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ABSTRACT Self-driving cars are going to be themain future mode of transportation. However, such systems
like, any other cyber-physical system, are vulnerable to attack vectors and uncertainties. As a response,
resilience-based approaches are being developed. However, the approaches lack a sound attack model that
recognizes the attack vectors and vulnerabilities such a system would have and that does a proper severity
analysis of such attacks. Moreover, the existing attack models are too generic. Currently, the domain lacks
such specific work pertaining to self-driving cars. Given the technology and architecture of self-driving cars,
the field requires a domain-specific attackmodel. This paper gives a review of the attackmodels and proposes
a domain-specific attack model for self-driving cars. The proposed attack model, severity-based analytical
attack model for resilience (SAAMR), provides attack analysis based on existing models. Also, a domain-
based severity score for attacks is calculated. Further, the attacks are classified using the decision-treemethod
and predictions of the type of attacks are given using long short-term memory network.

INDEX TERMS Attack-model, autonomous vehicles, cyber-attacks, resilience, security, self-driving car.

NOMENCLATURE
AT Adversarial attack tree.
CAN Controller area network.
CT Code modification/injection tree.
CVE Common vulnerabilities and exposures.
CVSS Common vulnerability scoring system.
CWE Common weakness enumeration.
DATMO Detection and tracking of moving objects.
DDoS Distributed denial of service.
DoS Denial of service.
DT Decision tree.
ECU Electronic controller unit.
GPS Global positioning system.
InV In-vehicle.
ITS Intelligent transportation system.
JT Jamming attack tree.
LiDAR Light detection and ranging.
LINDDUN Linkability, identifiability, non-repudiation,

detectability, disclosure of information,
unawareness, non-compliance.
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LSTM Long short-term memory.
MAE Mean absolute error.
NIST National institute of standards and technol-

ogy.
OBD On-board diagnostics port.
OCTAVE Operationally critical threat asset and vulner-

ability evaluation.
ODD Operational design domain.
PASTA Process for attack simulation and threat anal-

ysis.
PIER Probability, impact, exposure, and recovery.
RPN Risk priority number.
RSU Roadside unit.
RT Replay/relay attack tree.
SAAMR Severity based analytical attack model for

resilience.
SAE Society of automotive engineering.
SAVTA Software asset vulnerability threat and

attacker.
SDC Self-driving car.
SLAM Simultaneous localization and mapping.
ST Spoofing attack tree.
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STAMP Systems-theoretic accident model and pro-
cesses.

STPA STAMP-based hazard analysis.
STRIDE Spoofing, identity, tampering with data, repudi-

ation, information disclosure, denial of service,
and elevation of privilege.

V2I Vehicle-to-infrastructure.
V2V Vehicle-to-vehicle.

I. INTRODUCTION
The popularity of the concept and attempts at achieving
autonomous vehicles cannot be realized unless a proper anal-
ysis of the threats posed to the related cyber-physical sys-
tems has been done. According to the Society of Automotive
Engineers (SAE) [1], a self-driving car (SDC) can be defined
according to six degrees of automation characterized by the
level of attention and intervention needed by the human
drivers while driving or being driven by such vehicles. These
levels vary from Level 0 (where the autonomy of the car
is limited to issuing warnings without continuous sustained
automated control), to Level 5 (where no human intervention
is needed in any circumstance and ensures full automation
even in a fallback scenario). For more details on the lev-
els of automation in SDC, one may refer to the report by
SAE in [1]. SDC, likely a popular mode of transportation
in the near future, is still posed with hurdles that should be
overcome. Currently, considerable efforts have been made
towards realizing Level 5 SDC; the goal, however, is still far-
fetched owing to the reliability and safety required in such
systems. According to experts, it took 80 years to develop the
SDC technology currently available, which represents 80% of
the work. Perhaps it will take another 40 years to achieve the
remaining 20% of the work, mostly owing to the challenges in
maintaining the desirable functionality while ensuring safety
and reliability under uncertain circumstances [2]. To achieve
Level 5 SDC, it is imperative to identify the vulnerabili-
ties using specific attack models before designing a resilient
architecture that withstands malicious attacks and hence the
uncertainties associated with it. Inherently, the architecture
and design of the SDC pose several threats, as several sensors
are meant to collect data from external surroundings, which
determines the course of action of the actuators through con-
nected controllers. The result is a physical response through
attached actuators. Further, SDC vendors are increasingly
employing deep-learning algorithms for obstacle recognition
and avoidance. Most of these algorithms work in black box
settings, leaving much scope for uncertainty. These chal-
lenges have restricted the deployment of SDC to the Oper-
ational Design Domain (ODD) [1], that is, the vehicle can
operate only under a controlled environment restricted by pre-
defined constraints.

Thus, in SDC architecture, the information generated
through the interaction of several components is meant to
result in an action that is safe, reliable, and devoid of
any uncertainty. Building such architecture would mean a
thorough understanding and anticipation of threats being

considered while designing such systems. Several works have
been published in trying to identify and demonstrate the
attacks that could be devised against autonomous systems
in general and, hence, the vulnerabilities. Although a good
amount of research is dedicated to exploring vulnerabilities
in autonomous vehicles, the studies lack a specific focus
on attack modeling of SDC. Many attack models have been
developed; however, not all of them are comprehensive, and
their focus is more on a wide variety of subjects with orga-
nizational, people, and system orientations mostly aimed at
giving general holistic solutions [3].

The main contributions of this paper are identifying
the attack and accidental factors in SDC architecture and
proposing an attack model that gives a severity analysis
of the attacks in the context of SDC architecture, and
hence aids in developing resilient architecture. This paper
contributes by:

1) Identifying attacks, attack surfaces, and vulnerabilities
in SDC architecture and detailing all the steps under the
attack modeling process.

2) Providing an accident analysis of the SDC architecture.
3) Giving a severity analysis of the attacks identified.
4) Outlining a classification and prediction of the attacks

identified using decision-tree algorithm and long
short-term memory network.

The comprehensive overview of the paper is represented
through the illustration in the Fig. 1. The structure of the
paper can be described as follows: Section II gives a brief
review of the literature on the threat models and discusses
the reviewed literature. Section III gives a detailed descrip-
tion of the proposed severity-based analytical attack model
for resilience (SAAMR) process. Section IV discusses the
proposed model, its limitations, and future directions. The
discussion also includes a descriptive analysis of the attacks.
Section VI concludes the paper.

