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ABSTRACT In this article, a reinforcement learning-based drug dosage control strategy is developed for
immune systems with input constraints and dynamic uncertainties to sustain the number of tumor and
immune cells in an acceptable level. First of all, the state of the immune system and the desired number
of tumor and immune cells are constructed into an augmented state to derive an augmented immune system.
By designing a discounted non-quadratic performance index function, the robust tracking control problem
of immune systems with uncertainties is transformed into an optimal tracking control problem of nominal
immune systems and the drug dosage can be limited within the specified range. Hereafter, a reinforcement
learning algorithm and a critic-only structure are adopted to acquire the approximate optimal drug dosage
control strategy. Furthermore, theoretical proof reveals that the proposed reinforcement learning-based drug
dosage control strategy ensures the number of tumor and immune cells reaches the preset level under limited
drug dosages and model uncertainties. Finally, simulation study verifies the availability of the developed
drug dosage control strategy in different growth models of tumor cell.

INDEX TERMS Reinforcement learning, immune systems, immunotherapy, drug dosage control, robust
control, neural networks.

I. INTRODUCTION
Cancer is a leading cause of death worldwide in recent
decades, accounting for nearly 10 million deaths in 2020.
Its morbidity expects up to 29 million cases by 2040 [1].
Cancer development is a multistep process. The risk fac-
tors of tumorigenesis are highly diverse, including genetic
alterations, poor diet, physical inactivity, chronic infec-
tions and so on [2], [3]. Normal cells grow out of con-
trol when harmful changes interfere with orderly cellular
biological process, forming precancerous lesions. Further,
precancerous lesions develop into tumors. Cancer is charac-
terized as malignant tumor. Traditional treatments of cancer
mainly include surgery, radiotherapy, chemotherapy. Treat-
ment options depends on the type and stage of cancer
and the individual status of patients. Most types of cancer
are separated by tumor-node-metastasis classification system
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including stage I to stage IV [4]. Stage I cancer is limited
to primary location and can be removed through surgery.
Stage II-III cancers have spread deeply into nearby tissues
and even lymph nodes. Stage IV cancer that has spread to
remote organs of the body is called advanced or metastatic
cancer. Widespread metastases are the leading causes of
cancer death. Once the cancer is diagnosed at stage II-IV,
it should be treated with radiotherapy, chemotherapy or com-
bined chemo-radiation therapy.

Along with the cancer progression, abnormal cells can be
recognized and eliminated by the immune system inside the
body due to the differences in cancer cells and normal cells.
Immune cells are the main components of immune system
and it can be divided into innate immune cells and adaptive
immune cells. Activated innate immune cells could eliminate
cancer cells through extensive phagocytosis and further acti-
vate adaptive immunity [5], [6]. Adaptive immune cells like
cytotoxic CD8+ T cells directly target cancer cells through
recognizing corresponding antigens [7], [8] and it is different
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from radiotherapy and chemotherapy eliminating both cancer
cells and normal cells. In addition, immunological memory,
a significant characteristic of adaptive immunity, favors to
consistent antitumor effects [9]. Thus, immunotherapy was
proposed to prevent and treat cancer through reconstruction
and enhancement of immune ability [8], [10], [11]. However,
tumor cells could employ many strategies to escape immune
surveillance and elimination, such as avoiding the immune
recognition and recruiting of immunosuppressive immune
cells [12]. Development and application of combined chemo
and immunotherapies have been regarded as promising strat-
egy to fight against cancer [13], [14]. The balance between
tumor cells and immune cells determines tumor fate.

For the sake of describing the correlation between tumor
cells and immune cells in human body, many scholars
have established appropriate mathematical models for them,
among which the most classic one is Stepanova’s model. This
model uses two differential equations to describe the changes
of tumor cells and immune cells in immune systems. Based
on it, many researchers have proposed different treatment
plans based on control theory. The core idea is to design
an appropriate control scheme for immune systems based on
control theory, namely drug dosage control strategy, to ensure
the level of tumor cells and immune cells in immune systems
is maintained at a desired level. In [15], an adaptive robust
control scheme was developed for cancer tumor-immune sys-
tems with model uncertainties. By designing a sliding-mode
observer and a pair of adaptive control laws, the level of tumor
and immune cells can be maintained on a preset value. In
[16], the tracking control problem of cancer tumor-immune
systems was addressed by proposing an adaptive control
approach. However, these methods does not consider the drug
dosage during treatment. Since drugs have side effects on the
human body, we hope that the drug dosage should be as small
as possible while ensuring the treatment effect. Fortunately,
this requirement can be achieved by using the optimal control
approach. In recent years, several researchers have proposed
tumor treatment protocols based on optimal control theory.
In [17], the chemotherapy administration problem was inves-
tigated by developing state dependent riccati equation based
optimal control scheme. In [18], the initial malignant state
of tumor was transferred to the benign region by adopting
optimal control method. On the whole, a performance index
function that contains drug dosages, tumor cells, and immune
cells is defined, and then an optimal control strategy is
developed to minimize the performance index function while
ensuring that the desired level of tumor cells and immune
cells. Although optimal control methods have been adopted to
develop appropriate tumor treatment regimens, this research
is still in its infancy and requires further investigated.

