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ABSTRACT Data centralization can potentially increase Internet of Things (IoT) usage. The trend is to
move IoT devices to a centralized server with higher memory capacity and a more robust management
interface. Hence, a larger volume of data will be transmitted, resulting in more network security issues.
Cloud IoT offers more advantages for deploying and managing IoT systems through minimizing response
delays, optimal latency, and effective network load distribution. As a result, sophisticated network attack
strategies are deployed to leverage the vulnerabilities in the extensive network space and exploit user
information. Several attempts have been made to provide network intrusion detection systems (IDS) to the
cloud IoT interface using machine learning and deep learning approaches on dedicated IDS datasets. This
paper proposes a transfer learning IDS based on the Convolutional Neural Network (CNN) architecture
that has shown excellent results on image classification. We use five pre-trained CNN models, including
VGG16, VGG19, Inception, MobileNet, and EfficientNets, to train on two selected datasets: CIC-IDS2017
and CSE-CICIDS2018. Before the training, we carry out preprocessing, imbalance treatment, dimensionality
reduction, and conversion of the feature vector into images suitable for the CNN architecture using Quantile
Transformer. Three best-performing models (InceptionV3, MobileNetV3Small, and EfficientNetV2B0) are
selected to develop an ensemble model called efficient-lightweight ensemble transfer learning (ELETL-IDS)
using the model averaging approach. On evaluation, the findings show that the ELETL-IDS outperformed
existing state-of-the-art proposals in all evaluation metrics, reaching 100% in accuracy, precision, recall,
and F-score. We use Matthew’s Correlation Coefficient (MCC) to validate this result and compared it to
the AUC-ROC, which maintained an exact value of 0.9996. To this end, our proposed model is lightweight,
efficient, and reliable enough to be deployed in cloud IoT systems for intrusion detection.

INDEX TERMS Internet of Things, convolutional neural network, cloud IoT, intrusion detection systems,
transfer learning, MCC.

I. INTRODUCTION
In recent years, the Internet of Things (IoT) has been in the
spotlight of both researchers’ and industrialists’ activities as
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more sophisticated IoT systems continue to emerge and are
deployed in various environments for different uses. Because
of this, many people consider this technology to be a game-
changer, capable of opening up previously unimaginable pos-
sibilities for human and animal community alike [1]. These
emerging technologies have created an enabling environment
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for creating, exchanging, collecting, storing, and distributing
data within and among heterogeneous devices involving no
human interaction and intervention. Currently, IoT devices
have diverse application domains, including but not limited to
health [2], imaginative home [3], smart grids [4], transporta-
tion, environment [5], infrastructure, and public services.
More areas of application of this technology are discovered
almost daily. Success can be attributed to the creativity of
scientists who have spent years studying this topic, leading to
discoveries that have positively impacted the way activities
are carried out today leading to improved productivity and
work-efficiency. Thus, these advancements in telecommuni-
cation systems have generated additional opportunities that
ensure more effective knowledge transmission in IoT systems
and also allowed the expansion into other scenarios for a
more comprehensive information exchange [6], [7], [8]. The
benefits of IoT devices cannot be overemphasized, as seen
in home automation, industrial process automation, military
warfare [4], precision agriculture [9], etc.

As a result of the increased number of IoT devices, count-
ing in billions [10], the number of connected devices has also
risen, which has caused a proportional expansion of the IoT
network architecture. The expansion of the network interface
comes with many benefits as well as worries. The benefits
include the need formore devices and aworkforce, generating
jobs, and creating an atmosphere for personal development.
However, the downside of this includes the issues of privacy
and security concerns regarding data generation and transmis-
sion. Many times, the security of both enterprise and individ-
ual information is compromised as it is transferred from one
device to another over a large expanse of the network.

Regarding storage and processing power, IoT systems are
characterized by limited resource availability, and suffer from
drawbacks such as security, reliability, integrity, confidential-
ity, and performance. One way to overcome this challenge
has been the integration of IoT with the cloud environment
called the Cloud of Things (CoT) [11]. Many authors have
acknowledged that cloud computing is a factor in dealingwith
the issues associated with IoT as it provides reliability, ubiq-
uity, and scalability combined with a high-performance envi-
ronment for implementing IoT devices [12], [13], [14], [15],
[16], [17], [18], [19]. However, many of the IoT applications
require high computational power, very low and predictable
latency, mobility support, and large-scale distributed systems,
which are currently lacking in cloud computing environ-
ments. CoT has failed to assist in achieving the desired goal,
hence, the need to incorporate more enabling technologies.
Fog Computing with cost-effective services is capable of
providing solutions to the limitations of the Cloud Computing
technology by scaling its functionalities. FC has geographi-
cally distributed architecture, low latency, moderate compu-
tational resources, andmobility support, which are core needs
of IoT devices.

Fog computing, an emerging technology scaling the entire
network, creates challenges related to security and privacy
in IoT and CoT environments considering the heterogeneity

of devices operating in minimally secured environments.
Network vulnerabilities increased when CC and FC were
implemented, mostly because of the exponential growth in
data volume. Researchers have identified Distributed Denial
of Service (DDoS) and Denial of Service (DoS) attacks as
significant issues that compromise the data privacy of the
network usually due to the mode of operation of the attacks
where an entire network can be taken down in seconds with
illegitimate clients [20]. Other issues include privacy leakage,
man-in-the-middle (MitM) attacks, rouge gateways, injection
attacks, service manipulation, and privilege escalation. Tradi-
tional network intrusion detection and prevention techniques
have been applied to mitigate these attacks, but little success
has been achieved. One way of dealing with this challenge is
the implementation of highly scalable deep learning models
implemented in the fog and cloud environments [19].

