IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 6 December 2022, accepted 30 December 2022, date of publication 2 January 2023, date of current version 20 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3233786

== RESEARCH ARTICLE

Parallel Ant Colony Optimization Algorithm for
Finding the Shortest Path for Mountain Climbing

ESRA'A ALHENAWI', RUBA ABU KHURMA"“2, AHMAD A. SHARIEH 3, OMAR AL-ADWAN 23,
AREEJ AL SHORMANS3, AND FATIMA SHANNAQ*

! Department of Software Engineering, Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan
2Department of Computer Science, Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan
3Department of Computer Science, The University of Jordan, Amman 11942, Jordan

“#Faculty of Computer Science and Informatics, Amman Arab University, Amman 11953, Jordan

Corresponding author: Ruba Abu Khurma (r.khurma@ammanu.edu.jo)

ABSTRACT The problem of finding the shortest path between two nodes is a common problem that requires
a solution in many applications like games, robotics, and real-life problems. Since its deals with a large
number of possibilities. Therefore, parallel algorithms are suitable to solve this optimization problem that
has attracted a lot of researchers from both industry and academia to find the optimal path in terms of runtime,
speedup, efficiency, and cost compared to sequential algorithms. In mountain climbing, finding the shortest
path from the start node under the mountain to reach the destination node is a fundamental operator, and
there are some interesting issues to be studied in mountain climbing that cannot be found in a traditional
two-dimensional space search. We present a parallel Ant Colony Optimization (ACO) to find the shortest
path in the mountain climbing problem using Apache Spark. The proposed algorithm guarantees the security
of the selected path by applying some constraints that take into account the secure slope angle for the path.
A generated dataset with variable sizes is used to evaluate the proposed algorithm in terms of runtime,
speedup, efficiency, and cost. The experimental results show that the parallel ACO algorithm significantly
(» < 0.05) outperformed the best sequential ACO. On the other hand, the parallel ACO algorithm is
compared with one of the most recent research from the literature for finding the best path for mountain
climbing problems using the parallel A* algorithm with Apache Spark. The parallel ACO algorithm with
Spark significantly outperformed the parallel A* algorithm.

INDEX TERMS Apache spark, ant colony, parallel algorithm, path-finding problem, optimization.

I. INTRODUCTION
Finding the best path between two nodes (locations) in an

approach to solving applications of the shortest path with big
data [4], [5], [6].

area such as a mountain is an optimal search problem. The
goal here is to find the shortest path or a path with the least
cost, for example, between two nodes, between one node and
other nodes, or between the set of nodes and another set of
nodes [1].

The path planning issue under various constraints for mas-
sive data in geography distance is becoming more chal-
lenging [2], [3]. In the literature, there are many works
focused on developing sequential or parallel solutions for
optimal path problems. Parallel processing is an ultimate
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Mountain climbing is one of the most recent applications
for path-finding problems in a three-dimensional environ-
ment. In this paper, a three-dimensional mountain curve is
generated using a complex mathematical equation. Then, a set
of points were generated randomly below the curve between
the source node, and the destination node on the moun-
tain surface. However, some of these nodes were considered
obstacles, that would not be passed by ants as in the case in
nature [7].

Classical search algorithms are ineffective in solving com-
plex and nonlinear problems. Therefore, optimization algo-
rithms based on meta-heuristics algorithms were utilized to
establish search techniques for tackling a wide variety of
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complex problems like path-finding problems. Researchers
in [8], [9], and [10] categorized meta-heuristic algorithms
into ten classes: (1) Biology-based, (2) Physics-based,
(3) Social-based, (4) Music-based, (5) Chemical-based,
(6) Sport based, (7) Swarm-based, and (9) Plant-based, and
(10) Water-based.

Genetic Algorithm(GA) [11] is biology-based; Electro-
magnetic field optimization (EFO) [12] is physics-based;
Social group optimization (SGO) [13] is social-based; Har-
mony Search Algorithm (HSA) [14] is music-based; Art-
ificial Chemical Reaction Optimization Algorithm
(ACROA) [15] is chemical-based; Intelligent Water Drops
algorithm (IWDs) [16] is water-based; Particle Swarm
Optimization (PSO) [17] and Ant Colony Optimization
(ACO) [18] algorithms are swarm-based. Compared with
other optimization algorithms, ACO has advantages, includ-
ing strong robustness, good global optimization ability, and
inherent parallelism [19], [20].

