sin θp, x

)
(31)

The minimum value of Pn about the phase center location
x of the array satisfies the following expression

∂Pn
∂x
= 0

∂2Pn
∂x2

> 0
(32)

Combining (27)(29)(30) to calculate (32). When the array
quiescent output power Pn takes the minimum value, the
phase center location of the array x satisfies the following
expression

8u,v = −ϕt

[
L − 1
2
+
(
α sin θp

) (M − 1
2
−
x
d

)]
= 2kπ

(k = 0,±1,±2, . . .) (33)

Substituting (33) into (27), it is easy to find that the
minimum values of Pn are the same. Therefore, when the
constraint matrix contains two preselected points, all x
satisfying (33) are the optimal phase center location of the
array. When the constraint matrix contains two preselected
points, the closed-form solution of the optimal phase center
location of the array can be calculated by the following
equation

xopt,2point =
[

kfs
(fv − fu) α sin θp

+
L − 1

2α sin θp
+
M − 1

2

]
d(

θp 6= 0, k = 0,±1,±2, . . .
)

(34)

At θp = 0◦, sinθp = 0 makes the array output power Pn
independent of the phase center location of the array x.

B. SUBOPTIMAL SOLUTION OF OPTIMAL PHASE CENTER
LOCATION
Due to the inverse of the matrix exceeding the two orders
can not be expanded, the closed-form solution of the optimal
phase center location of the array can not be solved when the
constraint matrix contains more than two preselected points.
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Extrapolate (34) to obtain the suboptimal solution for the
optimal phase center location may be a good solution.

Substituting (33) into (30), the inner product between the
space-time steering vectors of two preselected points is a real
number at the optimal phase center of the array. According
to (25), the quiescent output power of the array depends on
CHC, Substitute (15) into CHC, we get

CHC =



aH1 a1 aH1 a2 · · · aH1 aQ

aH2 a1 aH2 a2 · · · aH2 aQ

...
...

. . .
...

aHQa1 aHQa2 · · · aHQaQ


(35)

where aq = a
(
θp, fq

)
q= 1, 2, . . . ,Q. Therefore, the

quiescent output power of the array depends on the inner
product of the space-time steering vectors. Based on the
above conclusions, an easy extrapolation conclusion is that
the expected suboptimal solution of the optimal array phase
center should ensure that the inner product of the space-time
steering vectors of any two preselected points in the constraint
matrix is a real number.

Next, based on the closed solution (34), the suboptimal
solution of the optimal array phase center is found. At k 6=
0, xopt,2point (k 6= 0) depends on the frequency interval
between the two preselected points. Therefore, when the
constraint matrix contains more than two preselected points,
the phase center location of the array xopt,2point (k 6= 0) can
not guarantee that the inner product between the space-time
steering vectors corresponding to any two preselected points
is a real number. At k = 0,

xopt,2point (k = 0)=
[

L − 1
2α sin θp

+
M − 1

2

]
d
(
θp 6= 0

)
(36)

(36) is an exciting result, which not only makes the optimal
phase center location independent of the frequency of the
preselected points when the constraint matrix C contains
two preselected points, but also makes the inner product
of the space-time steering vectors corresponding to any
two preselected points in constraint matrix C real when
the constraint matrix C contains more than two preselected
points. This unique ability of (36) indicates that when the
constraint matrix C contains more than two preselected
points, it may be the suboptimal solution to the optimal phase
center location of the array. Proving this extrapolation by
theoretical derivation requires expanding

(
CHC

)−1
, which is

a complex and difficult task. However, (36) is a reasonable
extrapolation result based on the existing conditions, which
provides a quick method to solve the optimal phase center
location of the array when the constraint matrix contains
any number of preselected points. Otherwise, solving the
optimal phase center location of the array can only search
the phase center of the array where the minimum quiescent
output power of the array lies inefficiently. The effectiveness
of this extrapolated suboptimal solution will be verified by
numerical simulation in the next section.

V. SIMULATION RESULTS
In this section, the correctness and effectiveness of the closed-
form solution (34) and the suboptimal solution (36) of the
optimal phase center location are verified by numerical
simulation. The influence of the frequency interval 1f
between the preselected points and the filter tap number L
on the dependence of the phase center of the array on the
quiescent beam response is simulated and analyzed. Consider
a 16-element (M = 16) ULA, using tapped delay lines with
eleven taps (L = 11) at each element. Assuming that it works
in a broadband environment, the element spacing is equal to
half the wavelength of the maximum frequency component.
Use a sampling frequency fs equal to two times the maximum
frequency and extend the useful source bandwidth from 0.2fs
to 0.4fs.