As is known to all, reinforcement learning (RL) is widely
employed on control systems to handle various control prob-
lems, such as optimal regulation, trajectory tracking control,
fault-tolerant control, robust control, differential game, and
so on [19]. For the optimal regulation problem, Tamimi et al.
[20] and Liu et al. [21] addressed it by proposing classical

RL algorithms, namely value iteration (VI) and policy iter-
ation (PI). Furthermore, the convergence and optimality of
both algorithms were strictly analyzed. In recent years, sev-
eral improved iterative RL algorithms have been proposed
to overcome the shortcomings of traditional algorithms. Ha
et al. [22] proposed a novel VI algorithm to speed up the
convergence rate of the iterative value function and ensure
the admissibility of the iterative control law. Jiang et al. [23]
developed a bias PI algorithm to remove the initial admissi-
ble control law in traditional PI. For the trajectory tracking
control problem, Modares et al. [24] designed a data-based
integral RL algorithm to address the linear quadratic trajec-
tory tracking control problem. Later, an off-policy integral RL
algorithm was proposed to cope with the optimal exponential
tracking control of unknown linear systems [25]. Lu et al.
[26] addressed the optimal parallel tracking control prob-
lem under event-triggered mechanism. For the fault-tolerant
control problem, Zhao et al. [27] developed an RL-based
fault-tolerant controller by adding fault information into the
performance index function. Subsequently, Zhang et al. [28]
developed a fuzzy RL scheme to deal with the fault-tolerant
tracking control problem. For the robust control problem,
Liu et al. [32] shown that the robust guaranteed cost control
of nonlinear systems with mismatched uncertainties can be
transformed to an optimal control problem through designing
appropriate value function and developed an RL-based opti-
mal robust controller. After that, Wang et al. [33] addressed
the same issue under event-triggered framework to save
the computing resource. For the differential game problem,
many scholars have proposed RL-based methods to acquire
Nash equilibrium solutions of zero-sum games [29], nonzero
sum games [30], and Stackerberg games [31]. In addition,
due to the limited executive capacity of the actuator, the
control input cannot exceed the prescribed range. To over-
come this problem, researchers in RL community usually
designed a non-quadratic performance index function to
ensure the control input satisfies the specified range. This
method was first proposed by Abu-Khalaf et al. [34] and
has been widely employed to obtain the constrained optimal
regulation controller, optimal tracking controller or robust
controller for discrete-time or continuous-time nonlinear sys-
tems with input constraints. In discrete-time systems, Su
et al. [35] developed event-triggered constrained optimal con-
troller for sensor-actuator network systems via RL technique.
Wei et al. [36] investigated event-triggered near-optimal
tracking control of boiler-turbine systems with asymmetric
input constraints. In continuous-time systems, Yang et al.
[37] addressed the event-triggered constrained robust control
problem for nonlinear systemswithmismatched uncertainties
via single network adaptive critic design. Xue et al. [38]
proposed event-triggered integral RL scheme to cope with the
constrained H∞ tracking control problem.
In practical application, RL is also adopted to deal with