The sequential ACO (SACO) may lead to poor conver-
gence due to the randomness of the probabilistic transfer due
to updating the pheromone while iterating. The convergence
can be sped up by updating pheromones on the path of the
optimal ant of each generation using a parallel version of the
SACO algorithm [20].

The swarm particle optimization algorithm (SPO) is uti-
lized with extremely significant academic and practical
value [21]. SACO is one of the most representative SPO
algorithms with self-organizational, distributive, operational,
flexible, and robust properties. As a result, SACO is gradually
being used to solve a wide range of problems in a variety
of applications, including path-finding, scheduling, and other
optimization problems. Based on Google Trends indicators
of SPO algorithms from 2000 to 2020, research on deploying
and on SACO has the second-highest rank after PSO, where
the publication number, based on Google Scholar data, equals
35,000 research papers on SACO. The overall research shows
an increasing growth trend from 2000 to 2020 [21].

SACO simulates ant behavior in nature by finding the best
route to find food for solving any problems [22]. SACO can
be utilized for finding the shortest path for mountain climbing
from a specific point on the edge of a mountain to a specific
destination on its surface. This is the point on which this paper
focuses. An ant, along with the necessity to find food and
bring it back to its nest, manages to explore a vast area and
determine the food’s location to its peers, so they can bring
it back to the nest [23], [24], [25]. Ants detect where their
destination is located, without having a global view of the
ground [26], [27]. In an ant colony, a single individual has
a very limited effect [24], but as a part of a well-organized
colony, it can perform as an effective agent that works for
the development of the colony [25]. Ant colonies appear to
operate as a unified entity [26]. An ant walks from or to a food
source and deposits a pheromone on the ground. Other ants
can smell the deposited pheromone, and its presence guides
other ants to choose their path; they tend to follow strong
pheromone concentrations [23]. The deposited pheromone on
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the ground forms a pheromone trail. This allows the ants to
find good sources of food that have been previously iden-
tified by other ants [26]. The ants will leave their one nest
within a ground containing food source, and come back to
the nest [28]. After a while, the path being used by the ants
will converge on the best path [29].

In Wang and Han’s study [30], they developed a hybrid
symbiotic organism search (SOS) and ACO algorithm for
solving the traveling salesman problem (TSP). Some param-
eters were optimized using SOS and used in the ACO. The
results of this hybrid method showed good adaptive abilities
for finding competitive solutions.

Lietal. [2] adjusted the ACO control parameters by adapt-
ing the greedy strategy to have a GSACO algorithm. The
GSACO showed better performance in terms of convergence
speed and run time than the ACO.

In parallel and distributed computing systems, a problem
can be decomposed to have more than multiple processors
or computers work to solve a problem. The main goal is to
handle big data and speed up the process. There are two main
methods of problem decomposition based on tasks or data
decomposition [31], [32]. In data decomposition, the data is
divided into parts and assigned to a specific core or computer.
The cores or processors will run in parallel to complete
the whole computation task that involved computation and
communication processes [33] and [7], [34].

The ACO has a distributed nature where multiple ants
can work as independent agents on part of the solution at
the same time. Therefore, ACO can be implemented as a
parallel ACO algorithm (PACO). [35], [36], [37], and [38]
studies showed the possibilities of developing a parallel ACO
algorithm to take advantage of multi-core hardware to find
the best path. The need for an optimal path in applica-
tions such as in infrastructures, distributed nodes in net-
works, traveling salesman,...etc, and the nature of parallel
behaviors of ants motivate us to develop a parallel ACO
algorithm.

Apache Spark is an open-source framework that has been
widely used to analyze big data for various applications [39].
It represents an optimization on Hadoop, where it supports
batch processing only, but Spark is good for both batch pro-
cessing and stream processing [40]. This means that Spark
is suitable for analyzing data from social media sites and
searching websites because it includes all the streaming data
in the analysis process.

Spark is In-memory computation and provides real-time
data processing capability [41]. It runs applications faster
than Hadoop, easy to program, manage, and use. It includes
Spark streaming, MLLib, GraphX, and Spark SQL for
real-time data processing, machine learning, graph process-
ing, and SQL querying, respectively. It also provides fault
tolerance, and it can be scaled. The spark was designed for
big data analysis [42], [43]. Spark has its read-only data item
distributed in a space between clusters of machines that is
named Resilient Distributed Dataset (RDD), and it works as
a fault tolerance mechanism [44].
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The main contributions of this paper are as follows:

o It documents the most recent path-searching applica-
tions in the literature and the way they are connected.

o It develops the best sequential ACO algorithm for
finding the shortest path in one of the most recent
path-finding problems called the 3D mountain climbing
problem. There are some interesting issues to be studied
that cannot be found in a traditional two-dimensional
space search. In this paper, A complex mathematical
equation is used to produce a 3D mountain curve.