A network intrusion detection system (NIDS) is one of
the many ways to manage computer network security threats.
NIDS monitors every network activity for abnormal or mali-
cious intent and generates warnings when such threats are
discovered. This mechanism can either be signature-based,
where a well-defined rule is used to detect normal and
abnormal network flows, or anomaly-based, where profiles
of events are used to decide the nature of the such activity.
Mostly, the anomaly-based approach is more accurate than
signature-based NIDS, as the latter fails to identify activi-
ties that have not been previously defined in its database.
In implementing NIDS, it can either be network-based or
host-based. Deep learning techniques have achieved great
success in various fields of artificial intelligence (AI), such as
computer vision, image processing, and pattern. recognition,
natural language processing, image captioning, pharmaceu-
tical research, etc. Also, Deep Learning has been applied to
develop IDS systems for CoT systems. Fig. 1 shows a typical
architectural representation of the Cloud IoT connection.

Convolutional Neural Networks (CNN) is a deep learning
architecture that has predominantly gained researchers’ atten-
tion due to its exceptional performance in handling image
data in computer vision, image recognition, and segmenta-
tion. Hence, it has been applied to various areas, including
networking and medical image processing [21] CNN has
also worked efficiently on numeric tabular datasets used for
modeling IDS. Classical machine learning tree-based algo-
rithms including Decision Tree (DT), Random Forest (RF),
Extra Tree (ET), eXtreme Gradient Boosting (XGBoost) etc
have shown good performances in classification of network
traffic that are not represented as image data [22], [23]. Other
deep learning algorithms such as Recurrent Neural Network
(RNN) [24] have been used for time series data analysis with
good accuracy but this still suffers from the challenge of var-
nishing and exploding gradient which is overcome with the
CNN architecture. Hence, on image data, CNN is preferred
due to the high performance in image classification [25].

In this paper, we propose an efficient-lightweight ensem-
ble transfer learning (ELETL-IDS) model based on CNN to
detect the most prominent attacks (Bot, Infiltration, DDoS,
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FIGURE 1. Typical Representation of the architecture of Cloud IoT connection.

andDoS) in Cloud IoT environments using real-time datasets.
We provide an effective way to secure IoT devices by detect-
ing specific attacks. Other works have used machine learning
algorithms to develop the models [22], [26], [27], but using
ensemble transfer learning (ETL), we present a more accurate
and reliable model.

The proposed ELETL-IDS model on evaluation achieves
an accuracy, validation accuracy, precision, and F1-score
of 100% and 99.98% on the CIC-IDS2017 and CSE-CIC-
IDS2018 datasets, respectively. These values show that the
model is highly efficient in detecting attacks usingmulti-class
classification. The major contributions of this research can be
summarized as follows:
• An efficient-lightweight intrusion detection system is
proposed for detecting awide range of CoT attacks using
transfer learning based on CNN architecture.

• Tomake the input data suitable for the CNN architecture,
a method to convert the numeric tabular data into an
image representation, was developed.

• A cross-platform IDS capable of operating in the cloud
IoT environment is proposed. The model reduces train-
ing loss and validation loss with regularization.

• Using Bayesian Optimization - Tree Parzen Estimator
(BO-TPE), we perform Hyper-parameter Optimization
to determine the best parameters to train the proposed
model.

It is important to highlight that the suggested approach
has been designed for cloud IoT environments taking into
accounts the limitations of IoT systems such as resource
constraints. In the experimental performance evaluation,
in conjunction with well-known evaluation metrics, we use
Matthew’s Correlation Coefficient (MCC) to validate the
results of the confusion matrix, the ROC-AUC curve. The
results demonstrated that the proposed model is reliable,
efficient, and outperforms other works in the literature and
show that it is possible to use image representation of network
traffics to develop a predictive model capable of detecting
even zero-day attacks on IoT networks with high accuracy.

II. RELATED WORKS
Considering the efficiency of DL-based models in accurately
providing solutions to IDS problems in IoT and CoT envi-
ronments, some authors have proposed IDS models using
the DL methods. Lin et al., [22] proposed an IDS model
based on a special variant of the Recurrent Neural Net-
work (RNN) architecture, the Long Short-Term Memory
(LSTM) network for anomaly detection. The LSTM archi-
tecture overcomes the varnishing and exploding gradient
descent which are common challenges with RNN by learning
long term dependencies during training. Combining SMOTE
and improved cost functions, the authors handled the data
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imbalance in the dataset that was used to train the model,
achieving an accuracy of 96.2% on the CSE-CICIDS2018
dataset. In [26], a two-layer multilevel classifier fusion strat-
egy for network intrusion detection was presented, with the
upper layer employing an unsupervised feature extraction
method utilizing a non-symmetric deep autoencoder and the
lower layer employing a random forest classifier with the
extracted features. The method experimented with two differ-
ent datasets, the KDDCUP’99, and the NSL-KDD datasets.
For a 5-class classification, the proposed method achieved
97.85% and 85.42% accuracy with the KDDCUP’99 and
NSL-KDD datasets, respectively. In experimenting with dif-
ferent hidden layers for binary and multi-class classifica-
tion of network traffic data in a CNN task, a framework
was proposed and evaluated on 6 different datasets, includ-
ing NSL-KDD and KDDCup’99 in [27]. On evaluation, the
obtained results show that the best performing model was
composed of 5 hidden layers, which reached an accuracy
of 92.7% and 78.9% on the KDDCUP’99 and NSL-KDD
datasets for binary classification, respectively, and 92.5% and
78.5% accuracy on theKDDCUP’99 andNSL-KDDdatasets,
respectively, concerning multi-class classification.

Deep transfer learning (DTL) is a solution that can reuse
existing knowledge from the previously trained model and
achieve better intrusion detection performance than other
models [28], [29]. Yang et al. [28] proposed IDS based on
different TL models trained on the imagenet dataset, includ-
ing VGG-16, VGG-19, InceptionNet, ResNet, and Incep-
tionRestNet to develop the model on the CIC-IDS2017 and
Car-Hacking datasets. The transfer learning (TL) model pro-
posed by Taghiyarrenani et al., [30] for intrusion detection
shows more efficient performance in both labeled and unla-
beled data. To extract the attack invariant from the exist-
ing attack data set and transfer the knowledge to the target
network system, Yanjie et al., [31] proposed a framework
for transfer-learning-based network flow generation for deep-
learning-based IDS.