II. RELATED WORKS
This section gives a brief review of the attack modeling
definition and related works. Attack modeling incorporates
several key concepts related to attacks and may include con-
cepts like a threat, attack, attack vector, attacker, and attack-
surface. All these terms are defined according to the context
for which the attack model is being designed. The definitions
do overlap across related domains depending on the context
and the assumptions made about the system or organiza-
tion [4]. Threats in the context can be defined as any possible
opportunity for an adversary that affects the operations of
an SDC gained through intercepting information, false injec-
tion, etc. [5]. An attack is an attempt to realize threats for
adversarial motives and is defined by the National Institute of
Standards and Technology (NIST) [5] as ‘‘any kind of mali-
cious activity that attempts to collect, disrupt, deny, degrade,
or destroy information system resources or the information
itself’’. The attack model shows how the attacker attains
their goal by using different methods to launch a specific
attack and, hence, reveals the threat and vulnerability of the
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FIGURE 1. Roadmap of the paper.

system [6]. In this purview, several definitions of attack mod-
eling also have been proposed. Uzunov and Fernandez [7]
defined attack modeling as a process, ‘‘that can be used to
analyze potential attacks or threats and can also be supported
by threat libraries or attack taxonomies’’. Dahbul et al. [8]
defined attack modeling as a process to, ‘‘analyze the security
and vulnerabilities of an application or network services’’.
The authors in [9] and [10] have defined attack modeling
as an activity such that, ‘‘the architecture of the system is
represented and analyzed, potential security threats are iden-
tified, and appropriate mitigation techniques are selected’’.
For this study, the authors adhere to the definition of [7]
and [10] and define attack modeling as a process, ‘‘that can

be used to analyze potential attacks through supported attack
taxonomies’’.

In the context, some of the popular models that map attacks
or faults include Spoofing identity, Tampering with data,
Repudiation, Information disclosure, Denial of service, and
Elevation of privilege (STRIDE) [11]; Systems-Theoretic
Accident Model and Processes (STAMP) [12]; Process
for Attack Simulation and Threat Analysis (PASTA) [13];
Linkability, Identifiability, Non-Repudiation, Detectability,
Disclosure of Information, Unawareness, Non-Compliance
(LINDDUN) [14]; Common Vulnerability Scoring System
(CVSS) [15]; Trike [16]; Operationally Critical Threat, Asset,
and Vulnerability Evaluation (OCTAVE) [17]; and Attack
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Trees [18]. Brief detail and limitations of the aforementioned
models are discussed in the following paragraph.

STRIDE [11], amnemonic, was one of the earliest methods
developed byMicrosoft. It has matured over time and has laid
the groundwork for the development of better attack analysis
tools. Tuned to evaluating a system design in detail, STRIDE
mostly relies on manual processes of creating dataflow
diagrams. Limitations of the ‘vulnerability explosion’ are
known, meaning that the number of threats can grow quickly
as the complexity of the system increases. Nevertheless,
several modified versions of STRIDE have been proposed
[19], [20]. PASTA [13] is defined by seven stages that start
from objectives related to business through to the technical
requirements. Several stages define the exhaustiveness of the
approach in aligning the organization’s goals to the technical
requirements while addressing the issues related to security,
giving detailed steps on threat analysis, vulnerability analy-
sis, Attack Trees defining attack modeling, and finally risk
assessment and mitigation strategies. The limitations have
been attributed to being too laborious of a task and its limited
focus on attack modeling. LINDDUN [14] is focused on
privacy threats and concerns. Similarly, CVSS [15] gives a
severity-based score to the vulnerability. However, although
there is an online calculator provided to get the scores based
on the attack surface being targeted, the limitation of the
approach is that there is no transparency on how the scoring
system works, which makes it a bit ambiguous. Initially
developed by NIST [5], it is now maintained by the Forum
of Incident Response and Security [21]. Attack Trees [18]
is one of the widely used techniques to model attacks on
cyber-physical systems; however, existing studies have failed
to utilize Attack Trees in detailing the attacks, as the focus
is on general domains, which defeats the purpose of Attack
Trees [22].

Recently, several modifications and improvements of the
above discussed seminal models have been proposed. The
authors in [23] proposed a template for attack modeling
in the smart grid domain and highlighted the limitations
of STRIDE in not being able to identify the attack sever-
ity. In [24] the authors tried to address the generality of
the attack modeling. Their approach involved combining
the aspects of the model-driven approaches [25] to that of
general approaches [4], which would render the proposed
model flexible enough to be adopted in different domains,
including aerospace and automotive. However, a limitation
of this approach is too many layers to adopt from, leading
to a tedious task of synchronizing it to any specific domain.
In [26], the authors proposed a hybrid model called SAVTA,
which stands for Software, Asset, Vulnerability, Threat, and
Attacker. They derived that method from the existing models,
especially Attack Trees and STRIDE. The model proposed
was adopted as a use case in autonomous vehicles; however,
the study lacked a thorough review of the attacks demon-
strated in the domain and arbitrarily mapped the attacks to
SDC. The limitation was left for future work. A similar
approach was followed in modelling cyber-attacks in [27].

The study demonstrated how coordinated attacks can result in
a cascading effect of compromising several assets. In [18], the
authors proposed an ‘‘aag’’method based onAttack Trees and
attack graphs, and they empirically established its efficacy
against Attack Trees. However, the model was evaluated on
perception, and no use-case was adopted in their work and no
severity-based mechanisms were used. In [28], the authors
did a survey of hardware attacks in general and gave an
attack model for triggering and evaluating the attacks. In [29]
they proposed a risk assessment model for connected and
autonomous vehicles. The framework was based on four risk
criteria, namely, probability, impact, exposure, and recovery
(referred to as PIER). However, the limitation of the approach
was that the framework was dependent on variables that may
not be possible to evaluate, for example, the skill level of the
attacker. Instead, variables should be factored on data that
is accessible and widely available for the practical use of a
framework. In a similar approach, the authors in [30] pro-
posed a security framework that highlights the vulnerabilities
in a smart car using Attack Tree. However, the framework
merely discussed and defined assets in a smart car. The work
was limited to assessing vulnerabilities under three levels
of severity defined by safety, privacy, and operation. The
approach was comprehensive but inconclusive. The vulner-
abilities were not modelled using Attack Trees, but rather
they were merely defined theoretically. So far, all the studies
discussed in here lack a thorough analysis of attacks against
SDC.

III. PROPOSED ATTACK ANALYSIS MODEL
The proposed model, Severity-based Analytical Attack
Model for Resilience, or SAAMR, was built upon the ideas
introduced in STRIDE, STAMP, PASTA, and CVSS. STAMP
was adopted for its inherent capability to model feedback
mechanisms and to define accidental disturbances. This study
evaluates accidents as well as deliberate attempts to disrupt
the system, and the adopted STAMP maps the events well,
with exception of taking malicious attempts into consider-
ation. This limitation was addressed by incorporating and
modifying STRIDE, which accounts for malicious attacks;
however, the definition of attacks was updated and impro-
vised for SDC scenarios. STRIDE was modified to enlist
attacks that are more relevant to SDC. The attacks were
deduced from the literature review on vulnerabilities against
SDC. Only those attacks that had a proof-of-concept avail-
able were included in this study. PASTA was adapted for its
descriptive steps required to identify the threats or attacks
using Attack Trees. CVSS was adapted for its widely avail-
able data. Thus, the proposed model includes 6 steps that are
depicted in Fig. 2, which include:

1) Design out a high-level architecture of SDC.
2) Define control flow and accidental factors using

STAMP.
3) Identify attacks.
4) Identify attack surfaces.
5) Create Attack Trees of the identified attacks.
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FIGURE 2. SAAMR process.

