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ABSTRACT In this paper, we investigate the recently introduced McCormick-based Quadratic Convex (QC)
relaxation of the Optimal Power Flow (OPF) where Line-Wise Model (LWM) is used for representing
meshed transmission systems (QC-LW OPF) for the sake of decisively determining its relationship to other
available convex relaxations in the literature. We also extend the recently introduced convex envelope
of the tangent function so it would be suitable for test cases with any voltage angle difference range.
A computational study where the recently proposed QC-LW OPF formulation is compared to an equivalent
McCormick based QC relaxation of the OPF where Bus Injection Model (BIM) is used for representing
meshed transmission systems (QC-BI OPF) is presented in this paper. This computational study was
conducted using test cases that belong to different operational categories using 123 test cases from the PGLib-
OPF library with a bus size range between 3 up to 6515 buses for the sake of understanding the effect of the
change of operating conditions on the quality of solutions obtained using the QC-LW OPF and QC-BI OPF
formulations. Results are compared using several metrics that testify to the obtained solution’s quality and
the problem’s computational complexity. Comparison of results shows that the QC-LW relaxation neither
dominates nor is dominated by the QC-BI relaxation in terms of solution quality. Therefore, it dominates
the Second Order Cone (SOC) relaxation and neither dominates nor is dominated by the Semidefinite
Programming (SDP) relaxation. Furthermore, it is shown that the QC-LW OPF has reduced the number
of relaxed trigonometric functions and McCormick envelopes needed when compared to the QC-BI OPF,
leading to a faster solution time for more than 84% of the test cases in the range of 2% up to 67%.

INDEX TERMS Optimal power flow, convex optimization, convex relaxations, QC relaxation, optimality
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R; Branch /’s resistance.

X Branch /’s reactance.

Z Branch /I’s impedance magnitude.
GS;, BS; Total sum of conductance and sus-

Gai, Gpi, Bar, By

ceptance shunt elements connected
to Bus i.

Pi-model’s conductance and suscep-
tance shunt elements connected to
branch [’s buses.

U;, U; Bus {'s voltage squared magnitude
o minimum and maximum limits.

81,8 Branch [’s voltage angle difference
- minimum and maximum limits.

PG;, PG; Generator i's active power genera-
o tion minimum and maximum limits.
0G;, OG,; Generator {'s reactive power genera-
T tion minimum and maximum limits.
SL, Branch /’s maximum limit for appar-

ent power flow.

TS1;, TS, Slopes of the lines that approximate
the tangent function.

TSM, Slope of the line that connects the
points (87, tan(é;)) and (3;, tan(é;)).

TC) Tangent function’s convex envelope.

Bl,, B2, Offset values needed for defining the
lines that bound the convex envelope
of the tangent function.

Slqy, 827y Angles at which lines can be drawn
to be tangential to the tangent func-
tion to form a convex envelope of it.

E; Auxiliary variables that is equivalent
to the expression V, - Vy, - cos (84p)-

Wi Auxiliary variable to express
the McCormick envelope of the
expression K; - TC.

Q Set of summation limits for calcu-

lating CNCV for each of the state
variables in the set y.

I. INTRODUCTION

OPTIMAL power flow (OPF) is a nonconvex power system
optimization problem that aims to minimize the total genera-
tion cost while taking operational constraints into account [1].
Its importance comes from the fact that since it was formu-
lated in 1962 [2], it remains a fascinating technical challenge.
This can be attributed to the problem of nonconvexity that
obstructs the ability of solving it efficiently to global optimal-
ity. Such a shortcoming has direct economic consequences.
The Federal Energy Regulatory Commission (FERC) esti-
mates that about 400 billion dollars is left untapped world-
wide if the optimality gap between global solutions of
the OPF and currently obtained solutions is assumed to
be 10% [3].
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A. LITERATURE SURVEY- CONVENTIONAL OPF
FORMULATIONS

The nonconvexity of the OPF problem has been illustrated by
studying the feasible space of several small test cases in [4].
Several approaches for solving the OPF problem have been
discussed in the literature. These approaches include applying
the gradient method to provide a feasible solution for the OPF
problem [5], [6], the use of quadratic programming [7], [8],
[9], the use of heuristic optimization techniques [10], [11] as
well as the use of approximated convex models for solving
the OPF problem [12], [13], [14], [15]. The use of nonlinear
solvers that provide local solutions was also investigated in
the literature [16], [17], [18]. However, all these mentioned
techniques suffer from one of two major drawbacks. Namely,
they suffer from the drawback of either the inability of finding
a global solution for the OPF or finding a global solution for
the approximated problem that is not feasible for the original
nonconvex OPF problem.