CNN iswell known to be very efficient in image processing
tasks. Network traffic data is usually in numeric and cate-
gorical format, which needs to be converted to image format
for faster processing with CNN networks. In this regard,
some authors have implemented this technique in their works.
Li et al. in [32], proposed an image conversion method of net-
work traffic data for the NSL-KDD dataset. They have used
representation learning using ResNet 50 andGoogLeNet with
an accuracy of 81.15%. In [33], Harsh Dhillon et al. proposed
a deep transfer learning model using CNN-LSTM, CNN,
and DNN and evaluated the model on the UNSW-NB-15
dataset for NIDS. The results showed that the CNN-LSTM
with an accuracy of 98.43% could help minimize successful
network attacks. One drawback of the work was the data
imbalance issue, which was not handled. To address the
new and emerging challenges related to the accuracy, effi-
ciency, scalability, and dependability of the traditional IDS
in a heterogeneous IoT setup, Mehedi et al., [34] proposed
deep transfer learning-based dependable IDS for IoT systems

using the ResNet model in which accuracy of 88% was
achieved. In [25], the NSL-KDDdataset was transformed into
image format for transfer learning to develop a model for
IDS named Transfer Learning Network Intrusion Detection
(TL-IDS). The authors implemented the dataset using the
VGG-16 architecture as the base model and transferred
weight to a novel CNN interface for the task. Accord-
ing to [35], a TL-based method called TL-ConvNet was
introduced that acquires information from a base dataset
and applies it to the acquisition of the target dataset. The
UNSW-NBI5 and NSL-KDD as the base and target datasets,
respectively, for the TL-ConvNet. Experimental results of
TL-ConvNet with 87.30% and 81.9% accuracy on the
datasets showed significant performance improvement over
conventional CNN by the TL-ConvNet, yet has high FPR as
a drawback.

To our knowledge, few published papers are in the domain
of transfer learning for intrusion detection. Hence, our pro-
posed model was optimized with different parameters and
hyperparameters and experimented with two different test
datasets from a real-world network intrusion dataset.

III. PROPOSED FRAMEWORK
A. PROBLEM STATEMENT AND SYSTEM OVERVIEW
The Internet of Things (IoT) is faced with increasing security
concerns, threatening information confidentiality, integrity,
and availability (CIA). Cloud-based IoT systems face an
unlimited number of malware, spyware, and Man-in-the-
middle (MITM) attacks, including ransomware, DDoS, and
DoS. A highly efficient yet lightweight intelligent DL model
is required to provide deep attack detection and repelling
on these systems that communicate 24 hours a day over the
internet. The layout of the framework used in this research is
shown in Fig. 2.

We develop an optimized, lightweight, ensemble transfer
learningmodel based on CNN for a CoT environment capable
of repelling network attacks. In the first phase, data acqui-
sition is carried out by selecting from existing datasets the
database that contains IoT-based network attacks as discussed
in [36]. The CIC-IDS2017 and CSE-CIC-IDS2018 with the
highest numbers of real-time data points were selected for the
research. During EDA, we observed that the dataset contains
imbalance; therefore, we used two methods of over-sampling
technique to obtain balanced datasets. The methods include
Synthetic Over Sampling TEchnique (SMOTE), and Bor-
derline_SMOTE with RandomUnderSampling. Since these
databases contain information in time-based chunks, they are
transformed into images for the CNN architecture using the
quantile transform method. In the following stage, classi-
cal CNN (CNN-C), and other selected CNN-based models,
including VGG16, VGG19, MobileNetV3, EfficientB0, and
InceptionNetV3, were trained on the generated images to
design the based learners for our ensemble model. Also,
for optimum performance and to obtain a highly reli-
able mode, the CNN models are optimized by Bayesian
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FIGURE 2. System Design Framework for the Proposed Ensemble Transfer Learning Model.

Optimization - Tree Parzen Estimator (BO-TPE), a Hyper-
parameter Optimization (HPO) method that can automat-
ically tune the hyper-parameters. In the end, the top-3
best-performing CNN models are selected as the three CNN
models used to construct the ensemble learning models using
the model averaging method.

B. DATABASE DESCRIPTION, TRANSFORMATION AND
IMAGE GENERATION
To develop the proposed IDS for the IoT and CoT environ-
ments, two different databases (DBs) are used. The first is
the CIC-IDS2017 [37], [38] that has 80 features and 15 dif-
ferent labels representing 14 attacks and 1 standard traffic
payload that were generated in real-time over 5 days with
25 user behaviors over HTTP, HTTPS, FTP, SSH, and email
protocols and contains such attacks as Brute Force FTP,
Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration,
Botnet, and DDoS. The complete CSV file for the dataset is
contained in 7 folders and needs to bemerged into a single file
in order to have all the instances together, thereby improving
the dataset and enabling better model learning on a complete
dataset. This was achieved, and a total of 85 features were
obtained with 2.3 million data instances consisting of 83.3%
benign and 16.7% attacks. Out of the 85 features, it was
observed that five features were repeated; therefore, they
were dropped to arrive at the 80 features earlier stated. The
whole labels in the dataset are summarized into 8 attacks,
including Bot, Brute Force, DoS, DDoS, Infiltration, Heart-
bleed, PortScan, WebAttacks, and Benign.

The second dataset used is the CSE-CICIDS2018 [39]
that extends the features of the CIC-IDS2017 dataset by
including more HTTPS, HTTP, SMTP, POP3, IMAP, SSH,

and FTP requests. Using the CICFLOWMETERV3 [40],
more than 80 features can be extracted from the PCAP file
obtained from the testbed during simulation and data cap-
ture. The extracted CSV file format contains six columns
of FlowID, SourceIP, DestinationIP, SourcePort, Destination-
Port, and Protocol, together with 80 network traffic types.
The six columns are not crucial in deciding the network
attacks, so they are not used in the modelling. A total of
16 million data instances with 15 different attack types were
extracted from the 10 different CSV files obtained from the
CICFLOWMETERV3. Finally, the 15 attacks were merged
into 6 attacks and benign to include Bot, Brute Force, DoS,
DDoS, Infiltration, andWeb attackwhere the Benign has 83%
and attack measure 17%.