FIGURE 5. Theoretical and simulated values of array quiescent output
power versus different array phase center positions under different
desired directions.

A. COMPARISON OF THEORETICAL AND SIMULATED
VALUES
Fig. 5 indicates the theoretical and simulated values of
the array quiescent output power versus different phase
center locations of the array when the constraint matrix
contains two preselected points. The theoretical value is
calculated according to (27) derived from (25), and the
simulated value (25) is directly calculated by computer.
In the simulation, the two preselected points are

(
θp, 0.3fs

)
and

(
θp, 0.31fs

)
. The desired signal direction θp is selected

from three representative directions θp = −30◦, 0◦, 30◦ for
three times of simulation. Fig. 5 reveals that the theoretical
value is completely consistent with the simulation value.
It proves the correctness of the closed-form solution (34).
In addition, when the optimal phase center location of the
array at θp =30◦ is applied to θp = −30◦, the output power
of the array is increased by about 8 dB, which indicates that
different desired directions θp should correspond to different
optimal phase center locations of the array.
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FIGURE 6. The array quiescent output power versus different array phase
center positions under different number of preselected points.

TABLE 1. Simulation parameters.

B. OPTIMAL PHASE CENTER LOCATION OF THE
ARRAY WHEN CONSTRAINED MATRIX CONTAINS
DIFFERENT NUMBERS OF PRESELECTED POINTS
Fig. 6 compares the curves of quiescent output power
of the array versus the different phase center location of
the array x when the constraint matrix contains different
numbers of preselected points. Select simulation parameters
of preselected points according to Table 1. As shown in
Fig. 6, the abscissa of the bottom center location of all
four groups of quiescent output power curves is 17.5d,
which is consistent with suboptimal solution that the optimal
phase center location xopt,2point (k = 0) = 17.5d calculated
according to (36). When the number of preselected points
are 2,4,21, the bottom center location of the change curve is
also the minimum. When the number of preselected points is
10, although the variation curve does not get the minimum
value at 17.5d, the difference is very small compared to
the minimum value. The slight difference indicates that the
performance difference between the quiescent beam response
of the array phase center selection of 17.5d and the real
minimum value selection is almost negligible. Because it
is difficult to solve the phase center location of the array
where the real minimum value is located, (36) can be used
as a suboptimal selection of the optimal phase center location
of the array. Therefore, when the constraint matrix contains
any number of preselected points, the phase center location

of the array obtained from (36) can be used as the subop-
timal solution of the optimal phase center location of the
array.

FIGURE 7. Quiescent beam pattern versus different array quiescent
output power: (a) 2 preselected points; (b) 21 preselected points.

TABLE 2. The relationship between the array quiescent output power and
the array phase center.

C. QUIESCENT BEAM PATTERN UNDER DIFFERENT ARRAY
QUIESCENT OUTPUT POWER
When the constraint matrix contains two preselected points,
the quiescent beam pattern at different quiescent output
power of the array is shown in Fig. 7(a). Fig. 7(b)
demonstrates that the quiescent beam pattern under different
quiescent output powers of the array when the constraint
matrix contains 21 preselected points. The quiescent beam
pattern only reveals the beam response when f = 0.3fs.
By selecting different phase center locations of the array,
the quiescent beam patterns under different quiescent output
powers of the array can be obtained. The corresponding
relationship between the array quiescent output power and
the array phase center is presented in Table 2. It can be
seen from Fig. 7(a) that when the quiescent output power
of the array takes the minimum value, the quiescent beam
pattern can obtain the narrowest main lobe width and the
lowest sidelobe level. In addition, it is obvious that the
greater the difference between the quiescent output power
of the array and the theoretical minimum output power, the
worse the performance of the corresponding quiescent beam
response. The simulation results of Fig. 7(b) are similar to
that of Fig. 7(a), indicating that when the constraint matrix
contains more than two preselected points, the suboptimal
solution (33) of the optimal phase center of the array can
make the quiescent output power of the array minimum or
approximately minimum.
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FIGURE 8. Optimal beam pattern versus different array phase centers.