the control problem of different practical systems includ-
ing energy systems [39], stirred tank reactor systems [40],
spring-mass-damper systems [41], modular reconfigurable
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robots [42], residential energy scheduling systems [43],
boiler-turbine systems [44], hypersonic vehicles [45], and
hypersonic flight vehicles [46]. In recent years, several schol-
ars developed RL-based optimal regulation approaches for
immune systems. In [47], the optimal regulation problem of
immune systems was modeled as nonzero-sum games and
the optimal drug dosage policies were deduced to form Nash
equilibrium. In [48], the mathematical model of immune
systems was established in differential equation form and the
optimal dosage of chemotherapeutic and immunotherapeutic
drugs was obtained by adopting RL technique. Nevertheless,
the above-mentioned results consider ideal situations and
there are exist many issues that need to further investigate.
For example, 1) the human immune system is complicated,
it is intractable to build an accurately mathematical model
to describe the relationship between immune cells and tumor
cells. Moreover, different environments and ages will affect
the model parameters. Therefore, model uncertainty should
be considered when designing drug dosage strategy. 2) drugs
have side effects on the human body and people in different
ages can tolerate different dosages. It is necessary to develop
a constrained drug dosage strategy which can be obtained by
addressing the input constraint problem in control commu-
nity. 3) most of existing results investigate the optimal regu-
lation problem. However, the number of immune and tumor
cells requires to maintain at a certain level and the trajectory
tracking control problem needs to be considered. According
to the aforementioned statement, it is imperative to study the
robust tracking control of immune systems subject to input
constraints and model uncertainties. To our best knowledge,
it has not been studied yet and inspires our research.

In this article, an RL-based drug dosage control strategy
is presented for immune systems to guarantee the number of
tumor and immune cells reaches a specified level. The char-
acteristics of this research are summarized as two aspects.

1) Compared with existing approaches [15], [16] which
developed robust control schemes for uncertain
immune systems to maintain the number of immune
cells and tumor cells at a appropriate level only, this
paper further considers the drug dosage optimization
problem. By employing RL technique, the drug dosage
is reduced as much as possible while ensuring the
treatment effect. Therefore, it is salutary to human
body.

2) Unlike existing immune optimization regulation
approaches [47], [48] that considered idea model only,
this paper considers model uncertainties and input
constraints simultaneously, which is more appropri-
ate in actual scenario. By designing a discounted
non-quadratic performance index function, the devel-
oped RL-based drug dosage control strategy guarantees
the number of immune cells and tumor cells maintain at
the desired level under model uncertainties and limited
drug dosages.

The arrangement of this article is given as follows. In
Section II, the mathematical model and the augmented form

of immune systems are formulated, and the control prob-
lem is described. In Section III, RL-based drug dosage con-
trol strategy is developed for augmented immune systems.
Moreover, the NN implementation and the stability analysis
are given. Section IV verifies the effectiveness of the pro-
posed RL-based drug dosage control strategy on two different
growth models of tumor cells. In Section V, we provide the
conclusion of this paper.

II. PROBLEM STATEMENT
According to [15] and [16], the mathematical model of
immune systems is described by

ṖT = νcPTF(PT )− γPTPI − κTPTµT +91(PT ),

ṖI = νI (PT − βP2T )PI − δPI + α + κIPIµI +92(PI ),

where PT ∈ R is the tumor volume, PI ∈ R is the immune
cell density, νc ∈ R is the tumor growth rate, γ ∈ R is the
elimination rate of tumor cells under the action of immune
cells, F(·) denotes the tumor cell growth model, α ∈ R is
the T-cells’ generation rate, δ ∈ R is the natural death rate
of immune cells, µT ∈ R is the drug dosage of the tumor
cells, µI ∈ R is the booster drug for immune cells, κI ∈ R
and κT ∈ R are corresponding control activities, respectively.
91(PT ) ∈ R and92(PT ) ∈ R denote the model uncertainties,
β ∈ R is the stimulation way that tumor cells influence
immune cells, and νI ∈ R is used to calibrate interaction
between tumor cells and immune cells. Consider the drug
dosage should not exceed the specified range, we assume
that µT and µI satisfy |µT | ≤ µ̄T and |µI | ≤ µ̄I , where
µ̄T and µ̄I are upper bounds.