« Itdevelops a parallel version of the ACO algorithm using
Apache Spark for finding an optimal path for the same
problem.

o It compares the serial and parallel versions in terms of
running time, speedup, efficiency, and cost, experimen-
tally and theoretically, by analyzing each algorithm’s
complexity.

o It compares the proposed parallel ACO algorithm’s per-
formance with one of the most recent research results
for solving the same optimization problem from the
literature.

The rest of this paper is organized as follows. Section II
displays the related works. Sequential and parallel algorithms
are illustrated in Section IV. Setups for the experiments dis-
cussed in Section III. Section V presents the experimental
results. Section VI is devoted to the obtained results discus-
sion. Finally, the conclusion is presented in Section VII.

Il. RELATED WORK

Many algorithms and techniques have been proposed in the
literature to find the optimal path using either sequential or
parallel methods. The following two subsections presented
some of these works, which vary based on the nature of
the problem and the type of path. Table 1 summarizes these
efforts.

A. FINDING SHORTEST PATH PROBLEM

Finding the shortest path between two nodes is a common
problem that requires a solution in many applications
like games, robotics, and real-life problems. Numerous
algorithms and techniques have been intended by several
researchers to tackle this problem. However, finding the
shortest path is not an easy task, where the best path varies
from one application to another as it may be referring to the
path length, the security [45], or smoothness [36]. There-
fore, there is a growing demand for optimized solutions, and
this section deliberates some related techniques based on
meta-heuristics optimization to solve the issues in optimizing
the shortest path.

The authors in [46] used a deep reinforcement learning
algorithm and a local planning method for unmanned vehicles
in harsh environments.

In addition, Sinodkin et al. [47] developed a hybrid
A* algorithm to address the problem of path planning for
self-driving vehicles based on a vehicle’s kinematics using
the Unity 3D game platform. Zhigalov et al. applied the
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A* algorithm for path-finding of vehicle movements in rough
environments [48].

Furthermore, the authors in [49] proposed a sequential
version of the hill-climbing algorithm and a parallel version
using the Message Passing Interface (MPI) for finding the
best path in the mountain environment. For comparing the
two versions, they used three different sizes of datasets.
Results showed that the parallel version outperformed the
sequential one.

B. PARALLEL SHORTEST PATH ALGORITHMS

The use of parallel methods has been very common in several
hot research areas. This is due to the increasing requirements
for speedy and efficient parallel-based methods that can be
concurrently applied. Hence, many researchers implement
a parallel path-finding algorithm. For instance, the authors
in [50] introduced a parallel evolutionary artificial potential
field (PEAPF) concept for handling the dynamic obstacles in
path planning for mobile robot navigation.

In addition, authors in [32] proposed a parallel algorithm
to increase multi-core CPU utilization based on the same
approach used for solving TSP.

The ACO algorithm is usually used to find the optimal
path, and recently several studies have been presented to
improve the performance of the ACO algorithm to find the
optimal path by implementing a parallel ACO architecture.
For instance, [38], the authors proposed an effective parallel
ACO algorithmic method for CPU-based SIMD architecture.
In this method, each ant is mapped to the CPU core, and each
ant path is mapped into vector instructions. In addition, a new
fitness function is proposed, which is called the Vector-based
Roulette Wheel (VRW).

Moreover, The researcher in [37] applied a parallel, inde-
pendent run where many ant colonies execute on processors
and communicate depending on pheromone trials by sharing
a memory or a message-passing interface (MPI). Meanwhile,
Yu et al. [36] developed a parallel ACO algorithm for find-
ing the best path in any environment in automated guided
vehicles (AGVs) and intelligent warehouse planning. AGVs
are required to search for a better path in a given work
environment, according to warehouse path planning.

In addition, Islam et al. [35] deployed an ACO search
algorithm for designing a source update for MANETS. The
parallel ACO was used on a distributed memory machine
to detect cycles using MPI. Results show that the proposed
approach obtains a relative speedup of 7 with 10 processors.