As part of the data preprocessing phase, the datasets are
cleaned of all missing or misinformed data values. The
datasets were checked for samples that contain missing val-
ues and inadequate values like nan, −inf, +inf, etc. These
samples were dropped due to the large volume of the dataset.
In addition, we determined that some of the features have
constant values and hence do not contribute to the ML learn-
ing process during the training. It is not critical to have such
features as they will only increase overhead costs and compu-
tational resources. These features, such asProtocol, Fwd PSH
Flags, SYN, Flag Cnt, Active Std, FIN Flag Cnt, Fwd URG
Flags, CWE Flag Count, Fwd Blk Rate Avg, Bwd Byts/b Avg,
Fwd Byts/b Avg, Bwd PSH Flags, Fwd Pkts/b Avg, Bwd Blk
Rate Avg, and BwdURGFlagswere dropped. To confirm that
this approach is appropriate, we performed feature selection
using Random Forest Feature Importance (RFFI) provided
by the Sklearn Library. Using standard deviation, the fea-
ture importance ranks the network traffic according to its
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FIGURE 3. Convolution Operation on the Image using 3 Channel filters.

importance. Whereas 15 features were dropped, 64 features
and labels were used in the model training out of 80 features.

To handle the data imbalance, we generate synthetic sam-
ples of the existing data points using the method proposed by
Chawla et al. al [41] called SMOTE and Borderline_Smote
proposed by [42]. Unlike the undersampling techniques,
which randomly remove some of the majority class, the
SMOTE and Borderline_Smote generate synthetic instances
of theminority class based on the existing data points, thereby
ensuring no information loss. Assuming that T , N and k
defined by SMOTE(T, N, k) are input to the SMOTE algo-
rithm where T is the number of minority class samples;
N is the amount of SMOTE, and k is the number of nearest
neighbors, the output of the operation can be defined as
(N/100) ∗ T synthetic minority class samples [41].

After the preprocessing stage, we must prepare the data
to be a suitable input to the CNN architecture. As earlier
stated, CNN achieves better performance when working on
image data. Since our data is tabular in the CSV file for-
mat, we need to carry out transformation to obtain image
samples according to [28] and [43]. There are mainly three
basic transformation algorithms that are frequently used for
data transformation. They are Normalization with Min Max
Scaler (MMS), Quantile Transformation (QT), and Power
Transformation (PT). MMS, defined by Equation 1 is known
to be the most commonly used normalization technique, but
its drawback is hinged on its inability to handle outliers
completely; thus, it may lead to some values being extremely
small. For this reason, we adopted the QT method proposed
in [44].

X ′ =
X−Min(X )

Max(X )−Min(X )
× 255 (1)

The QT normalization method transforms the feature dis-
tribution to a normal distribution. It then re-calculates all the
feature values based on the normal distribution. Therefore,
the majority of variable values are close to the median values,
which is effective in handling outliers. QT put all features into
the same desired distribution based on:

Q = G−1(F(x)) (2)

where F is the cumulative distribution function of the feature
and G−1 is the quantile function of the desired output distri-
bution G [45], [46].

During the image generation phase, based on the times-
tamp and feature size of the network traffic dataset, the data
samples are converted into chunks of various sizes. In the
case of our dataset, each of them has 64 important features,
which we converted into 3D image format of 3 channels rep-
resenting the color of the images using the pattern shown in
Fig. 2. Therefore, each color image generated is transformed
to 64 x 64 x 3 total feature values. By implication, the first
64 samples of each chunk were converted into the image
matrix of channel 1, the next 64 samples of each chunk were
converted into the image matrix of channel 2, and the last
64 samples of each chunk were converted into the image
matrix of channel 3, and all are generally mapped into the
RGB channels of the image. The conversion of the data into
the image matrix is achieved using OpenCV library. The data
was converted into a 3D image format to improve the learning
capacity of the model since more filters are required in this
case, compared to the 2D image representation. During the
convolution operation in the 3D representation, three filters
of 3 x 3 x 3 are required, resulting in a 4 x 4 x 1 image,
as shown in Fig. 3. These filters are edge detectors that allow
themodel to learn better on the input data. Each dataset chunk
consists of 64 X 3= 192 consecutive data samples. This step
is repeated until all the labels in both datasets are correctly
transformed. It is important to note here that the time-series
correlation of the original network traffic data can be retained
since the images generated are based on the timestamps of
the sample data; hence, the obtained results are assured of
correctness. Furthermore, converting the data into an image
vector with three channels is important in this scenario as it
helps to easily identify the different patterns in the images
through color

Following the transformation, we label the generated
images based on the chunks’ attack pattern. For instance, the
image is labeled ‘‘Normal’’ if the sample in the chunk/image
is normal. Also, if the sample in the chunk/image contains
attack samples, the image is labeled with the corresponding
frequent attack type in the chunk. as either ‘‘DDoSAttack’’ or
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FIGURE 4. Images obtained from the CSE-CIC-IDS2017 dataset after conversion.

‘‘Web Attack,’’ ‘‘Infiltration’’, ‘‘Botnet’’, ‘‘Portscan’’, ‘‘DoS
attack’’, ‘‘Brute Force’’ as the case may be.

The last pre-processing procedure is re-scaling the image
into a suitable input format for the CNN models. The images
generated are 64 X 64 X 3, but the pre-trained models
such as VGG16, MobileNetV3, and others expect images
in the 224 X 224 X 3 range. So, we resized the images
to 256 X 256 X 3. This will allow the CNN to learn all
the patterns easily in the image and improve the learn-
ing speed as the filters convolute the images. Representa-
tive samples of the image sample of the CIC-IDS2017 and
CSE-CICIDS2018 datasets are shown in Fig. 4 and Fig. 5
respectively.