In practice, external environment or patient age will affect
the mathematical model of immune systems, and it can be
considered as model uncertainties. By using mathematical
transformation, the immune system is reformulated as

Ẋ (t) = F
(
X (t)

)
+ G

(
X (t)

)
S(t)+9

(
X (t)

)
, (1)

where X = [X1,X2]T = [PT ,PI ]T ∈ R2 is the immune
system state, S = [S1,S2]T = [µT , µI ]T ∈ R2 is the control
input, F(·) and G(·) are given by

F(X ) =
[

νcX1F(X1)− γX1X2
νI (X1 − βX 2

1 )X2 − δX2 + α

]
and

G(X ) =
[
−κTX1
κIX2

]
,

respectively, 9(X ) = [91(X1), 92(X2)]T ∈ R2 is the uncer-
tain term. In this paper, we consider matched uncertainties,
that is9(X ) = G(X )D(X ) withD(X ) is a uncertain function
and satisfies ‖D(X )‖ ≤ 9M (X ), where 9M (X ) is the upper
bound function of uncertain term and 9M (0) = 0.
Assumption 1: The system functions F(X ) and G(X ) are

Lipschitz continuous on a compact set � and the system (1)
is controllable on �.
In immune systems, the number of tumor cells and immune

cells needs to maintain at an appropriate level such that the
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tumor growth can be inhibited or even stopped. To accom-
plish this goal, we need to develop drug dosage control
approach to guarantee the number of tumor cells and immune
cells follows the predesigned indicator π (t) under model
uncertainties and input constraints. In this paper, we will
demonstrate that it can be achieved by designing a con-
strained optimal drug dosage control strategy for its nominal
system.

Assume that the dynamics of predesigned indicator
satisfies

π̇ (t) = ψd
(
π (t)

)
, (2)

where ψd (·) is a C∞ function with ψd (0) = 0. Therefore, the
indicator tacking error is defined as

e(t) = π (t)− X (t). (3)

In order to deal with the constrained robust tracking control
problem, an augmented immune systems is established as

K̇(t) = FK
(
K(t)

)
+ GK

(
K(t)

)(
S(t)+D

(
X (t)

))
, (4)

where K(t) = [e(t), π(t)]T is the augmented state and

FK(K) =
[
F
(
e(t)+ π (t)

)
− ψd

(
π (t)

)
ψd
(
π (t)

) ]
,

GK(K) =
[
G
(
e(t)+ π (t)

)
0

]
.

The nominal form of system (4) is provided as

K̇(t) = FK
(
K(t)

)
+ GK

(
K(t)

)
S(t). (5)

The discounted performance index function of system (5) is
defined as

P
(
K(t)

)
=

∫
∞

t
e−η(ν−t)

(
ξ92

M
(
X (ν)

)
+ C

(
K(ν),S(ν)

))
dν, (6)

where ξ is a positive constant, 0 < η < 1 is a discount
factor, C(K,S) = KTQK + Y(S) is the utility function and
Q = diag{Q̄, 02×2}with a positive definite matrix Q̄ ∈ R2×2.
In order to ensure the drug dosage within a limited range,
Y(S) is designed as

Y(S) = 2
∫ S

0
ζ−T(S̄−1ν)dν, (7)

where ζ (·) ∈ R is a monotonic odd function satisfying
|ζ (·)| < 1, S̄ = diag{µ̄T , µ̄I } is the upper bound of the drug
dosage. The Hamiltonian is defined as

H
(
K,S,∇P(K)

)
= C(K,S)+ ξ92

M (X )− ηP(K)

+∇PT(K)
(
FK

(
K
)
+ GK

(
K
)
S
)
. (8)

The optimal performance index function satisfies

P∗(K) = min
S∈<(�)

∫
∞

t
e−η(ν−t)

(
ξ92

M
(
X (ν)

)
+ C

(
K(ν),S(ν)

))
dν, (9)

where <(�) denotes the admissible control set. Therefore,
the constrained optimal drug dosage control strategy is
obtained by

S∗(K) = −S̄ζ
(1
2
GT
K(K)∇P∗(K)

)
. (10)

According to (8) and (10), the Hamilton Jacobi-Bellman
equation is provided as

0 = H
(
K,S∗,∇P∗(K)

)
= ∇P∗T(K)

(
FK

(
K
)
+ GK

(
K
)
S∗
)
+ C

(
K,S∗

)
. (11)