Apache Spark has been used to improve system perfor-
mance, especially when the amount of data becomes large or
when computational operations increase dramatically. In the
literature, Apache Spark has been used in various fields such
as the medical field [51], machine learning field [52], [53],
[54], [55], and path-finding, in which one of the recent work
done by Alazzam et al., where the authors applied a parallel
A* algorithm using a Hadoop Insight cluster provided by
Azure with six worker nodes to find the optimal path using the
Apache Spark in the mountain climbing environment. They
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evaluated the proposed algorithm in terms of runtime, cost,
efficiency, and speedup on a generated dataset with different
sizes. The proposed algorithm reached a speedup of 4.85.

Many works in the literature intensively investigate
sequential or parallel strategies of ACO implementation in
various applications ([2], [30], [36], [56]). However, no stud-
ies have applied the parallel ACO to finding the best path in
mountain environments using Apache Spark. Therefore, this
paper proposes sequential and parallel ACO algorithms using
Apache Spark to find the shortest path between two nodes,
one at the bottom of the mountain and the target on the top of
the mountain surface, using the ACO algorithm. By analyzing
each algorithm’s complexity, the proposed parallel algorithm
is compared with a sequential algorithm and a parallel A*
algorithm in terms of running time, speedup, efficiency, and
experimental and theoretical costs.

IIl. EXPERIMENTAL SETUPS
A. DATA GENERATION AND HYPOTHESES
The following are the problem’s hypotheses:

o Point D is directly reachable from point S, if, and only
if, there is a link (path) between those points with a slope
that equals or is smaller than 220.

« Some points are considered obstacles, such as an unse-
cured area, a lake, or a cliff. These obstacles will not be
passed by ants, as is the case in nature [7]. So, they are
not included in the path.

« A complex mathematical equation is used to produce a
3D mountain curve, and then a 2D segment is obtained
when the third dimension is supposed to be O.

o Asetof points N has been randomly generated under the
curve according to the previous hypotheses.

o Start and destination points are generated randomly
within a specified range.

Fig. 1 shows the generated data on a mountain with random
points under its curve. Given a source point s and a destination
point d on the curve, the best path p is from s to d, denoted
by |pil, and it is defined to be a sequence of line segments on
the curve that starts from s and ends at d. The length of a line
segment pi between two points pl(x1, yl), p2(x2, y2), which
is greater than 30, is defined to be the Euclidean distance
in Equation 2.

The length of path p, which is denoted by |p]|, is defined to
be the sum of the length of all line segments of pi. In addition,
the slop S of pi to be the acute angle (< 22) is between pi
and the shadow of pi computed using Equation 3. Moreover,
for each line segment, pi computes the edge value EV
represented by a combination of |pi| and (trail) according
to Equation 2 and Equation 4, respectively. More formally,
we define the optimization problem to maximize F' the pre-
vious constraints as shown in Equation 1.

1 1)’
F(EV) = R + trail® x <|p_l|> , wherea =1, B =35.
ey
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FIGURE 1. Mountain Climbing using ACO.

Alpha was set to 1 and Beta was set to 5 to prioritize cost
over the trial at the beginning. The edge is preferred when it
has more trails and less cost. The cost has a higher priority
over the trail because we want the shortest path based on
path cost, whereas the trail must have the maximum value.
Sometimes, however, the path that has the highest pheromone
value may not be the shortest; one ant may follow it randomly,
and other ants may follow that road. Here, the pheromone
effect is less than the cost in Equation 1.

pil = /(2 — 1) + (2 — v1)? @)
2=y
(2 —x1) ®

500
trail = N where N is a number of points.  (4)

B. PERFORMANCE METRICS
This subsection presents the definitions and equations for all
metrics used to evaluate the proposed approach for finding
the best path in the mountain environment [58]:
o Runtime represents the time consumed from the begin-
ning of the execution process until it is finished.
Runtime = Termination_time — Initialization_time
(%)
o Speedup represents the ratios between sequential and
parallel runtimes used for solving a specific problem.
Sequential time T
Speedup = ——————— = — 6
P P Parallel time T, ©

o Efficiency is represented in a ratio between speedup
values and the number of processors.

Speedup T
P pT,

Efficiency = @)
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TABLE 1. Summary of related work.

Ref. Year Algorithm Scope

[57] 2021 A* The optimal path using the Apache
Spark in the mountain climbing en-
vironment

[48] 2021 A* Path-finding for vehicle movement
in rough environments

[47] 2021 A* Path planning for self-driving vehi-
cles

[46] 2020 deep reinforcement learning algo-  Unmanned vehicle in harsh envi-

rithm ronments

[49] 2020 Hill Climbing Finding the best Path in the moun-
tain environment

[36] 2020 parallel ACO Finding the best path in any envi-
ronment in automated guided vehi-
cles (AGVs) and intelligent ware-
house planning

[50] 2015 parallel evolutionary artificial po-  Path planning for mobile robot nav-

tential field (PEAPF)

igation

o Cost is the runtime multiplied by the number of the used
processors.