B. LITERATURE SURVEY- CONVEX OPF FORMULATIONS

Most recently, the advances in the field of convex conic
optimization have encouraged the pursuit of a new approach
for solving the OPF problem [19]. Several convex relaxations
have been discussed and compared in the literature. The com-
parisons usually aim to determine how tight a certain convex
relaxation technique is and how related the convex relaxation
techniques are to each other. Such convex relaxations include
Second Order Cone (SOC) [19], Semidefinite Programming
(SDP) [20], and Quadratic Convex (QC) relaxations [21].
SOCP relaxation can be exact under certain conditions for
radial systems, easy to implement, and efficiently solved
where formulations can be created without using bus voltage
phasor angles [22], [23], [24]. However, the same cannot be
extended to meshed network models where the use of bus
voltage phasor angles is a must and thus there is a need for
more suitable convex relaxations. SDP relaxation has been
shown to provide a tighter relaxation that manages to find a
feasible global solution for different test systems [23], [24],
[25]. However, it was found that SDP relaxation was not
able to find a physically meaningful solution when used for
solving the OPF for several practical systems [26]. Moreover,
the available solvers are not as efficient as the solvers that
can be used for solving Linear Programming (LP) and SOCP
formulations, particularly for larger systems and problems
that have a mixed integer nature. QC relaxation is reported in
the literature to be easier to apply and more computationally
efficient as introduced in [21] and [27]. The QC relaxation
introduces convex relaxations in the OPF formulation by
introducing two novel convex envelopes for the sine and
cosine functions and by utilizing McCormick envelopes to
create convex envelopes for nonconvex expressions [28]. The
importance of McCormick envelopes arises from the fact
that the multiplication of two convex envelopes results in
another convex envelope, albeit with lower tightness. The QC
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relaxation was studied further to increase its tightness by
adding more constraints that were inspired by the relation-
ships between power system variables in [29]. The reader is
referred to [30] and [31] for more thorough literature about
convex relaxations.

Despite the inexactness of convex relaxations that can yield
solutions that are not physically meaningful for power system
optimization problems, the use of convex relaxations has sev-
eral advantages [21], [30]. The main advantage is the possibil-
ity of finding the global optimum for the original nonconvex
problem if the solution of the relaxed formulation is feasible
for the original nonconvex problem. In addition, a convex
relaxation of a nonconvex formulation can determine a lower
or upper bound for the objective function of the noncon-
vex formulation. Also, they provide a better alternative to
existing linear approximation methods that are being used
to solve such problems. This is especially true since linear
approximations are very sensitive to the change in power
system operating point and tend to exhibit poor performance
during extreme circumstances that may lead to blackouts [1].
Moreover, it was found that imposing small angle difference
bounding constraints could lead to the infeasibility of linear
approximation methods for solving the OPF problem [32].
Furthermore, the utilization of convex relaxations for solving
power system problems of integer and mixed-integer nature is
extremely superior in terms of solution quality and computa-
tional efficiency to the use of linear approximation methods
[31]. Convex relaxations can also help in identifying infea-
sibility of power system optimization problems for certain
data sets [33]. Furthermore, some convex relaxations have
associated sufficient conditions which guarantee their ability
to provide global optima for certain limited classes of power
system optimization problems [30], [34]. All of these factors
justify the growing interest in creating convex relaxations of
nonconvex power system problems such as OPE.

C. MOTIVIATION FOR THIS WORK

The Bus Injection Model (BIM) of power balance equations
used in [21] is popular and currently the standard formula-
tion for benchmarking efforts that is used by the IEEE PES
PGLib-OPF Task Force [33]. However, the existence of other
models of power balance equations provides an opportunity
to explore the benefits of applying existing convex relax-
ation techniques or introducing new relaxation techniques
that are more suitable. One example of a promising model
of power balance equations is the Sparse-Tableau Represen-
tation (STR) [35]. The STR model has been relaxed and used
for solving the OPF problem where two new relaxations were
introduced [36].

Another promising model for power balance equations is
the Line-Wise Model (LWM) [37]. This model has shown
its superiority in terms of enhancing computational effi-
ciency when compared to the BIM for solving the power
flow problem as well as the linearized OPF problem that
was solved iteratively using successive linear programming
[12], [37], [38], [39]. A special version of the LWM was
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introduced and convex relaxed for solving the capacitor
placement problem in radial distribution systems and was
found to significantly reduce solver’s computational time
[40]. Most recently, a McCormick based QC relaxation of the
LWM was introduced as part of an algorithm for solving the
Transmission Network Expansion Planning (TNEP) problem
in which a novel convex envelope of the tangent function
was introduced for test cases where @ | = ’31| [41]. The
proposed formulation was used for solving the OPF problem
for 5 test systems with bus size range of 6 up to 118. The
reported results in [41] has shown that the McCormick based
QC relaxation of the LWM-based OPF formulation (QC-LW
OPF) has managed to outperform the McCormick based QC
relaxation of the BIM-based OPF formulation (QC-BI OPF)
in terms of computational complexity while providing solu-
tions of similar quality for these test cases. Moreover, a novel
SDP relaxation of the LW OPF formulation for meshed trans-
mission networks was introduced in the literature recently
[42]. Obtained results in [42] have shown its merits in terms
of enhancing solution quality and reducing computational
complexity for different test cases over the widely used SDP
relaxation of the BIM based OPF formulation.

D. PAPER CONTRIBUTIONS

This paper provides a computational study that utilizes the
proposed QC-LW OPF formulation in [41] for solving the
OPF problem for a wider range of test cases with a larger
bus size range and different operational categories. Such
computational study is important to decisively establish the
relationship between the proposed QC-LW OPF formulation
in [41] and the QC-BI OPF that is widely used in the literature
in terms of solution’s quality and computational complexity.
The main contributions of this papers are:

1) The extension of a closed-form novel convex envelope
for the tangent function that was introduced in [41] so it
would be able to accommodate test cases where | 3 | #*
|§1|. Such extension is needed in cases where bound
tightening of voltage magnitude and angle difference
is applied for enhancing the solution quality of convex
relaxations [29].