Obviously, the optimal performance index function is
required to construct the optimal drug dosage control strat-
egy. Unfortunately, it is scarcely possible to acquire it by
solving (11) directly. In the following, we will employ RL
algorithm to overcome this difficulty.
Remark 1: In optimal control field, the performance index

function includes process cost and control cost. It reflects
the rapidity of the system response and the energy saving
of the system. For traditional optimal regulation problem,
the performance index function is defined as a quadratic
form with respect to system state and control input. However,
in trajectory tracking scenario, the augmented immune sys-
tem state and the control input will not converge to zero when
the system state follows the desired trajectory. Therefore,
in order to guarantee the boundedness of the performance
index function in infinite horizon, a discounted factor is added
in performance index function. Moreover, a non-quadratic
term is adopted to ensure the control input stays within the
specified range. In addition, the upper bound function of
the uncertain term is added in performance index function.
The purpose of this is to consider the influence of model
uncertainties when designing the controller and ensure the
obtained controller is robust.
Remark 2: The assumption of ‘‘ψd (·) is a C∞ function’’

is used to guarantee the augmented system functions FK
and GK are Lipschitz continuous. It is noted that the Lips-
chitz continuous of system functions is basic and general for
nonlinear systems in control community, which guarantees
the solution of differential equation is unique [20], [21].
Moreover, a lot of common trajectories satisfy this condition,
such as step functions with any magnitudes, ramp functions
with any slopes, and sinusoidal functions functions with any
and initial phases [54], [56]. Therefore, this assumption is
necessary and reasonable.

III. ROBUST DRUG DOSAGE CONTROL STRATEGY
DESIGN VIA REINFORCEMENT LEARNING
A. ROBUST DRUG DOSAGE CONTROL STRATEGY DESIGN
In this section, we will provide rigorous mathematical the-
orem to exhibit that the constrained robust tracking control
problem is addressed by developing a constrained optimal
drug dosage control strategy for the nominal system (5).
Before that, we provide some general Assumptions that have
been given in [20], [21], [29], [32], [37], [49], [50], and [51].

1272 VOLUME 11, 2023



L. Chen et al.: Optimal Drug Dosage Control Strategy of Immune Systems Using Reinforcement Learning

Assumption 2: The optimal performance index function
P∗(K) and it’s partial derivative with respect to K satisfy,

‖P∗(K)‖ ≤ c1‖K‖2, ‖∇P∗(K)‖ ≤ c2‖K‖, (12)

where c1 and c2 are positive constants.
Assumption 3: The system function GK(K) is norm-

bounded, that is,

0 < ‖GK(K)‖ ≤ ḠK, (13)

where ḠK is a positive constant.
Theorem 1: Consider the uncertain immune system (1)

and its augmented system (4), the constrained optimal drug
dosage control strategy given by (10), and Assumptions 2
and 3, if the following inequalities

λmin(Q) > η +
1
2
c22Ḡ

2
K, (14)

ξ >
1
2

(15)

hold, then the tracking error is guaranteed to be asymptot-
ically stable. It implies that the number of tumor cells and
immune cells can be maintained at the desired level.

Proof. The Lyapunov function candidate is constructed
as

LT1 = P∗(K). (16)

Based on (4), the time derivative of (16) is calculated by

L̇T1 = ∇P∗T(K)
(
FK(K)+ GK(K)S∗ + GK(K)D

)
. (17)

According to (17) and Assumptions 2 and 3, it holds that

L̇T1 = −C(K,S∗)− ξ92
M (X )+ ηP∗(K)

+∇P∗T(K)GK(K)D

≤ −KTQK + η‖K‖2 +
1
2
‖∇P∗T(K)GK(K)‖2

−ξ92
M (X )+

1
2
‖D‖2

≤ −λmin(Q)‖K‖2 + η‖K‖2

+
1
2
c22‖K‖

2Ḡ2
K −

(
ξ −

1
2

)
92
M (X ). (18)

Therefore, if (14) and (15) hold, we derive that L̇T1 < 0.
It indicates that the level of tumor cells and immune cells are
reached to expected value.

B. NEURAL NETWORK IMPLEMENTATION
In this section, the critic neural network (NN) is introduced
to formulate the optimal performance index function P∗(K)
as

P∗(K) = ϕ∗Tc χc(K)+ εc(K), (19)

where ϕ∗c ∈ Rhc is the optimal weight vector, χc(K) ∈
Rhc is the activation function, hc is the number of hidden
layer neurons, and εc(K) ∈ R is the approximation error.