Cost = pTp (8)

o TotalParallelOverhead(To)
It is the difference between parallel performance on one
processor and the cost of the sequential algorithm used
for solving specific problems.

To = parallelperformanceononeprocessor

— sequentialtime = pT, — Tj. &)

C. EXPERIMENTAL ENVIRONMENT
Apache Spark is utilized to run the experiments of the parallel
ACO algorithm. This algorithmic method is assessed based
on a varying number of nodes and cores. Averages across
multiple runs are then considered in recording the outcomes.

Experiments were carried out to enhance the performance
of the parallel ACO which demonstrated certain encouraging
outcomes. To enhance the performance of finding a path by
implementing the parallel ACO across the sequential ACO,
operations were run on 1-8 cores. Every experiment was car-
ried out five times and the average duration was recorded as
the final value for each test case. All these experiments were
tested based on the MapReduce framework and Spark plat-
form that deployed on Microsoft Azure virtual machine(VM).
The VM has the following specifications:

o CPU Inter(R) Xeon(R) CPU E52673 v4 2.30GHz

« RAM 128GB

o All algorithms have been written using Java language

and run on Eclipse IDE.

For these experiments, we utilized test cases to validate and
confirm the robustness of our proposed version of the parallel
ACO. This is implemented by a varying number of nodes
from 250 up to 2000 with an increment step (current number
of nodes x2) to evaluate various ranges of datasets’ sizes,
including small (represented by 250 points graph), medium
(represented by 1000 points graph), and large (represented
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by 2000 points graph). All cases are implemented repeatedly
with 1-8 cores running over 5 cycles, with the averages of all
readings recorded as final.

Also, small(250 points), medium(1000 points), large
(2000 points), and huge(50K points) datasets using Parallel
ACO with Spark have been applied on a cluster environment,
where Apache Spark runs on Hadoop Insight Cluster pro-
vided by Microsoft Azure with a Linux operating system,
two master nodes, and six worker nodes with eight cores per
node as a cluster setting. Table 2 displays the ACO parameter
values that were utilized in the experiments. Tables 3 and
Table 4 display the properties of the utilized system.

IV. IMPLEMENTATION OF THE PROPOSED SEQUENTIAL
AND PARALLEL ACO VERSIONS FOR MOUNTAIN
CLIMBING PROBLEM

This section displays the implementation of the sequential
ACO algorithm, and the parallel ACO algorithm using the
Spark Framework.

A. IMPLEMENTATION OF SEQUENTIAL ACO ALGORITHM
The ACO algorithm has two main stages:

« Route construction:
Using ACO, an individual ant simulates a climber, and
its path is constructed by incrementally selecting points
in the neighborhood of the starting point until it reaches
the destination point on the mountain’s surface. Initially,
each ant starts at the same point, where the set of points
included in its tour is empty. The ant selects the next
point to visit from the set of randomly selected nodes
between the starting point and the destination point [7],
[59], [60]. The list of randomly generated points and
the storage capacity of this climber is updated before
another point is selected. To the best of our knowl-
edge, the proposed algorithm tries to find the short-
est path, which computes the slope requirement (slop
less than 0.1) based on Equation 2 and the distance
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TABLE 2. ACO parameters values.

parameter Value Description
Maziterationsnumber(m) 1000 Maximum number of iterations
N based on number of graph generated nodes Number of generated nodes
have_ant initially "False" for all points except the source one  start from points that have ants
slope less than or equal to 0.4 slope value to guarantee safe climbing

wnit_phermone 0 The initial pheromone on each edge

InitVel 200 The initial velocity of each ant
Pheromone_increament 0.5 The pheromone updating parameter
Pheromone_decreament 500/N The pheromone updating parameter

TABLE 3. VM properties for the first part of experiments.

Component Value
Processor Inter(R) Xeon(R) CPU E52673 v4 2.30GHz
RAM 128 GB

TABLE 4. Cluster properties for the second part of experiments.

Component Value
Number of master nodes 2
Number of worker nodes 6

Number of cores per node 8

requirement (Euclidian distance greater than 30) accord-
ing to Equation 3.