6) Use a SAAMR analysis of the attacks.
7) Model classification and prediction of attacks.

A. DESIGN OF HIGH-LEVEL ARCHITECTURE
SAE has defined six levels of autonomy for SDC, ranging
from no autonomy to fully autonomous. The architecture
that defines the autonomy of SDC can be differentiated into
three layers, viz. perception layer, decision-control layer,
and action layer, based upon the components and the tasks
assigned to each layer. The architecture is summarized and
depicted in Fig. 3. In summary, the perception layer is respon-
sible for collecting the data from required sensors and cre-
ating state awareness through SLAM [31] techniques and
aiding in object detection and tracking through DATMO [32]
techniques. The perception layer can be subdivided into two
components: sensor-interface and sensor-fusion module. The
sensors deployed in an SDC are meant to collect the data
of the environment surrounding the vehicle and the internal
mechanics, like orientation, location, speed of the vehicle,
etc. All the collected information is then combined through
sensor-fusion algorithms and input into the decision-making
modules or controllers. The controllers eventually translate
the fused data into actual physical actions on the SDC through
actuators. All the communication takes place through fast
connecting communication paths, such as a controller area
network (CAN) or ethernet. As a result, in self-driving cars,
anymalfunctioning of sensors, controllers, or communication
links, or any surrender to malicious attack, could result in
unfavorable results. An extended summary on the layers and
workings of the modules can be seen in [33] and [34]. In the

context of SDC, the architecture should provide the following
critical services: availability, reliability, safety, and resilience.

1) AVAILABILITY
Availability in the context of SDC design and architecture
means the availability of the perception and control modules
for the desired communication required for actions to take
place through actuators.

2) RELIABILITY
This study defines reliability for SDC in terms of the archi-
tecture that ensures the completion of its goal for the intended
purpose.

3) SAFETY
This study defines safety as the assurance that any adverse
effects would not cause any harm or jeopardize the well-being
of its stakeholders or the system. A system could be regarded
as a component of the SDC or SDC itself, while stakeholders
may include any human that is taking the services of SDC.

4) RESILIENCE
Resilience is defined in this study as the ability of the SDC
to function to the desired level even if the components of its
architecture are partially damaged or compromised.

B. DEFINING ACCIDENTAL FACTORS USING STAMP
The requirements of safety and reliability in safety critical
systems powered by software are not a new concern. Plenty
of evidence from existing systems points towards catastrophic
outcomes owing to system failures [35], hence the advent of
the STAMP model. According to STAMP, any system can
be modeled as a control process that is either automated or
human-driven.

Thus, this study identifies the control process required in
SDC based on the architecture developed in the previous
step and creates system failure examples that can lead to
system fallout. Although STAMP primarily considers socio-
technical systems, SDC Level 5 is more or less supposed to
be automated and independent of human intervention. There-
fore, the proposed model restricts the inclusion to automated
feedback control.

STAMP views the systems as interrelated components
that are kept in dynamic equilibrium by feedback loops of
information and control. This very much resonates with the
SDC architecture, as SDC workflow inherently is a control
process that operates in a loop. It becomes imperative to
model the SDC architecture as a control process to iden-
tify failures, hence the inclusion of the STAMP step in
the proposed model. Further, the author in [12] argued that
STAMP leads to a comprehensive understanding of accidents
and gave a classification of accident factors in the control
process. STAMP views the cause of accidents as the result
of a lack of constraints imposed on the system design and
operations. As SDCs are prone to errors, including transient
errors, including methods that help to indicate such failures is
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FIGURE 3. SDC high-level architecture.

FIGURE 4. SDC STAMP process.

imperative. Thus, this study models the dataflow of the SDC
architecture in a control loop structure, where the dataflow is
from sensors-to-controllers, controller-to-actuator, and then a
feedback mechanism follows from actuators-to-sensors. This
is depicted in Fig. 4. The measured output on the actuators
is compared to the observed output of the actuators. The
feedback given to the control process from the observed
output should be corrected accordingly. It is to be noted
that the sensors as well as the control process are prone
to disturbances that alter the actual measurements. Without

a mechanism to counter for the loss or gain, the observed
output will have erroneous input to the controllers and is
therefore a misleading action for the actuators. The control
process in Level 5 SDC is completely automated, and any
error-laced decisions pertaining to whether to change lanes,
route selection, change in speed, or applying the brakes
will have serious consequences. A proper analysis of such
events is needed. This study also took inspiration from the
STAMP-based Hazard Analysis (STPA) in [36] and [37]
and followed that methodology. STPA involves four primary
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steps: 1) defining the purpose of the analysis, 2) modelling
the control structure, 3) identifying unsafe control actions,
and 4) identifying loss scenarios. Step 1 of STPA points out
the weaknesses in the architecture of the SDC described in
the first subsection of Section III, that is, design of high-level
architecture. Steps 2, 3, and 4 are condensed with STAMP
and an analysis of accidental factors is done. Hence, with the
application of STAMP and STPA, this study highlights the
accident factors in SDC and defines it in the context of the
SDCworkflow. Thus, the point-of-failures in the control loop
of SDC are identified using STAMP and STPA [36], [37], [38]
according to the following factors:

1) Inadequate or inappropriate controls.
2) Inadequate execution of the control action.
3) Inadequate coordination among controllers.
4) Missing or inadequate feedback.
Interestingly, it should be noted that these factors can

also very likely be triggered through adversarial action. The
accident factors in this context can be summarized as:

1) INADEQUATE CONTROL ALGORITHMS
Sensors are prone to noise. Usually, in SDC, sensor-fusion
mechanisms are employed to cancel out the noise or create
better estimation using optimization techniques based on
algorithms like Kalman Filter or deep learning algorithms.
However, the techniques may not always suffice. SDC may
deviate to act upon the prescribed path or route owing to
faults and transient errors that optimization algorithms fail to
correct. Inadequate information flow from the sensors to the
controllers can also result in inadequate control action. With-
out any stability analysis technique on the controllers [39],
[40] the outcome would be faulty and laced with errors.
Recent examples of Tesla [41] and Uber [42] SDCs fail-
ing to appropriate decisions upon encountering an obstacle
resulted in loss of life in two separate events. Similarly, failure
to correctly perceive speed limit sign boards or emergency
notifications/billboards on the road can result in fatal acci-
dents. Another example is of GPS sensors losing signal under
tunnels. Similarly, obstructions that hinder any sensors from
receiving data in a timely manner may prevent the SDC from
working optimally, resulting in accidents.