Consider the optimal weight vector is unknown, we provide
the approximate performance index function as

P̂(K) = ϕ̂T
c χc(K), (20)

where ϕ̂c is the estimate of ϕ∗c .
Consequently, the constrained optimal drug dosage control

strategy and its approximate version are given as

S∗(K) = −S̄ζ
(1
2
GT
K(K)

(
∇χT

c (K)ϕ∗c +∇εc(K)
))
, (21)

Ŝ(K) = −S̄ζ
(1
2
GT
K(K)∇χT

c (K)ϕ̂c
)
. (22)

Based on (20) and (22), the approximate Hamiltonian is
provided as

H
(
K, Ŝ,∇P̂(K)

)
= ϕ̂T

c ∇χc(K)
(
FK

(
K
)
+ GK

(
K
)
Ŝ
)

+C(K, Ŝ)+ ξ92
M (X )− ηϕ̂T

c χc(K)

, ec. (23)

To ensure the approximate weight approach the optimal
weight, we need to minimize the object function E = 1

2e
2
c .

By adopting the gradient descent approach, the critic NN
weight is renovated by

˙̂ϕc = −
αcϒ

(1+ ϒTϒ)2

(
ϕ̂T
c ϒ + C(K, Ŝ)+ ξ92

M (X )

−ηϕ̂T
c χc(K)

)
, (24)

where αc > 0 is the learning rate and

ϒ = ∇χc(K)
(
FK(K)+ GK(K)Ŝ

)
.

Lemma 1: Consider the nominal nonlinear system (5), the
critic NN weight estimation error is guaranteed to be uni-
formly ultimately bounded (UUB) with the critic NN weight
tuning rule (24).

Proof. The proof of Lemma 1 has been provided in [29],
[32], and [37], so the detail is omitted here.

C. STABILITY ANALYSIS
Assumption 4: ϕ̃c, ∇χc(K), and ∇εc(K) satisfy

‖ϕ̃c‖ ≤ ϕ̄c, ‖∇χc(K)‖ ≤ χ̄c, ‖∇εc(K)‖ ≤ ε̄c,

where ϕ̃c = ϕ∗c − ϕ̂c, ϕ̄c, χ̄c, and ε̄c are positive constants.
Assumption 5: ζ (·) is Lipschitz continuous and satisfies

‖ζ (x)− ζ (y)‖ ≤ Lζ‖x − y‖, (25)

where Lζ is a positive constant, x and y are vectors with
appropriate dimensions.
Theorem 2: For the nominal immune system (5), the

approximate optimal drug dosage control strategy given
by (22), and Assumptions 2–5, if Q is selected to satisfies

λmin(Q) >
1
2 Ḡ

2
K + ηc1
A2

, (26)

where 0 < A2 < 1, then the tracking error is guaranteed to
be UUB.
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Proof. The Lyapunov function candidate is established
as

LT2 = P∗(K). (27)

The time derivative of (27) is calculated by

L̇T2 = ∇P∗T(K)
(
FK(K)+ GK(K)Ŝ

)
= −C(K, Ŝ)+∇P∗T(K)GK(K)

(
Ŝ − S∗

)
−ξ92

M (X )+ ηP(K)

≤ −KTQK +
1
2
‖∇P∗T(K)GK(K)‖2 − ξ92

M (X )

+ηP(K)+
1
2
‖Ŝ − S∗‖2. (28)

According to Assumptions 2–5, (21) and (22), the last part
of (28) is expanded as

1
2
‖Ŝ − S∗‖2 ≤

1
2

∥∥∥− S̄ζ
(1
2
GT
K(K)∇χT

c (K)ϕ̂c
)

+S̄ζ
(1
2
GT
K(K)

(
∇χT

c (K)ϕ∗c

+∇εc(K)
))∥∥∥2

≤
1
8
‖S̄‖2L2

ζ

∥∥GT
K(K)∇χT

c (K)ϕ̃c

+GT
K(K)∇εc(K)

∥∥2
≤

1
4
‖S̄‖2L2

ζ

∥∥GT
K(K)∇χT

c (K)ϕ̃c
∥∥2

+
1
4
‖S̄‖2L2

ζ‖G
T
K(K)∇εc(K)‖2

≤
1
4
‖S̄‖2L2

ζ Ḡ
2
K(χ̄

2
c ϕ̄

2
c + ε̄

2
c ). (29)

Therefore, we further have

L̇T2 ≤ −KTQK +
1
2
‖∇P∗T(K)GK(K)‖2 + ηc1‖K‖2

+
1
4
‖S̄‖2L2

ζ Ḡ
2
K(χ̄

2
c ϕ̄

2
c + ε̄

2
c )

≤ −A1KTQK −A2KTQK +
1
2
‖∇P∗T(K)GK(K)‖2

+ηc1‖K‖2 +
1
4
‖S̄‖2L2

ζ Ḡ
2
K(χ̄

2
c ϕ̄

2
c + ε̄

2
c )