2) The establishment of the relation between the pro-
posed QC-LW OPF formulation [41] and other exist-
ing convex relaxations in the literature in terms of
solution’s quality and computational efficiency. This
is done by comparing the QC-LW OPF with the
previously introduced QC relaxation of the BIM
OPF that was enhanced by adding valid inequalities
(QC-BI OPF) [21], [27], [29]. The results of this com-
parison as well as the already established relationship
between the QC-BI OPF and other convex relaxations
of the OPF in the literature [21] would be utilized
for this manner. The comparison metrics include the
Optimality Gap (OG) between the obtained value of
the problem’s objective function via convex relaxation
and the best obtained value of the problem’s objective
function using a nonconvex solver, the use of the newly
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introduced Cumulative Normalized Constraint Viola-
tion (CNCYV) coefficients that were introduced recently
to measure the distance to AC feasibility of the obtained
solutions by the QC-BI OPF and QC-LW OPF [32] as
well as solver’s computational time to solve the convex
relaxed OPF.

3) The study of the effect of the operating conditions
on the quality of the solutions that were obtained by
solving the QC-BI OPF and QC-LW OPF formulations
for different test cases that belong to three operating
conditions.

Il. NONCONVEX LW OPF

The most common objective function for the OPF is used
where the minimization of active power generation is
expressed by (1).

NG
Minimize y (cz,- -PG?+C1; - PG; + Co,-) (1
i=1
Subject to:

The LWM set of equality constraints (2) — (7) that con-
sists of 4 nonconvex constraints that describe the relation-
ship between the bus voltage magnitude, angle, and active
and reactive power flow variables (2) — (5) and two linear
active and reactive power balance equations (6) — (7). The
derivation of the M matrix has been explained in [37]. Other
operational constraints for the OPF problem are provided
in (8) — (13). It is of great importance to highlight that
pi-model was used for modeling both transmission lines
and transformers. Hence, all resulting shunt elements are
accounted for in (6) — (7) through the parameters GS; and
BS; and in (12) — (13) through the parameters G, By, Gpr,
Byp;. More information about this formulation can be found in
[12], [38], [39], [41], and [42].

U3+2Uu~(PFI.R1+QF1~X1—%)—i—SFlz-le:O
Vi=1toNT, (a,b)el (2)
U§+2Ub~(PS,~R1+QSI-X1—%)+SS,2~Z,2=O
VIi=1t0NT, (a,b)el 3)
(PF1-Ri+ QF ;- X1 + Ug) - tan (8pa)
—PF,-X;+QF;-R =0

Vi=1toNT, (a,b)el “4)
(PS; - R+ 08 - Xi + Up) - tan (8ap)

—PS;-X;+0S,-Ri=0V=110NT, (a,b)yel (5
[M][ﬁ?]—U-GS:PD—PG (6)

F

[M][gs}+U-BS=QD—QG (7
Ui<U<U; VYi=110NB 8)
8 <8ump <8 VI=1toNT, (a,b)el )
PG; < PG; < PG; Vi=11toNG (10)
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Vat6, W48y

ZI=R+jX

], Jnt

PS; + QS,
Gn( +ij,

Jat I
PFi +j QF,

Ga, +JBa,

FIGURE 1. The Ith branch pi-model. Note that pi-model is used for
representing both lines and/or transformers.

0G; < 0G; < 0G; Vi=110NG (11)
(PF| — Uy - Gu)* + (QF ; + Uy - B)? < 5L,
Vi=1toNT, (ab)el (12)
(PS; — Up - Gp)* 4+ (QS; + Uy - Bpy)* < S_le
Vi=1toNT, (a,b)el (13)

We note that the LW OPF depends on the use of the squared
voltage U; and there are no multiplication expressions for the
voltage values of buses V; - V;, which is not the case for the
BI OPF formulation that is used to represent power systems
in [21], [27], and [33].

Ill. QC RELAXATION OF THE LW OPF

The McCormick based QC relaxation of the nonconvex LW
OPF formulation (1) — (13) is briefly introduced in this
section. Full derivation of the QC-LW OPF formulation is
provided in [41].

A. CONVEX RELAXATION OF CONSTRAINTS (2) - (3)
The constraints (2) — (3) are replaced by

U
Ua+2<PF,-R1+QF,«X1—7b>+J1«ZIZ=0

VI=1t0NT, (a.b)el (14)
U,

U,,+2(PS,-R1+QS,.X,—7“>+Jl.zﬁ=o

VI=1t0NT, (a,b)el (15)

Ji - Up > PS? 4 0S?

VI=1toNT, (a,b)el (16)

B. CONVEX RELAXATION OF CONSTRAINTS (4) - (5)

The constraints (4) — (5) are replaced by
W;—PF;-X;+QF,;-R =0,
—W; —PS;- X +0S;-R =0,

VI=1toNT (17)
VI = 1to NT (18)

where W; is a McCormick envelope that was defined to
convexify the expression E; - TC; as follows:

Wy > E -TC/+E -TC; - E - TC,
W, >E;-TC; +E -TC; —E; - TC,
Wi < E;-TCi+E - TC, —E; - TC;
W) < E -TC/+E -TC; — E; - TC,
VI =1toNT (19)
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E; is alinear (and thus convex) replacement of the nonconvex
expression V, - Vg - cos (84p) since Vi - Vi - cos (8qp) = PS; -
R+ 0S8, - X; + Up [37]:

E; = PS;-R + 08, - X1+ Up
Vi=1toNT, (a,b)el (20)