Constraints to correct the estimates of the optimization
algorithms need to be in place, and these need to be tested
for their reliability and safety using different standardized
scenario-based safety checks.

2) INADEQUATE EXECUTION OF THE CONTROL ACTION
One of the critical functionalities of SDC is to tackle situa-
tions that require a change of behavior, which may include:
1) lane changes, 2) applying brakes, 3) increasing speed, and
others. These control actions would be taken on actuators
like steering, brake, and throttle respectively. Actuators are
also prone to faults that may fail in the execution of control
actions. Necessary measures to counter the failure should be
employed. Redundancy is one of the plausible measures to
overcome the issue; however, redundancy needs to be aided

with efficient detection and switching mechanism that reduce
the recovery time and mitigate the risk associated with the
failure. Constraints to check for any failures in the execution
of control action on the actuator need to be in place.

3) INADEQUATE COORDINATION AMONG CONTROLLERS
Multiple controllers employed in SDC for different desig-
nated control processes need to be coordinated and synchro-
nized to lead SDC in a stable safe state. Any inconsistency
or failure in one of the controllers would have a cascading
effect on the rest of the controllers. Hence, a mechanism for
identifying the deviation from the stable state of the SDC
would have to be in place. Different process models govern
the overall state of the system in SDC. This makes the control
process in SDC prone to disturbances and failures. An exam-
ple could be that of an error-prone route selection that, irre-
spective of the other processes in synchronization, would lead
to the wrong target destination. Again, this could be attributed
to the failure of route control process. No redundancy in the
control processes to fall back to the correct estimation could
have hazardous results.

4) INADEQUATE OR MISSING FEEDBACK
In SDC, sensors collect data from the external environment
and the internal mechanics of the SDC, which is fused
through sensor-fusion algorithms, to have the controllers act
on the actuators. However, owing to the disturbances and
noise, the measured output and the actual output are incon-
sistent. Although estimation and optimization techniques are
deployed to cancel out the errors, more robust and resilient
techniques are required to eliminate uncertainties regarding
the measurements. The feedback mechanism needs to be
aided with resilient techniques to counter any fallouts. Sim-
ilar scenarios to inadequate control algorithms could lay the
groundwork for SDC accidents.

C. ATTACKS ON SDC
This section highlights some of the attacks demonstrated in
autonomous cyber-physical systems in general and explains
them in the context of SDC architecture. Several survey
papers have been published that highlight the devised attacks
against SDCs [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53], [54], [55]. However, the attacks considered
in the present study are from the literature where proofs of
concept of such attacks are available and have been demon-
strated experimentally, either in a real-world setting or a lab
setting. The references for such attacks are summarized in
Table 1. Hence, the proposed model takes Spoofing, DoS,
Replay, Relay, Jamming, Code-injection, Code-modification,
and Adversarial Attacks into consideration. The attacks iden-
tified against SDC can be described as:

1) SPOOFING
Spoofing has been demonstrated to make vehicles vulnerable
through the injection of counterfeit signals. The target could
be sensors like GPS, which could be spoofed for adversarial
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TABLE 1. Attack and references.

location [56], [57]. Similarly, LiDARs and cameras could
be spoofed for false detection and tracking of objects [86].
Inexpensive equipment can be used to spoof the sensors and
eventually carry different types of attacks, including replay
and relay attacks [61], [87].

2) DENIAL OF SERVICES (DoS)
SDCs could be easy targets for DoS attacks and distributed
DoS. The attacks could easily cripple SDC, as the communi-
cation links would be hogged with illegitimate requests and
thereby deny any access to the legitimate requests sent to the
essential SDC components. Sensor fusion and control units
basically could be rendered useless, as legitimate access to
these are hampered. Sensor fusion modules could simply be
flooded with LiDAR or camera frames that are not of the
current driving environment, keeping legitimate frames from
being processed.

3) REPLAY ATTACKS
In SDC, sensors like camera, LiDARwould be collecting real
time data for perception and similarly, sensors like RADAR,
GPS, IMU, would be collecting data for SLAM. If an adver-
sary finds a way to intercept the data, lets us say camera
frame where an obstacle has been detected, and later same
adversarial frame is replayed for false object identification
would result in fatal consequences. Similar methods were
adopted to compromise a LiDAR system to perceive a wall
that in reality a meter away, was made to perceive it being
about 20-30 meters away [61].

4) RELAY ATTACKS
Relay attacks are similar to replay attacks in that a false
sense of perception could be created. The authors in [61]
demonstrated a way that the original signal from the LiDAR
was made to relay from different positions, creating fake
echoes. Similar methods could be adopted to relay camera
frames of an SDC to produce malicious output for object
identification and tracking.

5) JAMMING ATTACKS
Bombing the sensors with noise interference and jamming
the sensors from receiving intended signals would essen-
tially leave an SDC blind to any perception and localization.
Although an inexpensive method, proximity is required for
this attack, thus lowering the probability of such attacks.
However, successful jamming attacks have been demon-
strated against the Tesla S model [60]. Similarly, LiDARs are
vulnerable to jamming attacks. In a similar setting, cameras
could be blinded by high-brightness LEDs [61].

6) CODE INJECTION AND MODIFICATION ATTACKS
ECUs and OBD-Ports have been demonstrated to be
exploited for software code modification, as these modules
consist of millions of lines of code that could be manipulated
for adversarial motives. Similarly, CANs could be exploited
to inject malicious code into the control units for adversarial
action to take place [73], [77], [78].

7) ADVERSARIAL ATTACKS ON DEEP
LEARNING/MACHINE-LEARNING ALGORITHMS
Adversarial attacks have become one of the most recognized
attacks on deep learning algorithms. Deep learning algo-
rithms have been extensively used for object recognition in
SDCs. However, deep learning models are prone to pertur-
bations [88]. A carefully crafted perturbation, imperceptible
to the human eye, results in erroneous or adversarial classifi-
cation. The algorithms or the training data used to aid in the
perception of an SDC can be easily fooled and can result in
misclassification. Further, the attack could be implemented
as black box and white box settings [84].

Thus, based on the review done on attacks against intel-
ligent transportation in general and SDC in particular, this
study identifies the most feasible and applicable attacks per
the references and proofs-of-concept available in the case of
an SDC on the road.