≤ −β21A1λmin(Q̄)‖e‖2 + (β21 −A1)λmin(Q̄)‖e‖2

−λmin(Q)A2‖K‖2 +
1
2
Ḡ2
Kc

2
2‖K‖

2
+ ηc1‖K‖2

+
1
4
‖S̄‖2L2

ζ Ḡ
2
K(χ̄

2
c ϕ̄

2
c + ε̄

2
c ), (30)

where 0 < A1 < 1 and satisfies A1 +A2 = 1. Letting

21 =
1
4
‖S̄‖2L2

ζ Ḡ
2
K(χ̄

2
c ϕ̄

2
c + ε̄

2
c ). (31)

Therefore, L̇T2 < 0 if the tracking error e is outside the
following set

�e =

{
e : ‖e‖ ≤

√
21

A1 − β
2
1

}
. (32)

The proof is finished.

FIGURE 1. The implementation process of RL-based drug dosage control
scheme.

The overall structure of the RL-based drug dosage control
scheme is shown in Fig. 1, where we find that it can be
divided into two parts, that is, 1) obtain a optimal drug dosage
control strategy by using RL algorithm and 2) employ this
control strategy on augmented immune system with model
uncertainties and input constraints.
Remark 3: For Assumption 2, P∗(K) represents the

optimal performance index function and is continuously
differentiable on a compact set. Thus, this assumption is
reasonable and widely used in the existing results. For
Assumption 3, consider the augmented immune system is
controllable, it is reasonable to assume the system input func-
tion GK is norm-bounded as a positive constant. For Assump-
tion 4, ϕ̃c is the critic NN estimation error. From Lemma 1,
we can know that it is guaranteed to be UUB with the critic
NN weight updating law (24). Therefore, it is reasonable
to assume that ϕ̃c is norm-bounded. Moreover, ∇εc(K) is
the NN reconstruction error. Since it can not be infinite in
practice, so the norm-bounded assumption is reasonable. For
Assumption 5, ζ (·) is a monotonic odd function and can be
selected as tanh(·). Hence, it is reasonable to assume to be
Lipschitz continuous.
Remark 4: 1) Different from the existing results [45] and

[46] which handled input constraints by using prescribed
performance control approach, this paper adopts RL tech-
nique to design a constrained robust tracking controller in a
nearly optimal manner. Therefore, the developed controller
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can guarantee the tracking performance and reduce the con-
trol cost as much as possible. 2) Unlike the existing RL-based
tracking control approaches [52] and [53] for ideal sys-
tem model, this paper considers both input constraints and
model uncertainties. By establishing an augmented system
and designing a novel discounted non-quadratic performance
index function, an RL-based constrained robust tracking con-
troller is developed and it is more appropriate in practice.
Remark 5: According to the properties of performance

index function, minimum tracking error and energy can be
achieved by minimizing the performance index function.
To achieve this objective, a Hamiltonian function is defined
and its partial derivative with respect to control input is
calculated, thus the equation of the optimal control input is
obtained. Consider the optimal control input relies on optimal
performance index function, RL algorithm and critic-only
structure are adopted to obtain its approximate value by an
iterative manner. Consequently, the minimum tracking error
and the minimum control energy can be guaranteed by using
the developed constrained optimal controller.

IV. SIMULATION
In this part, an immune system is adopted to confirm the
availability of the RL-based optimal drug dosage control
strategy. The system parameters of the immune system are
selected as νc = 0.56, νI = 0.005, γ = 1, β = 0.0026, δ =
0.375, α = 0.118. The model uncertainties are chosen as

91(PT ) = r1PT sin5(PI )cos2(PT ),

92(PI ) = r2PI cos5(PT )sin2(PI ),

where r1 = r2 = 10.
Case 1: The growth model of tumor cell is exponential.
In case 1, the growth model of tumor cell is chosen as

F(PT ) = 1. It means that tumor cells grow exponentially.
The predesigned indicators of tumor cells and immune cells
are set as π = [PT ,PI ]T = [2, 1]T, the parameters in (6)
are chosen as Q = [1 0 0 0, 0 1 0 0, 0 0 0 0, 0 0 0 0]T

and ζ (·) = tanh(·), the activation function of the critic
NN is selected as χc(K) = [K2