And TC; is a convex envelope of the tangent function over
a specified voltage angle difference range. Note that in (18),
we used a negative sign for W; since tan (§,5) = —tan (8py)-
The derivation of the QC-LW OPF formulation that was
illustrated in [41] shows the process for deriving a convex
envelope for the tangent function in which | 3 | = |31 | In this
paper, we provide a derivation for the tangent function’s
convex envelope for a more general case where | 8 | # |31 |
The derivation process depends on studying the nature of the
tangent function in the angle range —% < 84, < 7. It has
been established that the tangent function is convex for the
angle range 0 < 8, < 7 and concave for the angle range
—% < 84p < 0 with é,5 = 0 as the point of inflection where
the tangent function transits from being concave to convex
and vice versa [43]. This implies that the convex envelope
of the tangent function should be studied for three cases
depending on the voltage difference angle range as follows:

1) CONVEX ENVELOPE OF THE TANGENT FUNCTION WHERE
8 <0, >0AND -5 <égp < 5

In the case, the tangent function would not be convex over this
angle range. Hence, we need to define two boundary lines
that would be tangential to the tangent function to create a
convex envelope for it. Starting with §;, we define a line that
approximates the tangent function within the range — | 3 | <
Sap < @ | The slope of the line can be found using the
relationship:

tan (|81]) — tan (= |&1]) _ 1an (]31])

|81] — —131] A
VI =1toNT 21)

781, =

Similarly, for 8;, we obtain the slope TS2; for a line that
approximate the tangent function in the range — |3;} < 8ap <
|31 | We then use the equations of the linear approximations
of the tangent function [7S1; - §,pand TS2; - §4p] to define two
boundary lines that will surround the portion of the function
under study as shown in (22).

TC; > TS1; - éap — B,
TC; < TS2;-6ap + B2

Vi=1tNT, (ab)el (22)

To obtain the value of 81, and B2;, we focus on finding the
angles § 177 and 6277 at which lines can be drawn to be tangen-
tial to the tangent function within the angle difference range.
Starting with 617;, we introduce the following optimization
problem

min 81, (23)
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TS1; - 817 — B1, = tan(817;) (24)
—[81] < 81m < |31] (25)

The aforementioned optimization problem is nonconvex and
it also contains equality and inequality constraints. Hence,
we use Karush-Kuhn-Tucker (KKT) conditions to solve it
[44]. We start solving the problem by writing its Lagrangian
equation as follows:

L=p8l,+A- (TSl[ -8l — Bl — tan(81n))
+u1 (81 — [81]) + 2 (—81m — [81])  (26)
Since we know that constraint (25) is not binding, the coef-
ficients w1 and po will equal zero. We conclude following

differentiating the Lagrangian function with respect to its
variables and solving the resulting equations that:

Sy = sec VTS, (27)
B1, = TS1; - 817; — tan(817y) (28)

Note that (23) — (25) can be used to find §27; and B2; by
replacing 7S1; by TS2;. This would result in obtaining §27;
and B2, to be:

8271 = sec” 'WTS2 (29)
B2, = TS2; - 82 — tan(827)) (30)
Also, in case when |§;| = |5, TS1; = TS2;, 8173 = 827

and B1; = B2;. Fig. 2 shows the proposed convex envelopes
of the tangent function for different cases where ] 8 ] # ‘81‘
and |8;| = [8;] where §; < 0,8; > 0.

2) CONVEX ENVELOPE OF THE TANGENT FUNCTION WHERE
8l>0,g/>OANDO§Sab§%

For this case, the tangent function is convex over the angle
range. While the convex envelope that was defined for the
case where §; < 0,3; > 0 is general in nature and can be
applied for this case, the convexity of the tangent function
over this angle range allows for utilizing the characteristics of
convex functions to tighten the convex envelope. A function is
convex over a certain domain if it’s value for any point that is
within that domain which lies between two points x, y is lower
than a line that connects these two points. Mathematically
speaking, this can be expressed as

flax+(I-a)y) =af )+ A -a)f (), VYael0 1]

(D
This implies that for a voltage difference angle range §; <
Sap < 8 where 0 < 8, < % a line that connects the
points (3, tan(;)) and (§;, tan(§;)) would provide an upper
boundary line for the tangent function envelope. This allows
the proposed convex envelope of the tangent function that was
defined in (22) to be altered to:
TC; > tan (8ap)
TC; < TSM; - 84 — TSM; - §; + tan (&)
Vi=1toNT, (a,b)el (32)
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B Case 1
tan(d;) F—
(0) ——Tangent Function
- = -Lower Bound
Upper Bound
o
@
=
c
8
tan(3) |
8 o
6ab

FIGURE 2. Convex envelopes of the tangent function between §; and §; where §; and 5; are - 20° and + 30° for Case 1, - 30°

and + 30° for Case 2.