In addition, the total distance D is computed as the
objective function value for the complete route of the
artificial ant. The ACO algorithm constructs a complete
tour for the first ant before the second ant starts its tour.
This continues until a predetermined number of ants m
construct a feasible route. Using ACO, each ant must
construct a route to reach the destination point from the
starting point [38].

o Trail updating:

To improve future solutions, the pheromone trails of the
ants must be updated to reflect the ant’s performance
and the quality of the solutions found. This update is
a key element of the adaptive learning technique of
ACO, and it helps ensure the improvement of the subse-
quent solutions. Trail updating includes local updating
of trails after generating the individual solutions and
global updating of the best solution route after a prede-
termined number of solutions m has been accomplished.
First, local updating is conducted by reducing the
amount of pheromone on all visited arcs to simulate the
natural evaporation of the pheromone and to ensure that
no path becomes too dominant. After a predetermined
number of ants mconstruct a feasible route, a global trail
update is performed by adding a pheromone to all of the
arcs included in the best route found by one of n ants.
This method encourages the use of shorter routes and
increases the probability that future routes will use the
arcs contained in the best solutions.
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This process is repeated for a predetermined num-
ber of iterations, and the best solution from all of
the iterations is presented as an output of the model
and should represent a good approximation of the
optimal solution for the problem [27], [28], [31].
Algorithm 1 presents the pseudo-code for the sequen-
tial ACO algorithm used for the mountain climbing
problem.

Algorithm 1 Sequential Algorithm for Mountain Climbing
Problem Using ACO
Input: Source (§), Destination (D), Randomly generated
nodes N, Max_iterations_number(m), Max_ants_number
(k), and constant quantity (Q).
Output: Best path from S to D.

1: while (Iterationnumber # m) do

2: while (Iteration_num # k) do

3: Check all nodes for constraints from S or previous
node

4: Add edges from s or the previous node to each
node in node C that satisfies the constraints

5: Generate random number r < 0 — 100

6: if (r == 0.01)

7: Select a random edge from available ones for
passing the ant

8: else

9: Select edge with maximum EV.

10 pheromone+ = (Q/N)

11: pheromone— = .5

12: end while

13: end while

14: if (D.edges.size = = 0)

15: Path is not found

16: else

17: while not reach S do

18: Store edge with the smallest cost
19: end while

20: returns the best path

B. IMPLEMENTATION OF PARALLEL ACO ALGORITHM
Implementation for parallel mountain climbing using ACO
goes through the following steps on Spark:

VOLUME 11, 2023
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1) PREPARING INPUT

In this step, the input point is prepared by specifying id, edges
set, have_ant, x, and y dimensions for each point. Initially,
all nodes have (Id, edges, have_ant = “False”, x, y), where
Id is a unique identifier for the node. Edges (cost, trail) are a
set of the available edges of nodes and have_ant is a Boolean
variable. In addition, put variable have_ant is true for the
source.

2) MAPPING TO RDD NODES
After pre-processing the data, the nodes are mapped into
RDD nodes to be accessed by all processors or machines.

3) SPECIFYING THE NUMBER OF ITERATIONS
The number of iterations is set to 1,000 iterations. Each
iteration has the following steps:

« Filtering: In this step, the nodes are filtered for retrieved
nodes that have ants and distributed to processors.

o Exploring all possible nodes: In this step we build
edges from the current node to all nodes that satisfy the
constraints [57]:

1) Not obstacle node
2) Go toward the destination away from the source
node
3) Its slop < 0.4 (angle < 22) to guarantee safe
climbing
4) Tts cost > 30
o Selecting Edge:
In this step, an ant selects one edge to follow from all
possible nodes that were explored previously, either ran-
domly with a small probability or based on the maximum
EV in Equation 1.
« Updating the pheromone’s value:
This step aimed to increase the trail (pheromone) value
for the selected edge and decrease the trail value for all
explored edges.

4) RETRIEVING THE BEST PATH

After all, iterations are finished, the shortest path from the
destination to the source that is based on the minimum accu-
mulative cost for edges will be retrieved. Algorithm 2 shows
the pseudo-code for parallel ACO using Spark.

V. RESULTS

This section is organized into two subsections. The first sub-
section presents the results of comparing the Parallel version
of the ACO algorithm and the best result of the sequential
ACO algorithm concerning finding the best path for the
Mountain climbing problem.