From both datasets, it can be seen that there are signifi-
cant differences in the feature patterns between the standard
samples and different types of attacks. The feature patterns of
Web attack images in Fig. 5 are more random, concentrated
at the top and bottom of the images, and sparse at the center,
while in Fig. 4, are somewhat denser throughout the image.
The difference in the patterns of the images results in the
frequency and techniques of each attack strategy employed by
the attacker. In addition to these variations, the CNN model
can learn more features, making it more robust for attack
detection and classification.

C. CLASSICAL CNN AND TRANSFER LEARNING
CNN is widely used for its exceptional properties of auto-
matically learning and extracting features from images for
image recognition and segmentation tasks [21]. Images can
quickly be supplied as inputs into the CNNwithout additional
feature description, extraction, and reconstruction processes.
A typical CNN comprises convolutional, pooling, and fully
connected layers. In convolutional layers, the feature patterns
of images are automatically extracted by convolution oper-
ations using filters of different sizes, which can be 4 X 4,

3 X 3, etc. In our research, we used the 3 X 3 filter to
perform the convolution operation, leading to feature learning
and extraction. The data complexity can be reduced in pool-
ing layers without losing essential information through local
correlations to avoid over-fitting. Optionally, dropout and
batch normalization layers can also be added to improve the
performance of the learning process depending on the input
parameters and model architecture. The Fully-connected lay-
ers serve as a channel to connect all featuremaps and generate
the output.

Transfer Learning (TL) is a system in DL where the
weights of existing models trained on large amounts of data
are reused in another dataset [21]. Sometimes, TL may be
the best option for image classification tasks where datasets
are insufficient, as CNN requires many datasets for good
performance. The successful application of TL in image tasks
is because the feature patterns learned by the bottom layers
of CNN models are usually general patterns that apply to
many different tasks, and only the features learned by the top
layers are specific features for a particular dataset. Therefore,
the bottom layers of CNN models can be directly transferred
to different tasks. To improve the effectiveness of TL, fine-
tuning can be used in the TL process of DL models. In fine-
tuning, most of the layers of the pre-trained model are frozen
(i.e., their weights are retained), while a few of the top layers
are unfrozen to re-train the model on a new dataset. Fine-
tuning enables the learning model to update the higher-order
features in the pre-trained model to better fit the target task,
or dataset [28]. One of the most critical issues in the TL
methods is unifying the distribution of the source and target
samples [47]. Maximummean disparency (MMD) [48] is one
of the successful distribution distance estimators used fre-
quently in TLmethods. MMD estimates the distance between
two distributions based on Reproducing Kernel Hilbert Space
(RKHS) [48].
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FIGURE 5. Images obtained from the CSE-CIC-IDS2018 dataset after conversion.

In the proposed architecture Fig. 2, we have selected
VGG16, VGG19, MobileNetV3 (MNV3), EfficientNetV2
(ENV2B0), and InceptionV3 (IV3) as the base learners due
to their success in image classification tasks [21], [29].
These are pre-trained CNN models on the ImageNet dataset,
a benchmark dataset for image classification tasks consisting
of over 14 million images of over 1000 classes [29]. The
VGG architecture comprises convolutional layers (CLs) and
rectified linear unit (ReLU) activation functions. The VGG
comes in two different variations, VGG16 and VGG19, with
the VGG16 having a total of 16 layers and the VGG19 having
19 layers; both implement the 3× 3 filter dimensions for the
CLs [49]. Due to the wide adoption [29], [49] and ease of
implementation of the VGG architecture with both the 16 and
19 layers variations, we have used both in this work to demon-
strate its applicability in IDS systems. Another CNN-based
pre-trained model architecture that has high relevance in the
application is the Inception model published by GoogLeNet,
having the V1, V2, and V3 variations [50]. The V2 and V3
are the improved versions of the original V1 architecture. The
V2modified the V1 with the inclusion of batch normalization
layers [50] for training streamlining and improved perfor-
mance, while the V3 included larger spatial features and fac-
toring convolutions for improved computational efficiency.
We have used the InceptionV3 (IV3) architecture in our work
as it is more flexible and lightweight than the earlier versions
regarding memory requirements and trainable parameters.
IV3 has a file size of 92 MB, and 23.9 million trainable
parameters [51].

As the depth, width, and resolution of the models’ archi-
tecture increase, more computational cost is required for
training. To overcome this, the study by Tan and Quoc [52]

proposed the EfficientNet CNN architecture that dynamically
grows all the dimensions efficiently using a simple composite
coefficient. Based on mobile inverted bottleneck convolution
(MBConv), the various versions of the EfficientNet models,
ranging from EfficientNetB0 to EfficientNetB7, were devel-
oped. The EfficientNetV2 has higher performance advan-
tages, including faster training speed and better parameter
efficiency, than previous models [53]. This model family
has variations of EfficientNetV2B0-B4 and EfficientNetV2S,
EfficientNetV2M, and EfficientNetV2L that were developed
using a combination of training-aware neural architecture
search and scaling to jointly optimize training speed and
parameter efficiency. The models were searched from the
search space enriched with new ops such as Fused-MBConv
to obtain a model that trained faster than state-of-the-
art models while being up to 6.8x smaller. Based on the
literature, we selected the EfficientNetV2B0 (ENV2B0)
with 79MB of memory capacity and 7.2 million training
parameters [52], [53].

Howard et. al., [54] proposed another class of efficient
models called MobileNets that target mobile and embed-
ded devices applications. Using a streamlined architecture
that operates on depth-wise separable convolutions (DWSC),
the authors developed lightweight CNN pre-trained mod-
els with better performance on edge devices. Two simple
global hyper-parameters that permit a sufficient trade-off
between accuracy and latency were implemented, thus, grant-
ing model builders the privilege to define and choose the
best model sizes for their projects. Like other pre-trained
models, the MobileNet comes in different forms, includ-
ing the MobileNet, MobileNetV2, and MobileNetV3 (Small
and Large) [54], [55], [56]. We selected MobileNetV3Small
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(MNv3S) for this work, with 2.9 million trainable parameters
and 14 MB of memory consumption.