D. ATTACKS SURFACES OF SDC
Even though Level 5 SDCs are supposed to be self-sustaining,
they will be communicating with road-side units (RSUs) and
other vehicles on the road for better services and experi-
ences as the technology matures, which would expose these
to further attack surfaces and vulnerabilities. Also, whether
the attack can be conducted remotely or in proximity needs
to be considered. The likelihood of an attack with remote
access increases as ease of accessibility increases. Similarly,
also based on the infrastructure being targeted, the in-vehicle
communication, vehicle-to-vehicle (V2V) communication,
or vehicle-to-infrastructure (V2I) is being targeted. The attack
surfaces could be illustrated in Fig. 5. The summary of the
attack surfaces is given in Table 2. The attacks identified in
the previous section can be further described in the context of
attack surfaces as follows:
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FIGURE 5. Attack surfaces.

TABLE 2. Attack surfaces.

1) IN-VEHICLE COMMUNICATION
In-vehicle communication is responsible for the vital infor-
mation that exists within the vehicle. All communication
takes place through popular protocols like CAN. The attack
surfaces identified in the in-vehicle network are as follows:

1) Sensor-to-sensor fusion: In SDCs, sensors interact with
the external variables, which makes these easy targets
for attacks like jamming. Further, the data must be
made accessible through encryption and secure proto-
cols to sensor fusion algorithms for SDC perception
and localization. Any breach in CAN will give adver-
saries unprecedented access to the internal modules
and data of the vehicle. Code modification/injection,
man-in-middle attacks, etc. are examples of attacks
that can be carried out on modules like the ECU.

Further, any local access breach to the onboard diag-
nostic port (OBD-II) will have similar unprecedented
repercussions.

2) Sensor fusion-to-ECU: Any malicious data or code
that is transferred to electronic controller unit (ECU)
for decision-making will have compromised results
and hence adversarial action on the actuators. Multiple
ECUs responsible for the different decision-making
of the SDC, like route planning, steering, and accel-
eration, have a chance of being compromised with
attacks like code injection/modification, spoofing,
replay, relay, and DoS attacks.

3) OBD-Port II-to-ECU: Several vulnerabilities have been
explored in securing OBD-Ports from adversarial
inputs. Several proofs-of-concept are available, and

2660 VOLUME 11, 2023



J. M. Qurashi et al.: Toward Attack Modeling Technique Addressing Resilience in Self-Driving Car

numerous instances in common weakness enumeration
(CWE) data have exposed OBD-Port vulnerabilities.
Access to OBD-Port will essentially lead to the com-
promise of several internal modules of SDC, including
ECUs and CAN.

2) VEHICLE-TO-VEHICLE (V2V)
SDCs, also referred to as an ego vehicle, most likely will be
communicating with each other for a better experience on
the road and to avoid any collision or other risks pertaining
to the road. The communication could take place through a
shared network when in the vicinity of another ego vehicle.
This communication can be exploited for adversarial output
and hence acts as an entry point for several attacks like
spoofing, replay, relay, and in extreme cases code injec-
tion/modification.

3) VEHICLE-TO-INFRASTRUCTURE (V2I)
RSUs, traffic control systems, cellular communications,
and satellite communications are important infrastructure
resources that SDCs rely on to make a reliable and safe
journey. However, communication with these resources very
likely will expose SDCs to easier remote accessibility by
adversaries once the vulnerabilities in these communica-
tion channels are exploited. Several examples and proofs-of-
concept are available for such vulnerabilities. Several entries
in the common vulnerabilities and exposures (CVE) database
also have been made for remote attacks using cellular net-
work communication, including the remote attack on Jeep
Cherokees [89]. Please note that any of these attack surfaces
included will give the adversary remote accessibility to the
SDC. Attack surfaces in V2I network can be described as:

1) RSU-to-ego vehicle: RSUs play an essential role in
relaying information about the traffic and road con-
dition to the SDCs. Interception of the communica-
tion between ego vehicles and RSUs by the adver-
sary will give way to attacks like spoofing, replay,
and relay attacks. Replay or relay attacks will lead to
a delayed response by the SDC, which may not be
correct at the time of reception. Spoofing will simply
counter genuine signals with malicious ones, leading
to uncertain behavior of SDCs on the road, with serious
repercussions.

2) Cellular-to-ego vehicle: Cellular communication can
grant easier access to multiple SDCs on the road at the
same time, hence the accessibility and easiness make
this attack surface more vulnerable. Enough evidence
points to code injection/modification attacks through
cellular networks. On-the-air updates to SDCs aremore
likely to be intercepted through cellular networks for
malicious attacks.

3) Traffic control-to-ego vehicle: Traffic controllers may
be sending real-time updates to SDCs to manage traffic
on various routes. Any compromise to the communica-
tion links can cause the SDC to route to an adversarial
location.

4) Road signs: The perception module of the SDC is heav-
ily dependent on the camera. The road signs are cap-
tured by cameras, which then are input tomachine/deep
learning algorithms for interpretation. However, these
algorithms have been found vulnerable to adversarial
attacks that have caused the SDC to interpret road
signs to that of adversarial choice or any sign other
than the actual sign. This either can be achieved by
physically manipulating the road signs or through code
injection/modification to the sensor fusion modules.

However, it is also to be mentioned that whether the mode
of the attack is remote or in proximity, and irrespective of the
infrastructure being targeted in the context of the SDC, the
assumption is that the final aim of the adversary would be to
compromise the in-vehicle components of the SDC to be able
to make viable damage to the SDC itself.

E. ATTACK TREES OF THE IDENTIFIED ATTACKS
The Attack Trees proposed by Schneier [90] are simple
yet powerful tools for revealing vulnerabilities. This study
adhered to Attack Trees for their simple representation yet
explicit annotation for revealing the steps or requirements to
achieve an attack in remote settings, and hence the vulnerable
components of a system. The Boolean gates AND and OR
represent if all the steps are to be required or there is a choice
in steps to be followed to achieve the goal, respectively.
For example, in Fig. 6, adversarial attack could be achieved
through black box or white box settings, which in turn also
could be achieved through local or remote settings. Similarly,
other attack scenarios for each of the attacks described in
the sub-section above were explained using Attack Trees.
It should be noted that each of these trees could be elaborated
on for specific technical details that may be required to carry
out the specific attack. This work should be treated, however,
as a stepping stone for establishing more specific and detailed
Attack Trees on each of the attack methods discussed. This
work lays a foundation for future work to create resilient
frameworks in the autonomous car industry. Descriptions of
the abbreviations used in defining Attack Trees are listed in
Table 3.

1) ADVERSARIAL ATTACK TREE (AT)
In the scenario of an adversarial attack, the attack could be
achieved through a black box (ATB) or white box (ATW )
setting. The white box attack assumes that the attacker has
complete knowledge of the deep learning model/algorithm
being used and can manipulate the parameters to create an
adversarial example. The black box model assumes that the
attacker has little or no knowledge of the model being used.
Both the types of attacks could be conducted remotely (ATR)
and locally (ATL) depending upon the resources and access
the attacker has. In the local access form of the attack,
it is assumed that the attacker has compromised the OBD
(ATL.1.1) and has gained access to the in-vehicle networks
of the SDC (ATL.1.2), although achieving this is difficult.
Access to the OBD port will essentially give away too many
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FIGURE 6. Adversarial attack tree.