Case 1

tan(d;)

Tangent Function
== == Lower Bound

tan(éab)

tan(s) |

5ab

- Case 2
tan(d;) F— -
——Tangent Function
= = -Lower Bound
Upper Bound
-
©
=
c
S
tan(8) ¢
5
6ab
Case 2
tan(8) F
an(%) Tangent Function
== == Upper Bound
A.Q
DQN
<4
8
tan(d;)
0 671

(sab

FIGURE 3. Convex envelopes of the tangent function between é; and §; where § and §; are —30° and —15° for Case 1, +15° and

+30° for Case 2.

where:

tan (&;) —tan(é
TSM | = % (33)
=9

3) CONVEX ENVELOPE OF THE TANGENT FUNCTION WHERE
8l<0,3/ <0AND—% <éap =0
Similarly, the fact that the tangent function is concave over
this angle range allows the proposed convex envelope of the
tangent function that was defined in (22) to be altered to:
TC; > TSM; - §4p — TSM; -Q+tan(ﬁ)
TC; < tan (8ap)
Vi=1toNT, (a,b)el 34)
Fig. 3 shows the proposed convex envelopes for test cases
where §; > 0,8; > 0and§; < 0,6, <OM
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C. COMPLETE CONVEX RELAXATION OF THE LW OPF
The complete nonconvex LW OPF problem (1) — (13) is
relaxed and represented in a convex form as below.
« Objective Function (1)
Subject to:
« Bus power balance equations: (6) — (7);
« Limits on Voltage phasor magnitude and angle: (8), (9);
o Limits on active and reactive power generation:
(10) = (11);
o Limits on apparent Power Flow in circuits: (12) — (13);
« Relaxation of constraints (2) — (3): (14) — (15);
« Bus voltage magnitude and the squared current Relation
to circuit’s apparent power flow: (16);
o Relaxation of constraints (4) — (5): (17) — (20);
« Convex envelope of the tangent function: (21) — (22),
(27) - (30), (32) - (34);

VOLUME 11, 2023
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Additional constraints to enhance the formulation were
introduced in [41]. Note that we refer to this formulation as
the McCormick based QC relaxation of the LW OPF (QC-LW
OPF). The above formulation is a convex nonlinear model of
the relaxed LW OPFE. It can be solved using a commercial
convex optimization solver.

IV. NUMERICAL RESULTS

In this section, we focus on benchmarking the QC-LW OPF
against the McCormick based QC relaxation of the BI OPF
that is available in the literature where Lifted nonlinear
Cuts (LNCs) were used to strengthen it (We refer to this
formulation as the QC-BI OPF) [21], [29]. Comparison met-
rics include Optimality Gap (OG), the recently introduced
Cumulative Normalized Constraint Violation (CNCV) coef-
ficients [32] and solver computational time. The QC-LW
OPF formulation was built in AMPL [45], while the Julia
benchmarking library PowerModels.jl was used to obtain the
results of the AC-OPF and the QC-BI OPF formulations [46].
The solver IPOPT was used to solve the AC-OPF problem
while the solver Gurobi (v 9.1.1) was used to solve the QC-BI
OPF and QC-LW OPF problems for all test cases [47], [48].
The Matlab based library MATPOWER was used to obtain
power flow results [49]. The IEEE PES PGLib-OPF Task
Force library test cases (v21.07) were used in this study [33].
All test cases that belong to three operational categories were
considered. However, since Gurobi has not managed to solve
the QC-LW OPF and QC-BI OPF for some test cases (due
to numerical errors or finding a suboptimal solution), the
test cases that were solved to global optimality by Gurobi
using the two relaxation schemes are used for comparison.
Hence, 39 TYP test cases, 43 API test cases, and 41 SAD
test cases (total of 123 test cases) were considered as shown
in Table 1. The size range of the considered test cases is
between 3 to 6515 buses. Due to the number of considered test
cases, box plots are used for conducting statistical analysis
of the obtained results. All computational efforts were done
using a Thinkpad T480s laptop with CORE i7-8650U CPU
and 16 GB of RAM.

TABLE 1. Number of test cases considered per operational category for
the numerical experiment.

Operational Number of test Minimum Maximum
Category cases System Size System Size
TYP 39 3 6495
API 43 3 6515
SAD 41 3 6515

A. OPTIMALITY GAP

The PES PGLib-OPF Task Force uses the OG metric to
evaluate the quality of convex relaxations techniques [33].
Until recently, OG was used extensively in the literature as
the sole metric for comparing convex relaxation techniques
[32]. OG indicates the distance between the value of the
objective functions obtained by solving the OPF problem
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using a relaxation technique (Lower bound) and the value of
the objective functions obtained by solving the OPF problem
using a non-convex solver (Higher bound). It is calculated as
follows:

ObjiN¢ — 0bj©
OijC

OG was calculated for all test cases that were solved using
QC-LWOPF and QC-BIOPF and the results for each oper-
ational category are shown in Fig. 4. Furthermore, the 25%,
50 and 75" percentiles for each of the box plots in Fig. 4 are
shown in Table 2. Upon examining Fig. 4 and Table 2,
we notice that obtained OGs using the QC-BI relaxation and
the QC-LW relaxation to solve the OPF problem are very sim-
ilar numerically. Furthermore, the results show the tendency
of both QC relaxations to be affected similarly by the change
in the operating conditions with them being the most accurate
for the TYP operating conditions and the least accurate for the
API operating conditions. Hence, we conclude that both the
QC relaxations are equivalent in terms of the value of the OG.
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FIGURE 4. Optimality gap for test cases that belong to three operating
conditions upon using the enhanced QC-BI and the QC-LW to solve the
OPF problem.

TABLE 2. The 25th,50th, and 75th percentiles of the box plots in Fig. 3.