In all, for the TL part of the proposed model training
process, the VGG16, VGG19, MNV3S, ENV2B0, and IV3
were trained on the datasets as the base models for IDS. The
top three (top-3) performing models are selected to construct
the ensemble model proposed in this work.

D. ELETL-IDS: PROPOSED ENSEMBLE TRANSFER
LEARNING MODEL
In this section, we discuss the proposed ensemble model.
Ensemble learning is a technique that combines various
base learning models to create an enhanced single model.
Because an aggregation of several learners performs better
than a single learner, ensemble learning is commonly uti-
lized in data analytics challenges, including network attack
detection [57], [58].

Model averaging is an ensemble technique where mul-
tiple sub-models contribute equally to a combined predic-
tion. This may lead to overfitting, a profound challenge in
ML tasks. A variation of this approach, called a weighted
average ensemble, weighs the contribution of each ensem-
ble member by the trust or expected performance of the
model on a holdout dataset. This allows well-performing
models to contribute more and less-well-performing models
to contribute less. The weighted average ensemble improves
the model average ensemble, which has been used in this
work.With the Softmax activation function, which returns the
predicted probability for each class in a classification task,
we obtain the confidence of each class. The model averaging
method calculates the average classification probability of
base learners for each class and then returns the class label
with the highest average confidence, which is the output of
the softmax function as discussed in [59].

Softmax(z)i =
ezi∑C
j=1 e

zj
(3)

where Z is the input vector, C is the number of classes in the
dataset, ezi and ezj are the standard exponential functions for
the input and output vectors, respectively. The predicted class
label obtained by the model confidence averaging method
can be defined by Equation 4. This is obtained by taking the
agrgmax of the predicted labels in the selected class

ŷ = argmax
i∈{1,··· ,c}

∑k
j=1 pj

(
y = i | Bj, x

)
k

(4)

where Bj is the jth base learner, k is the number of selected
base CNN learners, and k = 3 in the proposed IDS; pj(y =
i|Bj, x) indicates the prediction confidence of a class value i
in a data sample x using Bj.
Given that N_m is the number of instances, K_b is the

the number of base CNN models and C_s is the number of
classes, we can calculate the computational complexity of
the ELETL-IDS and that of the time for the model averag-
ing method as O(N_mK_bC_s). With small values of K_b

and C_s, the speed of execution of the averaging method is
usually high.

E. BEST MODEL THROUGH HYPER-PARAMETER
OPTIMIZATION (HPO)
One of the most essential steps in ML/DL tasks is handling
hyper-parameters (HPs). While the model adjusts the model
parameters during the learning process to achieve optimal
results, we can fine-tune the hyper-parameters such that they
aid themodel in achieving the best performance at the optimal
time. Such hyper-parameters as learning rate, epochs, batch
normalization, dropout, and weights are usually tuned for the
model. In the proposed TL framework, the dropout rate, the
learning rate, and the percentage of frozen layers are defined
as model-design parameters, while batch size, epochs, and
early stop patience level are model-training hyper-parameters
aimed at increasing the model training speed and overall
performance. These parameters directly influence the CNN
models’ architecture, efficiency, and effectiveness.

HPO is an automated process of selecting the best param-
eters for model performance in ML or DL using optimiza-
tion techniques. Particle SwarmOptimization (PSO), Genetic
Algorithm (GA), Random Search (RS), and Bayesian Opti-
mization - Tree Parzen Estimator (BO-TPE) [60] are some of
the many search algorithms for performing HPO. The TPE
algorithm is implemented on Hyperopt (a library for hyper-
parameter tuning with bayesian optimization in Python).
We have adopted the BO-TPE [61] technique in this research
due to its ability to keep conditional dependencies yet provide
optimal performance results with efficiency with all types of
HPs.

F. MODEL TRAINING AND EVALUATION
In the experimental setup for this task, we have used Python,
Numpy, Pandas, Matplotlib, and the machine learning library
sci-kit learn, as well as deep learning libraries (Keras) and
(Tensflow) for the software. The code were executed on a
computer running on Intel(R) Core(TM) i7-7700 CPU @
3.60GHz, 3600Mhz, 4 Core(s), 16 GB (15.9 GB usable),
Windows 10 Home Single Language 64-bit and NVIDIA
GeForce GTX 1050 Ti GPU.

The proposed architecture is evaluated on two benchmark
datasets, CIC-IDS2017 and CSE-CIC-IDS2018, as discussed
in Section III-B. StratifiedKFold split with 10-folds was used
to split the dataset into training, test, and validation, ensur-
ing an even distribution of the datasets in the folds, hence
overcoming model overfit. Usually, network traffic datasets
are composed of a high volume of expected traffic and fewer
attacks, so we handled the data imbalance. Table 1 shows the
total number of images generated for each dataset. 19,055
images were generated for the CIC-IDS2017 dataset consist-
ing of 9 classes, and 21,230 images comprising 7 classes for
the CSE-CIC-IDS2018 dataset.

Generally, for ML or DL classification tasks, the accuracy,
precision, recall, and F1-scores, are usually implemented for
performance evaluation. We extend the evaluation metrics by
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TABLE 1. Distribution of generating images of the datasets used in the
model training and evaluation.

including the AUC Score and Matthew’s Correlation Coeffi-
cient (MCC) metrics. The AUC score can be evaluated using
the function defined by Equation 5 and 6

AUC =
1

c(c− 1)

c∑
j=1

c∑
k>j

(AUC(j | k)+ AUC(k | j)) (5)

where c is the number of classes and AUC(j | k) is the AUC
with class j as the positive class and class k as the negative
class. In general, AUC(j | k) 6= AUC(k | j) in the multiclass
case [62].

Equation 6 extends Equation 5 to be used for calculating
roc-auc curve which are weighted by prevalence. This algo-
rithm is used by setting the keyword argument multiclass
to ’ovo or OVR’ and average to ’weighted’. The ’weighted’
option returns a prevalence-weighted average as described
in [63].