TABLE 3. Attack tree terms.

of the SDC resources. However, the primary action would
be to overcome any encryption or access control or any such
traditional security features of the CAN (ATL.1.3). Plenty of
literature is also available to manipulate the CAN protocols
that would virtually give access to the core modules of the
SDC, including the sensor-fusion module, where the sensor
data is munched for techniques like SLAM [31], [91] and
DATMO [32]. The adversary can either induce the perturba-
tion to the sensor data collected from the sensors (ATL.1.4)

or simply manipulate the parameters of deep learning algo-
rithms like gradient function (ATL.1.5).
Although the local adversarial attack is straightforward, the

risk of getting caught is also high, as the adversary would
have to be physically available to plug the adversarial device
into the OBD port. While a bit complicated, the chances of
remotely compromising the SDC for an adversarial attack
(ATR) are high, owing to low-risk factors for the adversary.
The steps would involve compromising the cellular network
communication between a vehicle and the infrastructure, like
RSU (ATR.1.1), which, in turn, would compromise the V2V
network (ATR.1.2). This would allow the adversary to infiltrate
the internal networks of the SDC (ATR.1.3) and eventually gain
access to controller and sensor fusion modules, and the steps
would then be the same for (ATL.1.4) and (ATL.1.5) as in a local
adversarial attack. The Attack Tree for the adversarial attacks
is depicted in Fig. 6.

2) SPOOFING ATTACK TREE (ST)
Spoofing involves intercepting genuine signals and replacing
them with counterfeit signals. The steps would involve mim-
icking the genuine signals and transmitting the counterfeit
signals. Spoofing has been made more feasible because of
software-defined Radio (SDR) technology [92]. An attack
could be conducted remotely (STR) as well as locally (STL).
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FIGURE 7. Spoofing attack tree.

The local attack could usually be achieved through installing
a device that is capable of mimicking and replacing the
authentic signals (STL.1.1). This could be achieved through a
hardware (STL.2.1) or a software-defined component installed
through the OBD port (STL.2.2) or a software-defined radar
(SDR) in case of a RADAR signal being spoofed. The same
would apply to GPS and other sensors. The spoofed hard-
ware for GPSS is known. Cameras and LiDAR could also
be vulnerable to such installations. Once the installation of
a malicious software/device has been done, access to the
authentic signal (STL.1.2) should be achieved to mimic them
(STL.1.3). Simultaneously, jamming authentic signals should
be in progress (STL.1.4) while transmitting of the counterfeit
signals is being initiated (STL.1.5). Usually, malicious signals
deviate little or subtly to avoid triggering any traditional secu-
rity measures, hence avoiding detection. Finally, the coun-
terfeit signals are locked onto the victim (STL.1.6) until the
malicious objective is achieved. For a remote spoofing attack,
the initial steps of compromising the cellular networks that
connect V2V and V2I communications should be used to
install spoofing software or a module that compromises the
sensor/camera or GPSS module. Once that is achieved, the
rest of the steps (STR.1.3), (STR.1.4), (STR.1.5), and (STR.1.6)
are similar to (STL.1.3), (STL.1.4), (STL.1.5), and (STL.1.6),
respectively. The Attack Tree for spoofing attacks is depicted
in Fig. 7.

3) JAMMING ATTACK TREE (JT)
Jamming is one of the most inexpensive and simple attacks.
It requires the adversary to get in proximity of the target
vehicle (JTC .1.1) and aim the jamming device at the sensor
(JTC .1.2). In SDCs, this may include a high-intensity LED

FIGURE 8. Jamming attack tree.

or LiDAR to blind/jam the camera or LiDAR, respectively.
Similar techniques can be employed to jam the other essential
sensors like GPS, radar, and ultrasound (JTC .1.3). The Attack
Tree for jamming attacks is depicted in Fig. 8.

4) CODE INJECTION/MODIFICATION ATTACK TREE (CT)
Code modification attacks can be carried out locally (CTL)
as well remotely (CTR). Even if the chances of gaining
access to the ODB-II port are there, the chances of getting
caught or being notified are high also. The goal would be to
compromise the access control of the vehicle either through
the brute-force method (CTL.1.1) or similar other methodolo-
gies to gain access to CAN for further manipulation. This
can be achieved by introducing malicious packets (CTL.1.2).
A compromised CAN give access to sensor data or sensor
fusion algorithms. This would allow adversaries to inject or
modify the code of the fusion modules or even manipulate the
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FIGURE 9. Code modification/injection attack tree.

data from sensors (CTL.1.3). The attacks could be white box
or black box in nature. Then, further, the ECU software or
modules could be modified for adversarial action by injecting
new libraries to compromise the functionality (CTL.1.4). The
faulty or malicious control signals to the actuators would
result in malicious behavioral modes that include lane chang-
ing, steering, or route selection. Code injection/modification
is carried out by compromising the external networks that
may include V2V or V2I communication channels. Each
attack surface chosen in the V2I and V2V communication
would have detailed steps to compromise the communica-
tion. The breach could happen through breaking the access
control encryption or other vulnerabilities of the technologies
involved in V2I (CTR.1.1) and V2V (CTR.1.2) communication.
The rest of the steps (CTR.1.3), (CTR.1.4), and (CTR.1.5) are
similar to (CTL.1.2), (CTL.1.3) and (CTL.1.4), respectively. The
Attack Tree for the code modification/injection attacks is
depicted in Fig. 9.

5) REPLAY/RELAY ATTACK TREE (RT)
Replay/relay attacks can be conducted locally (RTL) or
remotely (RTR). The local attack can be achieved by installing
malicious hardware that can intercept the signals/packets
(RTL.1.2) and record (RTL.1.3) these to be replayed at different
time interval and location (RTL.1.4) later. This can be achieved
either by plugging the device through the OBD-II port
(RTL.2.1) or compromising the CAN bus for a replay/relay
attack. Another way to achieve it is to corrupt the near-field
network as Bluetooth or wi-fi that is used for infotain-
ment services (RTL.2.2). An example of a relay attack is
recorded frames of the camera being replayed at a different
place or location (RTL.1.4) to give a false perception to the
SDC (RTL.1.5). Similar steps would be followed in a remote
attack with the extra steps of (RTR.1.1) and (RTR.1.2) for

compromising the V2I, V2V communication and gaining
access to the CAN bus (RTR.1.3). Relay attacks also have
the same steps as that of replay attacks, except that the goal
is to relay signals to a different vehicle or device for mali-
cious reasons. Finally, remote attacks would have the same
steps, except for the initial steps of gaining access through
V2I, V2V communications to the CAN bus, i.e., (RTR.1.1),
(RTR.1.2), and (RTR.1.3). The rest of the steps (RTR.1.4),
(RTR.1.5), (RTR.1.6), (RTR.1.7) remain the same as those of
(RTL.1.2), (RTL.1.3) (RTL.1.4), and (RTL.1.5). The Attack Tree
for code replay/relay attacks is depicted in Fig. 10.