TYP-OG(%) APL-OG(%) SAD-0G(%)
QC-BI | QC-LW | QC-BI | QC-LW | QC-BI | QC-LW
OPF OPF OPF OPF OPF OPF
25% | 01791 | 0.1554 | 0.5597 | 0.5366 | 0.9985 | 1.0068
50% | 0.7851 | 0.5641 | 2.0644 | 2.0678 | 1.928 | 1.7765
75% | 1.9036 | 1.9053 | 8.2003 | 8.6304 | 4.7527 | 4.8799

B. CUMULATIVE NORMALIZED CONSTRAINT VIOLATION

Recent literature has shown that the use of the OG as a sole
metric for evaluating the quality of a solution that is obtained
using a convex relaxation of the original nonconvex problem
is insufficient. This is since OG does not provide information
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about the distance between state variables and AC feasibility
or local optimality [32]. Authors in [32] have addressed these
shortcomings by introducing two novel metrics. The first
determines the distance of the problem’s state variables to AC
feasibility and is known as the Cumulative Normalized Con-
straint Violation (CNCV) percentages. The second determines
the distances of the obtained solution with respect to known
local optimum and is known as the Averaged Normalized
Distance to a Local Solution. This paper focuses on the first
metric to review its test case solutions obtained using QC-
BI OPF and QC-LW OPF. The calculation of the CNCV
depends on warm-starting an AC Power Flow (AC-PF) with
the voltage magnitude and the generator active power profiles
obtained from the convex relaxation stage. Solving the warm-
started AC-PF, if converged, will yield a solution where all
obtained state variables will be examined to test if their values
are within the limits of OPF operational constraints. For each
state variable y:={PG, QG,V;, éap, Sfm;, Sto;}, we define
CNCV to be

AC—PF i AC—PF
max (0, Vi _ yimax ; yimm —y; )

CNCV, =) T x 100
ieQ i i

(35)

where Q2 = {NG, NG, NB, NT, NT, NT }. CNCV was calcu-
lated for each of the of the state variables. Furthermore, the
total CNCV for all state variables as well as the percentage
of the violated constraints for all test cases were evaluated.
All results are presented in Fig. 4, that shows that the study
has been conducted for each operational category separately.
Logarithmic scale has been used for representing results in
Fig. 5. Minimum constraint violation tolerance of 0.1% was
used as it was assumed in [32].

1) TYPICAL OPERATING CONDITIONS

For TYP test cases, AC-PF was warm-started using QC-BI
OPF and QC-LW OPF solutions for 39 test cases. MAT-
POWER has managed to converge for 32 test cases using
QC-BI OPF results. The divergence of the AC-PF for several
French transmission system (RTE) test cases upon using
QC-BI OPF results was reported in [32]. However, warm-
starting the AC-PF using QC-LW OPF managed to converge
for two additional test cases that belong to the French and
Polish test cases (Total of 34 test cases). Thus, the compar-
ison was conducted for test cases where AC-PF has man-
aged to converge using both relaxation techniques. Upon
examining Fig. 5, inspecting CNCV s, shows that obtained
solutions using the warm-started AC-PF did not violate the
voltage angle difference constraint. Furthermore, compar-
ing the CNCVy,, CNCVspy,,, and CNCV g, percentages
shows that differences between both relaxation techniques are
insignificant. For the CNCV pg, it can be noticed that there
were no constraint violations for 50% of the tested cases.
However, comparing the 75t percentile for CNCV pg shows a
slight advantage for the QC-BI OPF based results. Regarding
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CNCYV g, although the 25 percentile is slightly smaller for
the QC-BI OPF based results, comparing the 75" percentile
for QC-BI OPF and QC-LW OPF based results (5686% and
2055%) shows that QC-LW OPF based results are superior in
reducing it by 63%. Upon comparing the CNCV ;,,; and per-
centage of violated constraints, we notice that the differences
are insignificant.

2) CONGESTED OPERATING CONDITIONS

For API test cases, warm-started AC-PF studies were con-
ducted for 43 test cases. The AC-PF has converged for 34 test
cases when warm-started using QC-BI OPF results. On the
other hand, the use of QC-LW OPF results for warm-starting
the AC-PF has managed to converge for an additional case
(a total of 35 test cases). Hence, 34 test cases were consid-
ered for comparing the two QC relaxations. Upon examining
Fig. 5, it is noted that the previous observation about the
voltage angle difference is valid. Comparing CNCV y, shows
that although both relaxation techniques have managed not to
violate the constraint for 25% of tested cases, the comparison
of the 50" and 75" percentiles show that the QC-BI OPF
based results have voltage magnitude profiles that are closer
to AC feasibility for the remaining 75% of test cases. For the
CNCYV pg, the congested nature of the API test cases has led to
more constraint violations if compared to the TYP case study
results. Both QC relaxations have managed not to violate the
active power generation constraint for 25% of tested cases
only and they also have similar 50" percentile value. This
indicates the differences in distance to AC feasibility for 50%
of the tested cases were insignificant. For the remainder of the
test cases, the comparison of the 75" percentiles shows that
QC-BI OPF active power generation profiles were marginally
closer for the remaining test cases. Regarding the CNCV ¢,
the comparison of the 25", 50™ and 75" percentiles for
both relaxation techniques show that their profiles for API
test cases are closer to AC feasibility when compared to
TYP test cases. The comparison also shows that the use
of QC-LW OPF has managed to reduce the 50 and 75"
percentiles significantly by 73% and 62%, hence, indicating
closer distance to AC feasibility. Regarding the CNCV gy,
and CNCVg,,,, both relaxation techniques have produced
similar ranges of CNCYV for all the tested cases. It is worth
mentioning that apparent power flow violations are the largest
contributor to CNCV y,,; for API case study. In contrast, the
reactive power generation violations are the largest contrib-
utor to CNCV ;ps1 for TYP and SAD case studies. In terms
of comparing CNCV ,, for both relaxation schemes, the
accumulated distance for all state variables towards AC fea-
sibility is similar for both relaxation schemes. However, the
comparison of the percentage of violated constraints shows
that the QC-LW OPF has managed to slightly violate more
constraints when compared to the use of QC-BI OPF.