Subsection two displays the comparison results of using
the proposed parallel ACO using a cluster environment versus
one of the most recent state-of-the-art research for solving the
same optimization problem (Parallel A*).
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Algorithm 2 Parallel Algorithm for the Mountain Climbing
Problem Using ACO

Input: Source (S), Destination (D), Randomly generated
nodes N, Max_iterations_num(m), number of processor(p),

and Constant quantity(Q).
Output: Best path from S to D.

1: Map N nodes to RDD file
2: while (Iteration_num % m) do
3: Read RDD file
4: Filter all nodes A in RDD where (have_ant =
“true”)
5: Distribute A into p processor
6: For each node in A/p
7: Check all nodes for constraints
8: Add edges from A/p to each node in nodes C that
satisfy constraints
9: Set (have_ant = “true”) for all C nodes
10 Generate random number r <0 -100
11: if r==0.01)
12: Select a random edge from available ones for passing
the ant
13: else
14: Select the edge with maximum EV.
15: pheromone+ = (Q/N)
16: pheromone— = .5

17: end while

18: if (D.edges.size = = 0)

19: Path is not found

20: else {

21: while not reach S do

22: add edge with the minimal cost to the best path
23: end while}

24: return best path

A. PARALLEL ACO VERSUS PARALLEL A* RESULTS

This subsection of results displays the findings that are gen-
erated from running an Apache Spark on Hadoop Insight
Cluster provided by Microsoft Azure with a Linux operating
system, two master nodes, and six worker nodes with eight
cores per node as cluster settings.

Fig. 2 presents the results of parallel ACO versus parallel
A* for a small graph with 250 points, while Fig. 3 illus-
trates the results of a medium graph size with 1000 points,
and Fig. 4 demonstrates the results of a large graph with
2000 points.

Fig. 5 presents improvement and performance compar-
isons of parallel run times in 2, 3, and 4 cores, against sequen-
tial implementations on the single processor for various test
cases.

Fig. 6 shows the increasing speedup using the parallel ACO
algorithm corresponding to 2, 3, and 4 on various numbers of
nodes.

Fig. 7 demonstrates the efficiency of the parallel ACO
algorithm for different graph sizes using various numbers of
cores each time (from 1 to 4 cores).
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FIGURE 2. Runtime results of Parallel ACO vs. Parallel A* for a Small
graph (with 250 points).
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FIGURE 3. Runtime results of Parallel ACO vs. Parallel A* for a Small
graph (with 1000 points).

Fig. 8 demonstrates the cost for ACO algorithms, based
on various numbers of nodes and cores. As shown, the cost
increased due to the increase in both graph’s size and the
number of cores.

Fig. 9 demonstrates the run time for small(250 points),
medium(1000 points), large(2000 points), and huge(50K
points) datasets using Parallel ACO with Spark on a cluster
environment.

Fig. 10 presents the comparison results that have been
obtained from using Parallel ACO versus using parallel A*
based on run time.

Fig. 11 displays comparison results in terms of efficiency
between the proposed parallel ACO versus parallel A*.
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FIGURE 4. Runtime results of Parallel ACO vs. Parallel A* for a Small
graph (with 2000 points).
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FIGURE 5. Runtime for ACO with a different graph sized and 1-8 cores.

VI. DISCUSSION OF THE RESULTS
In this section, the findings are discussed and assessed based
on runtimes, speedup, and efficiency. Runtime decreases
when the number of cores increases with a varying number of
nodes. However, the runtime after 4 cores will stop decreasing
due to the additional Spark overhead caused by the commu-
nication time (where Apache Spark schedules the workload)
as the problem becomes smaller than the number of cores as
shown in Fig. 5. As a result, the proposed algorithm helps
to determine the suitable number of cores that achieve the
advantages of parallelism.

The parallel ACO achieves the best speedup values,
up to 25%, particularly with large processor counts. The max-
imum speedup is satisfied at 2000 nodes when the number of
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FIGURE 6. Speedup for ACO with a different graph size and 1-8 cores.

Efficiency

Num. of Cores
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FIGURE 7. Efficiency for ACO with a different graph sized and 1-8 cores.

cores is 4 as shown in Fig. 6, which shows speedup versus
the number of cores that are greater than 4. Speedup stops
increasing due to the additional Spark overhead.

It is observed from Fig. 7 that efficiency decreases for
the same graph size (the graph that has the same number of
points) when the number of cores increases. Additionally, it is
clear that when the number of points in the graph increases,
the efficiency also increases using the same number of cores.
On the other hand, the efficiency decreases using 5, 6, 7, and
8 cores because Apache Spark schedules the workload.