D. OPTIMAL BEAM PATTERN UNDER DIFFERENT ARRAY
PHASE CENTERS
The optimal beam patterns of FCSTBB under different
phase centers of the array are shown in Fig. 8. The wave
directions of the broadbandmain lobe interference source, the
broadband side lobe interference source and the broadband
desired source are 20◦, −20◦ and 30◦, respectively. The
constraint matrix of the beamformer contains 21 preselected
points, and the parameters of the preselected points are
selected according to Table 1. The phase center locations of
the array are chosen as 0, 5d , 10d , and 17.5d , respectively.
Table 3 lists the null depth of the interference direction in
the optimal beam pattern. In Fig. 8, when the optimal phase
center location is selected, the beamformer can obtain the
narrowest main lobewidth and the lowest sidelobe level while
forming interference nulling. When the other three array
phase centers are selected, the main lobe width and the side
lobe level are increased to varying degrees. Table 3 indicates
that the selection of the phase center location of the array will
affect the beampattern null depth. Among them, the widening
of the main lobe and the increase of the sidelobe level caused
by the improper selection of the array phase center will reduce
the depth of main lobe interference nulling and side lobe
interference nulling, respectively.

TABLE 3. Optimal beam pattern null depth.

E. EFFECT OF PRESELECTED POINT FREQUENCY
INTERVALS
The variation of the array quiescent output power with the
phase center location of the array x at different frequency

FIGURE 9. The array quiescent output power versus different array phase
center positions under different preselected point frequency intervals.

intervals of the preselected point 1f is given in Fig. 9.
Considering the useful source bandwidth [0.2fs, 0.4fs], four
groups of preselected points are selected with different
frequency intervals1f = 0.01fs, 0.03fs, 0.05fs, 0.1fs respec-
tively. Fig. 9 reveals that the difference between themaximum
and minimum values of the array quiescent output power
decreases with the increase of the frequency interval 1f of
the preselected points. The phase centers of the array with
the maximum and minimum of the quiescent output power
correspond to the worst and best quiescent beam response
performance, respectively. Therefore, the difference between
the maximum and the minimum value of the simulation curve
can reflect the dependence of the quiescent beam response
on the phase center location of the array. For the three
simulation curves 1f = 0.01fs, 0.03fs, 0.05fs, the phase
center location of the array x still has a great influence on the
quiescent output power, so the dependence of the array phase
center on the quiescent beam response can not be ignored.
However, for 1f = 0.1fs, the output power of the array
hardly changes with the phase center location of the array x,
so this dependence can be ignored. Although the number of
preselected points in each group is different in the simulation,
the simulation results in Fig.6 demonstrate that reducing the
number of preselected points will not make the dependence
of the array phase center on the quiescent beam response
negligible.

F. EFFECT OF FILTER TAP NUMBER
Fig. 10 shows the variation of the quiescent output power
of the array with the phase center location x under different
filter taps L. Five filter taps L = 11,31,51,81,101 are
considered. The constraint matrix of the beamformer contains
21 preselected points, and the parameters of the preselected
points are selected according to Table 1. As is clear from
Fig 10, with the increase of filter taps L, the difference
between the maximum andminimum values in the simulation
curve decreases, that is, the dependence of the quiescent
beam response on the phase center location of the array
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FIGURE 10. The array quiescent output power versus different array
phase center positions under different filter tap numbers.

decreases. When the number of filter taps is chosen L = 101,
the output power of the array hardlychanges with the phase
center location of the array x, so the dependence of the phase
center of the array on the quiescent beam response can be
neglected.

VI. CONCLUSION
In this paper, the dependence of the quiescent beam response
of the FCSTBB on the array phase center is pointed out,
and the accuracy of this dependence is proved by theoretical
derivation and numerical simulation. In order to solve the
optimal phase center location of the array, minimizing the
quiescent output power of the array under the input of white
noise is selected as the selection criterion of the optimal
phase center location of the array. Then, through theoretical
derivation, the closed-form solution of the optimal phase
center location of the array is obtained when the linear
constraint contains two preselected points. Since the inverse
of the high-order matrix can not be derived theoretically, the
closed-form solution of the optimal phase center location
of the array when the constraint matrix contains more than
two preselected points can not be given. In order to solve
this problem, based on the derived closed-form solution,
a suboptimal solution of the optimal phase center location
of the array is correctly derived when the linear constraint
contains any number of preselected points. The numerical
simulations indicate that the suboptimal solution can make
the beam pattern of FCSTBB obtain the narrowest main lobe
width and the lowest side lobe level, and at the same time
improve the depth of null.

In addition, the influence of the frequency interval of
the preselected points and the number of filter taps on the
dependence of the quiescent beam response on the array
phase center is simulated and analyzed. The results show that
when the selected preselected point frequency interval1f or
the number of filter taps L is large enough, the dependence of
the quiescent beam response on the phase center location of
the array can be ignored. The research in this paper is helpful

in the selection of the optimal phase center location of the
ULA in FCSTBB.
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