3) SMALL ANGLE DIFFERENCE CONDITIONS
For SAD test cases, warm-started AC-PF was conducted for
41 test cases. Using the QC-BI OPF results, the AC-PF has
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managed to converge for 34 test cases. However, the use of
QC-LW OPF results have allowed the AC-PF to converge for
an additional two test cases. Hence, the CNCV comparison
will be conducted for 34 test cases as shown in Fig. 5. Regard-
ing the CNCVy,, we notice that both relaxation schemes
managed not to violate the corresponding constraint for 50%
of the tested cases. They also have similar CNCVy, for the
remaining test cases that is smaller than those obtained for
the TYP and API case studies. However, comparing CNCV 5,,,
shows that the voltage angle difference constraint has been
violated when relaxation results were used to warm-start the
AC-PF. This contrasts with the previous two case studies
where no angle difference constraint violations were found.
Regarding the CNCV pg, we notice that the obtained results
showed no constraint violations for 50% of the tested cases.
However, the comparison of the 75" percentile shows that
the use of QC-LW OPF has reduced the 75" percentile by
50%. For the CNCV gg, the use of QC-LW OPF is found
to be slightly better than the use the QC-BI OPF relaxation
technique. The differences in CNCV g4,,and CNCV g, were
found to be insignificant. The comparison of the 25" and
75t percentiles of the CNCV ,, for all state variables shows
that the use of the QC-LW OPF has managed to reduce them
by 10.2% and 16.2% respectively. Such results indicate that
the overall cumulative violations of the QC-LW OPF based
AC-PF results are smaller and hence, closer to AC feasibility.
The comparison of the percentage of violated constraints
also shows a slight advantage for the obtained QC-LW OPF
results.

C. COMPUTUTIONAL TIME

The reduction in the needed time by the solver Gurobi to
solve the QC-LW OPF with respect to QC-BI OPF for each
test case is calculated. Results for each operational category
are shown in Fig. 6. Examining Fig. 6 shows that QC-LW
OPF has a clear and conclusive advantage over the QC-BI
OPF in terms of reducing the solver’s needed computational
time for more than 84% of all tested cases (Around 89.7% of
TYP test cases, 81.4% of API test cases and 82.9% of SAD
test cases). The 25th and 75th percentiles (representing half
of the test case population) for computational time reduction
are found to be around 14% and 49% for TYP test cases,
5% and 42% for API test cases, and 7.7% and 46.23% for
SAD test cases. The overall computational time reduction has
been found to be between 2% up to 67% depending on the
operational category.

V. DISCUSSION

In this section, we discuss the relation of the QC-LW relax-
ation to other established relaxation techniques in the litera-
ture in terms of solution quality. We also discuss the effects
of the reduction of decision variables needed to represent
trigonometric functions and McCormick envelopes as well
as the reduction of McCormick envelopes’ complexity upon
using the QC relaxation on computational time.
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A. QC-LW RELAXATION RELATION TO OTHER CONVEX
RELAXATIONS IN TERMS OF SOLUTION QUALITY

It was established in the literature that the McCormick-based
QC-Bl relaxation dominates the SOC relaxation and it neither
dominates nor is dominated by the SDP relaxation in terms of
solution quality [21]. These observations have been supported
by the recently published literature in which the CNCV metric
for evaluating the quality of convex relaxations was used
to compare the QC-BI and SDP relaxations [32]. Hence,
by specifying the relationship between the proposed QC-LW
relaxation in [41] and the QC-BI relaxation, we can relate
the QC-LW relaxation to other convex relaxations. The com-
parison of experimental results in section IV shows that both
relaxation techniques are equivalent in terms of the OG metric
and have their own merits in terms of their solution’s dis-
tances with respect to AC feasibility. The proposed QC-LW
relaxation in [41] managed to allow the AC-PF to converge
for additional test cases and it significantly reduced CNCV g
for test cases that belong to all TYP and API operating cate-
gories. It was also shown that the QC-LW OPF formulation
is more suited for the SAD operating category compared to
the QC-BI relaxation. However, the QC-BI relaxation tends
to provide slightly smaller CNCV 'y, and CNCV pg as well as
violate less constraints for test cases that belong to TYP and
API operating categories. Based on these results, we claim
that QC-LW relaxation neither dominates nor is dominated by
the QC-Bl relaxation in terms of solution quality. This implies
that the proposed QC-LW relaxation in [41] dominates the
SOC relaxation and neither dominates nor is dominated by
the SDP relaxation.