F. SAAMR SEVERITY ANALYSIS OF THE ATTACKS
To do the SAAMR severity analysis of the attacks identified
against SDC, we leveraged the CWE dataset. This step of the
SAAMR severity analysis process can be further summarized
in the following sub-steps:

1) Description of the CWE dataset.
2) Data preprocessing, curation and encoding.
3) SAAMR Severity Score.

1) DATA DESCRIPTION
This study leveraged the CWE vulnerability data and
mapped the vulnerabilities to five core attacks against SDC
recognized from the literature reviews. The literature review
considered those attacks that have been designed as a proof-
of-concept. Most of these attacks considered were against
SDCs or connected vehicles or were related to Intelligent
Transportation Systems (ITS). A summary of the attacks was
given in the previous sub-section of the model proposed.

The CWE data considered in this work contains
88,777 instances of vulnerabilities identified from the year
2000 to 2019. Although there was a recent data set avail-
able through the year 2021, the data was unverified and
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FIGURE 10. Replay/relay attack tree.

TABLE 4. Keywords.

incomplete for the years 2020 and 2021. Therefore, the data
was restricted to entries through 2019. The vulnerabilities
have been reported in different software products designed
by different companies. Some of the instances were clearly
identified against the SDCs, while some had to be checked
for a thorough description. Each vulnerability is described
by 170 CWE-Identifiers, which gives a description and detail
of the vulnerability. Each vulnerability is defined by six
attributes viz. ‘‘access authentication’’, ‘‘access authentica-
tion’’, ‘‘access complexity’’, ‘‘access vector’’, ‘‘impact con-
fidentiality’’, ‘‘impact availability’’, and ‘‘impact integrity’’.

2) DATA PREPROCESSING
This subsection describes the preprocessing methods for
curation, labeling, and encoding of the dataset. The key-
words mentioned in Table 4 are used to identify instances
of specific attacks and if any were against the SDC. Out of

88,777, the instances were reduced to 34,347 instances of vul-
nerabilities. Out of these instances, the vulnerabilities were
manually mapped to the core attacks identified. This was
done by searching the CWE-code ID of the vulnerabilities
and checking the description of each vulnerability on their
proprietary website [93]. Initially, these vulnerabilities were
broadly classified under 170 unique CWE-code ID values.
Each CWE-code gave a broad description of the vulnera-
bility. Each CWE-code was labelled manually as one of the
five attack categories identified earlier through the literature
review. The labeling was based on the thorough description
and consequences of such vulnerabilities explained on their
proprietary website as mentioned earlier. Thus, the study
mapped 170 of the CWE-Code instances to the five attack
categories identified. The vulnerabilities for which there was
no description or which had already been discarded were
eliminated from the data. This further reduced the data to
33,667 instances of unique vulnerabilities labeled under the
five attack categories.

As there were no instances of jamming attacks against SDC
being recorded, thereby after filtering the data, the jamming
attack was discarded as there were no instances identified
for SDC, eliminating it from the analysis of the severity
and prediction of the attack. For simplicity, the spoofing,
replay, and relay attacks were collated, as the resources and
vulnerabilities described in the CWE database would lead to
similar outcomes for these attacks.

Further, each feature of the data was encoded to the
existing categories to fit the data for the classification and
prediction model on the described attacks. Each feature was
label encoded for its categories. The encoding is listed in
Table 5.

3) SAAMR SEVERITY SCORE
To calculate the accumulative severity score for attack cat-
egories using CVSS, the score was based on each of the
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TABLE 5. Label encoding.

attack categories. The calculation was made according to the
Risk Priority Number (RPN) [94]. The RPN is a numeric
assessment of risk assigned to each mode with a numeric
value and quantifies the likelihood of occurrence, likelihood
of detection, and severity of impact. In this context, it is
called the SAAMR severity score and is denoted as Rs. The
higher the value of Rs, the more the likelihood of occurrence,
detection, and impact of the attack. The Rs is calculated for
each category by:

Rs = Sv ∗ Oc ∗ D (1)

where Sv is the mean CVSS score for a Attack Group.Oc is an
instance of CVSS score for each attack in the Attack Group
(Ag). And D is the number of times the attack was detected,
which is assumed to be at least 10 in the present context.

There are five classes of groups (g) that range from 0 to 4.
For each attack group (Ag), the count of instances,Ng is given
as:

Ng =
ng∑
I=1

Cou(AIg) (2)

where Cou(AIg) is the instance of attack (I ) of Attack Group
(g). For each g, the occurrence, Ocg is given by:

Ocg =

ng∑
I=1

Cou(AIg)

4∑
g=0

{ ng∑
i=1

Cou(Aig)
} (3)

FIGURE 11. Data modelling steps.

where
ng∑
I=1

Cou(AIg) is the sum total of count (Ng) of instances

of an Attack Group (Ag). And
4∑

g=0

{ ng∑
i=1

Cou(Aig)
}
is the sum

total of count (N ) of instances of all the Attack Groups. Svg
is calculated as:

Svg =
{∑Ng

i=1 cvssig
Ng

}
(4)

where cvssig is the score of occurrence (instance) attack (i)
for the group (g) and

∑Ng
i=1 cvssig is the sum of CVSS scores

for an Attack Group Aig. And Ng is the count of instances in
the group. Thus, the severity score calculated for each attack
group is enlisted in the Table 6.

G. CLASSIFICATION AND PREDICTION
1) FEATURE ENGINEERING AND SELECTION
The steps followed for the classification and prediction are
depicted in Fig. 11. Further, in this study, we modeled the
data as a dataframe using Pandas [95], [96] library pack-
age in python. The input feature vectors in the dataframe
were analysed for correlation using Spearmans and Pearson
coefficient; the results are very similar and are depicted in
Fig. 12 and Fig. 13 respectively. Impact Availability, Impact
Integrity, Impact Confidentiality, and CVSS seem to show
a strong correlation among each other. Since this study was
dealing with categorical values, both the correlations did not
show any significance of the target variable to that of input
variables. Hence, a Chi-square test was done to confirm the
null hypothesis that each of the featured variables was inde-
pendent of the target variable. The values of significance were
improbably large, which affirms the null hypothesis. Since
theP values are larger than the conventional threshold of 0.05,

TABLE 6. SAAMR severity score.
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FIGURE 12. Spearman correlation matrix.