1,K1K2,K2
2]

T, and the
upper bounds of drug dosages are picked as µ̄T = 10 and
µ̄I = 10.
The simulation verification consequences are given in

Figs. 2–7. Fig. 2 provides the evolution curves of critic NN
weights, where we can conclude that the critic NN weight
vectors will reach to ϕ̂c = [81.57, 30.59, 12.95]T. The track-
ing error of the immune system is given in Fig. 3. We find
that the tracking error will reach to zero. To demonstrate the
effectiveness of the RL-based optimal drug dosage control
approach, we compared it with the existing ADP-based con-
strained tracking method in literature [38]. It can be seen
from Fig. 4 that our method can guarantee the tracking
performance when there exist model uncertainties. Fig. 5
reveals the curves of drug dosage control strategies under
different schemes. It is pretty clear that the drug dosage
control strategies developed by this paper are bounded and

the drug dosage will not exceed the predetermined range.
However, drug control strategies designed in [55] will exceed
the predetermined values. Fig. 6 provides the curves of per-
formance index function for different methods. Compared
with the existing methods in [15] and [16], the convergence
value of the performance index in this paper is smaller,
it means that the developed RL-based drug dosage control
method can guarantee the tracking performance with lower
control cost. Moreover, a time-varying expectation indicator
π (t) = [cos(0.5t), cos(0.2t)]T is selected to further verify the
effectiveness of the RL-based optimal drug dosage control
method. According to Fig. 7, we can see that the number of
tumor cells and immune cells still catch up with time-varying
expected values.

FIGURE 2. Critic NN weights of case 1.

FIGURE 3. Tracking errors of case 1.

Case 2: The tumor cell is Gompertzian growth.
In this case, we consider that the tumor cell is Gom-

pertzian growth, that is, F(PT ) = −ln(
PT
P∞

), where P∞ =
10 denotes the fixed carrying capacity of the tumor. Let the
predesigned indicators of tumor cells and immune cells be
π = [PT ,PI ]T = [5, 3]T and the upper bounds of the
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FIGURE 4. The number of tumor cells and immune cells in case 1.

FIGURE 5. Tracking control laws of case 1.

FIGURE 6. Performance index functions of different method in case 1.

drug dosage be µ̄T = 5, µ̄I = 5. Simulation results are
shown in Figs. 8–11. From Fig. 8 we can conclude that

FIGURE 7. The number of tumor cells and immune cells under
time-varying expectation indicator in case 1.

FIGURE 8. The number of tumor cells and immune cells of case 2.

compared with the tracking control approach in [38], the
developed RL-based optimal drug dosage control scheme
guarantees the number of tumor cells and immune cells track
the predesigned indicator precisely. The drug dosage curves
obtained by different methods are given in Fig. 9. We can
find that the developed RL-based optimal drug dosage curves
can stay within the specified range, whereas the conven-
tional approach will exceed. The curves of performance index
function are displayed in Fig. 10. We can conclude that the
RL-based optimal drug dosage control method maintains the
number of tumor cells and immune cells at expected level
with less drug dosage. Fig. 11 shows that the number of tumor
cells and immune cells can track the time-varying expectation
indicator π (t) = [cos(0.5t), cos(t)]T.
According to the simulation results from cases 1 and 2,

we can conclude that the proposed RL-based drug dosage
control strategy is available, that is, tumor cells and immune
cells can be maintained at desired levels by using limited drug
dosages.
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FIGURE 9. Tracking control laws of case 2.

FIGURE 10. Performance index functions of different methods in case 2.

FIGURE 11. The number of tumor cells and immune cells under
time-varying expectation indicator in case 2.

V. CONCLUSION
This paper provides an immunotherapy regimen for can-
cer via RL technique. We show that it can be obtained by

addressing the robust tracking control problem of immune
systems subject to input constraints and dynamic uncer-
tainties in control community. To accomplish this goal, an
augmented immune system and a discounted non-quadratic
performance index function are established such that the
robust tracking control problem of uncertain immune systems
is converted to an optimal tracking control problem of its
nominal plant. Subsequently, we develop constrained drug
dosage control strategy by using RL algorithm and critic-
only structure. According to the Lyapunov theory, we proof
that the developed RL-based drug dosage control strategy
ensures the number of tumor and immune cells reaches to
the preset level with limited drug dosages. At last, simulation
results display that the developed immunotherapy regimen is
feasible.
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