B. EFFECT OF REDUCING DECISION VARIABLES NEEDED
FOR REPRESENTING TRIGONOMETRIC FUNCTIONS AND
MCCORMICK ENVELOPES AS WELL AS THE REDUCTION
OF McCORMICK ENVELOPES’ COMPLEXITY UPON USING
QC-LW RELAXATION ON SOLVER’S COMPUTATIONAL TIME
As it was established in the recent literature [41] and sup-
ported by the results provided in the previous section, the
QC-LW relaxation has a clear advantage in terms of reducing
computational time needed by the solver Gurobi to solve the
relaxed OPF problem over the QC-BI relaxation. A thorough
analysis that has identified the factors which have led to such
aperformance was provided in [41]. These factors include the
ability of the QC-LW OPF formulation to omit the need for
McCormick envelopes for convexifying the expression Vaz.
Furthermore, the QC-LW OPF replaces the nonconvex tri-
linear expression V, - V}, - cos(8,,) by its linear LWM
based equivalent (as shown in (20)) which has significantly
reduced both the number and complexity of McCormick
envelopes needed for the sake of relaxing the expression
Vi - Vb - cos(8ap) - tan (84p) since it was replaced by the
bilinear expression K; - TC; (which can be convexified using
a single McCormick envelope as shown in (19)). Moreover,
the QC-LW OPF formulations reduces the needed number of
McCormick envelopes for representing trigonometric func-
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FIGURE 6. Reduction in computational time when QC-LW OPF is used
with respect to the use of QC-BI OPF for three operational categories.

tions due to its dependence on the tangent function (if com-
pared to the QC-BI OPF formulation that depends on both
the since and cosine function). Such reductions would have a
direct impact on the number of needed decision variables by
the QC-LW OPF formulation if compared to the QC-BI OPF
formulation.

To illustrate this, we use the 6515-bus test system that has
9037 active lines as an example, we calculate the number
of needed decision variables for representing McCormick
envelopes and trigonometric functions needed by the QC-BI
and QC-LW relaxation techniques. The numbers that are
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TABLE 3. Needed decision variables for convex relaxation of
trigonometry functions and McCormick envelopes per relaxed OPF
formulation —6515 bus test system.

RELAXATION/MCCORMICK QC-BI QC-LW
ENVELOPE
V2 6,515 0
V. Vg 9,037 0
V- Vg - €0S(8ap) 9,037 0
V-V - SIN(8gp) 9,037 0
V- Vy - cos(8ap) 0 9,037
~tan(6gp)
€0S(8ap) 9,037 0
SIN(8gp) 9,037 0
TAN(8gp) 0 9,037
TOTAL NUMBER 51,700 18,074

shown in Table 3 state that the use of the QC-LW relax-
ation has resulted in reducing the needed decision vari-
ables required for the relaxed trigonometric functions and
McCormick envelopes by 65%. Such a reduction is responsi-
ble for enhancing solution space and reducing computational
time needed by the solver Gurobi to solve the relaxed QC-LW
OPF problem for more than 84% of test cases that belong
to the three operating categories when compared to the use
of QC-BI relaxation. The literature has established that the
QC-BI relaxation is faster and more reliable than the SDP
relaxation [21]. This implies that the QC-LW relaxation is
more computationally efficient and reliable than the SDP
relaxation.
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VI. CONCLUSION

In this paper, a computational study where the recently pro-
posed McCormick-based QC-LW OPF formulation in the
literature [41] has been tested for solving the OPF prob-
lem is provided. This study -unlike the limited results that
were provided in [41]- was carried on a larger set of test
cases that belong to different operating conditions with a
wider bus size range (A total of 123 test systems taken
from the IEEE PES PGLib-OPF Task Force library with
bus sizes of 3 up to 6515 buses were considered). This
study’s intention is to decisively determine the relationship
between the QC-LW OPF formulation and other relevant
convex relaxations in the literature in terms of solution’s qual-
ity and computational complexity. Furthermore, this study
has examined the effect of the operating conditions of the
considered test cases on the quality of the obtained solutions
using the QC-LW OPF formulation by conducting the exper-
iment for test cases that belong to each of the three oper-
ational categories separately. The paper has also extended
the proposed convex envelope of the tangent function in
[41] so it would be suitable for test cases with symmet-
rical and asymmetrical angle ranges. The recently intro-
duced McCormick-based QC-LW relaxation was compared
to the established McCormick-based QC-BI relaxation in the
literature.

Analysing the results of OG and CNCV percentages
obtained for the test cases that belong to the three operating
categories shows that in terms of solution quality, the recently
introduced QC-LW relaxation neither dominates nor is dom-
inated by the QC-BI relaxation and hence, it dominates the
SOC relaxation and neither dominates nor is dominated by
the SDP relaxation.

Moreover, the paper finds that the recently introduced
QC-LW OPF manages to provide a faster and more reli-
able solver performance for more than 84% of test cases
in comparison with the QC-BI OPF results where com-
putational time reductions were in the range of 2% to
67% depending on the operational category. Such improve-
ments in solver performance are attributed to the significant
reductions in the number of needed decision variables to
represent convex envelopes of trigonometric functions and
McCormick envelopes as well as the reduction in complex-
ity of McCormick envelopes that were used to relax the
OPF problem using the recently introduced QC-LW relax-
ation. The establishment of the QC-LW relaxation to be
more computationally efficient than the QC-BI relaxation
implies its dominance over the SDP relaxation in terms
of solver computational time and reliability. The merits of
the recently introduced QC-LW relaxation may encourage
the power systems community to pay closer attention to
the LWM for modeling power systems for different power
system studies where convex relaxation is needed. Future
directions include applying enhancements reported in [50]
and [51] to strengthen the QC-BI Relaxation to the QC-LW
relaxation.
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