AUC =
1

c(c−1)

c∑
j=1

c∑
k>j

p(j ∪ k)(AUC(j | k)+AUC(k | j))

(6)

On the other hand, the MCC provided by Sci-kit learn
library is available in the package K.matthews_corrcoef
(y_true, y_pred, *, sample_weight=None) where K repre-
sents the sklearn.metrics function. MCC is used to mea-
sure the quality of binary or multiclass classification tasks.
It accounts for the true and false positives and negatives
and is generally regarded as a balanced measure that can
be used even if the classes are of very different sizes. The
MCC is a correlation coefficient value between −1 and +1.
A coefficient of +1 represents a perfect prediction, 0 is an
average random prediction, and -1 is an inverse prediction.
The statistic is also known as the phi coefficient [64], [65].
Given that tp, tn, fp and fn are the true positive, true negative,
false positive, and false negative outputs of a classification
problem in a confusion matrix, the MCC for a binary classi-
fication can be represented with the function in Equation 7.

MCC =
tp× tn-fp× fn

√
(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)

(7)

In the multiclass case, the Matthews correlation coeffi-
cient can be defined in terms of a confusion_matrix C for
K classes. To simplify the definition consider the following
intermediate variables:

• tk =
∑K

i Cik the number of times class k truly occur.
• pk =

∑K
i Cki the number of times class k was predicted.

• c =
∑K

k Ckk the total number of samples correctly
predicted.

• s =
∑K

i
∑K

j Cij the total number of samples.

Then, the multiclass MCC can be defined as given in Equa-
tion 8.

MCC =
c× s−

∑K
k pk × tk√(

s2 −
∑K

k p
2
k

)
×

(
s2 −

∑K
k t

2
k

) (8)

In a situation where more than one labels exist, the value of
the MCC will no longer range between −1 and +1. Instead
the minimum value will be somewhere between −1 and
0 depending on the number and distribution of ground true
labels. The maximum value is always +1 [46].

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we discuss the results obtained from our exper-
iment. Initially, the selected CNN architectures are trained
on the datasets with all the initial model parameters. The
performance of the model on the training data and test data
are evaluated. Considering the performance, we performed
model tuning. After performing the HPO with the BS-TPE
algorithm, the best hyper-Parameter were used to re-train the
model. During the search, the parameters used are shown in
Table 2. The number of epochs, batch size, learning rate,
dropout rate, early stopping patience, and the number of
frozen layers have been optimized as shown in Table 2.
The early stopping patience is used to save training time as
the model saves the best performances obtained during the
training and stops training when the validation accuracy does
not increase between two consecutive epochs. This is because
the validation accuracy is monitored during the training as it
helps to determine if the model overfits or not.

TABLE 2. Hyper-Parameters obtained after BS-TPE optimization for the
Model Configuration.

Each of the selected CNN-based networks was trained
on both datasets, and the results obtained in each case are
shown in Table 3 and Table 4 for the CIC-IDS2017 and
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TABLE 3. Performance Evaluation of Optimized and non-Optimized
trained Models on CIC-IDS2017.

CSE-CIC-IDS2018, respectively, for optimized and non-
optimized training. On the CIC-IDS2017 dataset, the base
CNN architecture achieved an accuracy, recall, precision, and
F-score of 0.9976 in each case whereas the AUC and MCC
are 0.9980, and 0.9984, respectively. Notably, this was the
lowest performance obtained on the dataset compared to the
pre-trained architectures. IV3 outperformed all other models,
achieving an overall performance in all metrics of 100% in
both optimized and non-optimized conditions. Considering
the AUC and MCC, the IV3-HPO also performed better than
all other models. Again, MobileNetV3Small ranks second in
both optimization and non-optimization with an AUC and
MCC of almost 100% (0.9999). As stated in III-F, the MCC
value is used to validate the AUC value for the models that
best show each model’s performance.

As with the results for CIC-IDS2017 in Table 3, the per-
formances for each model on the CSE-CICIDS2018 dataset
are shown in Table 4. In this case, the base CNN model
also achieved the most minor performance in both scenar-
ios, showing that pre-trained models can perform better
than normal CNN architecture. This is because pre-trained
models have already learned from many datasets and can
quickly learn new patterns from new input data. VGG16-
HPO and ENV2B0-HPO are the best-performing models
on the dataset, reaching an accuracy of 0.9900 and 0.9910,
respectively, against the base CNN with 0.9797 accuracy.

With the BS-TPE optimization algorithm used for the
Hyper-Parameter search in the search space, we obtain mod-
els with better performances. In Tables 3 and 4, the models
trainedwith selectedHyper-Parameters tend to perform better
in evaluation metrics and the time cost function.

In constructing the ensemble model, some critical param-
eters used in selecting the best three models include the
training time (Tt(s) (total time taken for the model to be
trained on the dataset), test time (tt(s) (i.e the total time taken
to predict all the images in the test set), the overall MCC and
AUC values, and the F-Score in addition to all the regular
evaluation metrics. Therefore, the Tt(s) and tt(s), including
test time per packet (tt/p(s)) were measured during the train-
ing and evaluation phases. Test time per packet is the average
time to detect a data packet. This is equivalent to the total test
time divided by the total number of images in the sample. The

TABLE 4. Performance Evaluation of Optimized and non-Optimized
trained Models on CSE-CIC-IDS2018.

TABLE 5. Time-base model Evaluation.

results obtained are shown in Tables 5. As shown in Table 5,
the training time and testing time for the IV3, MNV3S,
and ENV2B0 are the lowest, making them best for the CoT
environment and therefore were used for the ensemble model
development. While IV3-HPO required 5272 seconds and
1057 seconds to train and test on the CIC-IDS2017, it also
required 6793.55 seconds and 890 seconds to be trained and
tested on the CSE-CIC-IDS2018 dataset, respectively. Simi-
larly, for MNV2S-HPO, 1025 seconds was the training time
on CIC-IDS2017 and 831 seconds to train on the CSE-CIC-
IDS2018. In both optimization and non-optimization, the
IV3, MNV2S, and ENV2B0 had the least time and resource
requirements compared to other pre-trained models.