1) COMPARING THE PROPOSED APPROACH (USING THE
PARALLEL ACO) VERSUS ONE OF THE MOST RECENT
STATE-OF-THE-ART APPROACHES (USING PARALLEL A*)
RESULTS IN DISCUSSION

Results illustrated that using the parallel ACO provides better
results than the parallel A* for different graph size that ranges

VOLUME 11, 2023
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FIGURE 8. Cost for ACO with a different graph sized and 1-8 cores.
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FIGURE 9. Runtime using ACO with a different number of nodes on
different graph sizes.

between (250 to 2000) points using various number of cores
(1 - 4 cores). Using Wilcoxon’s test, it is clear that the parallel
ACO is significant (p < 0.05) outperformed the parallel A*
regardless of the graph size, but the improvement increases
for larger graph sizes.

2) RESULTS OF USING THE PROPOSED APPROACH (USING
THE PARALLEL ACO) ON A CLUSTER ENVIRONMENT WITH
DIFFERENT GRAPH SIZES

Results show that Apache Spark is more efficient in huge
datasets, where Spark doesn’t achieve better runtime results
using more nodes over datasets of the small, medium, and
large sizes; while on a huge dataset the run time results
decrease in an efficient way using the proposed method with
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FIGURE 10. Runtime results of Parallel ACO vs. Parallel A* with a different
number of nodes over a huge graph on a cluster environment.

Efficiency
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FIGURE 11. Efficiency results of Parallel ACO vs. Parallel A* with a
different number of nodes over a huge graph on a cluster environment.

Apache Spark on a cluster environment but at some number
of nodes the runtime will stop decreasing as the problem
size will become smaller for the available number of nodes.
Overall, it can be seen from Fig. 11 that efficiency decreased
due to the Spark scheduling workload process.

A. COMPLEXITY ANALYSIS

The time complexity of the sequential approach is presented
in Equation 10, and the time complexity for the parallel
approach is presented in Equation 11

k
Tsm+km+k+Nk+7+4m*Z(N—CV)
i=1

= O (Nmk) (10)
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where, Ty is the sequential time, N represents the set of ran-
domly generated nodes between the source and destination,
m 1s the maximum number of iterations, £ is the maximum
number of ants, and CV is a constant value.

A A
T, =3N +3m+4=C+7+ =
p p

k
+éZ(N—CV)=0(AN—m) (11
P = p

where, T), is the parallel time, N represents the set of ran-
domly generated nodes between the source and destination,
m is the maximum number of iterations, p is the number of
processors, A is the number of nodes in RDD file, C is the set
of nodes that satisfy constraints, and CV is a constant value.

So, the main performance metrics for ACO parallel algo-
rithms are:

o Total Parallel Overhead T,

ANm
TrJ:pr_TSZP T

— Nmk = Nm (A — k) (12)

o Speedup Equation 13 shows the speedup for the pro-
posed approach.

Ts Nmk p
Speed Up = Fp = ANm T 2 (13)
p
« Efficiency E
Speed 1
o it A R (14)
p pPA A
o Cost
ANm
Cost = pT, = p—— = ANm (15)
p

If A = k, then cost = Ts, thus the parallel algorithm is cost-
optimal.

VIi. CONCLUSION

In this paper, we present performance evaluations of the
parallel ACO algorithmic in terms of the runtime, speedup,
efficiency, and cost to find the shortest path between two
points in a mountain environment. In this problem, we con-
sider the slope and distance requirements such that the path
is not too steep. Assessments of the parallel ACO consider
different numbers of cores and nodes using Apache Spark.
Overall, our findings demonstrate that parallel ACO features
shorter running times for various numbers of the node with a
limited number of cores. Concerning efficiency, it seems that
paralyzing the ACO using Apache Spark is efficient only with
large graph sizes; otherwise, the cost of Apache Spark will be
unaccepted.

In addition, the parallel ACO performance was compared
with one of the most recent research for the same optimization
problem which is parallel A* with Apache Spark. Parallel
ACO outperformed the other algorithm significantly as was
obvious from the experimental results. Also, it is obvious
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from the results that the overhead of Spark is unnecessary
unless using a huge dataset like a dataset with 50000 points.

In the future, the parallel version of ACO’s performance
using Spark can be compared with other optimization algo-
rithms or used for several optimization problems. Moreover,
ACO can be parallelized using Spark, Hadoop (MapReduce),
or MPI, and the results of each would be compared.
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