Also, compared with the base CNN trained from scratch,
we can observe that more training and testing time is required
for optimum performance. This means high computational
power is also required; thus transfer learning presents a more
convenient approach to training CNN-based IDS models.
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FIGURE 6. Prediction Result of the proposed ELETL-IDS model.

FIGURE 7. Confusion Matrix showing the performance of the proposed ELETL-IDS model on selected dataset (a) CIC-IDS2017
and (b) CSE-CIC-IDS2018.

While 43649.54 seconds were needed to train base CNN
on the CIC-IDS2017 dataset, only 934.22 seconds were
required to train a better-performing model on the same

dataset using the ENV2B0-HPO approach. Furthermore,
given the test time shown in Table 5, the proposed model
is efficient and practically applicable in IoT environments
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FIGURE 8. Comparison between our proposed model and other TL-based models.

FIGURE 9. Learning Curves for the ELETL-IDS Model on the selected Datasets.

because it can detect network flows in a short period of
time. For instance, a total of 0.6821 seconds are required
to classify a single packet of network flow consisting of
60 features (representing a single image) in the CIC-IDS2017
dataset and 0.3036 seconds in the CSE-CICIDS2018
dataset.

Fig. 6 shows the predicted outcomes together with the
confidence level and actual labels. Among the 12 predicted
images displayed, our model can classify eleven images accu-
rately, with one wrong prediction showing 0.001 FPR. Thus,
FPR, which has been a great challenge in ML/DL tasks, espe-
cially concerning IDS, has been reduced to its best minimum.
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The confusion matrix helps us understand the models’
performance concerning the various tasks being classified
by the model. In Fig. 7, we present the confusion matrices
for ELETL-IDS obtained on the CIC-IDS2017 and CSE-
CIC-IDS2018 datasets. We can observe that ELETL-IDS had
no difficulty correctly classifying all the attacks and benign
features, reaching an accuracy of 100%. But in classifying
the labels of CSE-CIC-IDS2018, the ELETL-IDS identified
18 benign images as infiltration and 27 infiltration attacks
as benign, thus, achieving an accuracy of 0.9976. On the
confusion matrix are presented the encoded labels for each of
the classes of network traffic present in the two datasets used.
Accordingly, in the CIC-IDS2017 which contains 9 network
profiles, the corresponding label encoding are 0: Benign,
1: Botnet, 2: Brute force, 3: DDoS, 4: DoS, 5: Heartbleed,
6: Infiltration, 7: PortScan, 8: Web attacks. On the other
hand, the encoded labels on the CSE-CICIDS2018 dataset
are 0: Benign, 1: Bot, 2: DoS, 3: DDoS, 4: Brute force,
5: Infiltration, 6: Web Attacks.

To validate the performance of our proposed model,
we make a comparison with other TL-based models as con-
tained in the literature. As shown in Fig. 8, our ELETL-IDS
stands out among the other models in accuracy, precision, and
recall. We compared our proposed model with the selected
related works because they proposed similar methods of
detecting network intrusion. Considering that we applied
deep learning algorithms to develop our proposed model,
we compared the result with more of similar existing deep
learningmodels. Nevertheless, to show that themodel is com-
petitive with previous proposals and presents a state of the art
functionality, we compared the performance of the proposed
model with that of an RNN-based IDS using LSTM [20], [22]
and tree-based machine learning algorithms [23]. According
to [22], the LSTM-based IDS model with attention mech-
anism trained on the CSE-CICIDS2018 dataset showed an
accuracy of 96.2%. In [20], the proposed model reached
an accuracy of 96% while our proposed model achieved a
performance accuracy of 100%.

In Fig. 9, we present the learning curves for the proposed
model. The learning curve is important in understanding the
general behaviour of the model during the training process
which in turn aids in evaluating if the model overfits on the
training data. In both scenarios, our model during training
maintained both training and validation accuracy of almost
100% from the first epoch with 100 batch size using the
categorical cross-entropy loss function. This shows that the
proposed model is highly efficient and can be deployed for
CoT intrusion monitoring.

V. CONCLUSION
Cloud Internet of Things (CoT) promises to expand the possi-
bilities of application of IoT systems in different domains by
leveraging on lower latency requirements and distributed cov-
erage areas. This expansion is not without challenges, as vari-
ous network attacks tend to exploit the vast network interface
and cause harm to the system. To curb the possible damage

that successful attacks can cause to the information system
and devices, we propose an Intrusion Detection System (IDS)
implemented using transfer learning based on the CNN algo-
rithm to detect and prevent network intrusion on CoT devices.
First, two primary IDS datasets, CIC-IDS2017 andCSE-CIC-
IDS2018, were selected for the research. Since CNN works
better on images, the numerical dataset was transformed after
cleaning into a set of images measuring 256 X 256 X 3,
obtaining 19055 and 16984 images for the CIC-IDS2017
and CSE-CIC-IDS2018 datasets, respectively. Secondly, five
different pre-trained models of the CNN architecture, includ-
ing VGG16, VGG19, InceptinV3, MobileNetV3Small, and
EfficientNetV2B0, and one custom CNN algorithm were
tested on the image datasets. HPO was carried out using
the BO-TPE search algorithm to determine the most crucial
Hyper-Parameter for the model fine-tuning. We tuned the
pre-trained models using the obtained parameters by freez-
ing and retraining selected network layers to obtain bet-
ter performances. Ultimately, we developed an ensemble of
the three best-performing models with low memory require-
ments, making it suitable for CoT devices. Results showed
that our proposed approach is more efficient, effective, and
optimized for edge devices in detecting network intrusions
with a very low false positive rate and an accuracy of 100%
as shown in Fig. 8.

In addition to this paper, in the future, we intend to explore
other optimization algorithms with different pre-trained
models to enhance our model’s performance especially in
identifying the various classes in the CSE-CIC-IDS2018.
Evaluating this proposedmodel on a different network dataset
is also a step further in this search.
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