FIGURE 13. Pearson correlation matrix.

all the features were considered to have independence. This
might be attributed to the fact that since all the attributes are
categorical or ordinal, it is difficult to establish a significant
value in this case. Also, dropping and keeping only one of the
highly correlated features, namely Impact Integrity, Impact
Confidentiality, and CVSS, resulted in a lower accuracy rate.
Hence, all the features were input for classifying and predict-
ing the target variable, which resulted in better accuracy rates.
The distribution of each feature vector is depicted in Fig. 14.

2) MODELLING THE DATA FOR CLASSIFICATION
After pruning the data, the features were input using seven
features, viz. ‘‘access authentication’’, ‘‘access complexity’’,
‘‘access vector’’, ‘‘impact availability’’, ‘‘impact confiden-
tiality’’, ‘‘impact integrity’’, and ‘‘CVSS’’ for classification
of the ‘‘Attack Group’’. Entropy was used to measure the

FIGURE 16. LSTM Cell.

impurity in the given data set instead of the Gini index, since
the attributes used here are categorical. The lesser the entropy,
the more information gained. The formula for the Entropy is
given as:

Entropy =
n∑
i=1

−pi ∗ log2(pi) (5)

where n is the number of classes and pi can be defined as the
probability associated with the ith class.

3) EVALUATING CLASSIFICATION MODEL
The study achieved 73.8171% level of accuracy. Although
several methods were tried to increase the accuracy bymanip-
ulating the model itself, it resulted in over-fitting of the
model. One of the techniques attempted was the addition
of another feature called references, which was the number
of references of proofs-of-concept found through literature
review for each category of attack. However, as mentioned,
this resulted in over-fitting of the model. Hence, the best
score for the said model was 73.8171% using Decision Tree.
This is explained by the skewed data that has fewer instances
for the attacks that are rare, specifically adversarial attacks
and physical attacks like OBD-Port attacks. Physical attacks
are difficult to achieve and have a higher chance of being
detected, and they require direct contact with the target. The
instances for both attacks are very few, and hence the model
fails to learn to classify them entirely. Adversarial attacks,
however, are very specific to SDCs and compromise their
perception module. Once the prevalence of SDCs increases
on the road, more adversarial attacks may be observed. But
for now, very little data is available for such attacks. The
availability of more data should help in creating classification
models with a higher accuracy rate. The confusion matrix
with precision and recall values is mapped in Table 7. The
representation of the decision tree employed is in Fig. 15.

4) MODELLING THE DATA FOR PREDICTION
Finally, the study mapped the features to predict attacks using
long short-term memory networks (LSTM). We mapped all
the features for prediction as our conclusion was derived
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FIGURE 14. Distribution of modeled features.

FIGURE 15. Decision tree for classification.

TABLE 7. Confusion matrix for decision tree attack classification.

from correlation analysis done during the feature selection
stage of modeling the data. The prediction of the type of
attack was set to an hourly basis, which was projected as
the time steps. The premise of using LSTM is a successful
implementation for predicting time series data against tra-
ditional neural networks. LSTM, like traditional RNNs, has
a memory cell that provides the information of the current
moment to the subsequent moment, but with the advantage of
optimizing memory cells through the introduction of gates;
otherwise, this leads to gradient vanishing (more often) or
gradient explosion in traditional RNNs.

In the traditional RNN, at each time step, the recurrent
neuron receives the input xt as well its own output from the
previous step, yt−1. Because of this phenomenon, it can be
said, that output of a neuron at a time step t is a function of
the previous time steps and hence forms a sort of memory.
However, this leads to RNNs having only one state ht , which
is the output of the neural network, and it can read short-term
information but is unable to decipher any long-term informa-
tion. To address the issue, LSTM explicitly employs memory

cell and gates viz. forget gate (ft ), input gate (it ) and output
gate (ot ) that decide which information to exclude or store in
the memory cells and thereby control the information flow in
neural network. The state of the LSTM cell is split into two
vectors, that is, ht and ct . ht can be thought of the short-term
state, while ct can be thought of as the long-term state.

This can be understood from the basic architecture of the
LSTM cell represented in the Fig. 16. In LSTM, there are four
neural network layers instead of just one, and they interact in
a very unique way. The layer that outputs g(t) is the primary
layer. The layer is akin to a basic cell and has the usual role of
analyzing the current inputs x(t) and the previous short term
state. It is expressed as:

g(t) = tanh(Wxg
>x(t) +Whg

>h(t−1) + bg) (6)

where Wxg is the weight matrix for the main layer assigned
for its connection to the input vector x(t). Whg is the weight
matrix assigned for its connection to the previous short-term
state h(t−1). And, bg is the bias term for the layer.
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The other three layers act as gate controllers and are simple
sigmoid threshold units. Their outputs range from 0 to 1.
As the long-term information ct−1 flows from left to right
in the network, the information is first intercepted by the
forget gate ft , allowing to drop somememories or to add some
through pointwise operations. The forget gate f(t) regulates
and determines which elements of the long-term state should
be erased. It is computed as:

f(t) = σ (Wxf
>x(t) +Whf

>h(t−1) + bf ) (7)

where σ is the sigmoid function,Wxf is the weight matrix for
forget layer assigned for its connection to the input vector x(t).
Whf is the weight matrix assigned for the layers connection to
the previous short-term state h(t−1). And, bf is the bias term
for the layer.

The added memories are selected by the input gate i(t).
Without any additional alteration, the result ct is simply sent
out. Thus, at each time step, somememories are deleted while
others are added. The input is computed as:

i(t) = σ (Wxi
>x(t) +Whi

>h(t−1) + bi) (8)

where σ is the sigmoid function,Wxi is the weight matrix for
input layer assigned for its connection to the input vector x(t).
Whi is the weight matrix assigned for the layers connection to
the previous short-term state h(t−1). And, bi is the bias term
for the layer.

Additionally, the long-term state is duplicated after the
addition operation, and is transmitted through the tanh func-
tion, and then the output gate ot filters the outcome. This
produces the short-term state ht which is equivalent to the
cells output of current time-step yt . Thus, the function ot
controls which portions of the long-term state should be read
and output to ht and yt . The function is computed as:

o(t) = σ (Wxo
>x(t) +Who

>h(t−1) + bo) (9)

where σ is the sigmoid function,Wxo is the weight matrix for
output layer assigned for its connection to the input vector
x(t).Who is the weight matrix assigned for the layers connec-
tion to the previous short-term state h(t−1). And, bo is the bias
term for the layer.

Based on the equations (6)-(9), ct and yt and are computed
as:

c(t) = f(t) ⊗ c(t−1) + it ⊗ g(t) (10)

y(t) = h(t) = o(t) ⊗ tanh(c(t)) (11)

As explained above, the information transmission in LSTM
is through hidden layer cells and is controlled by the input
gate, forgotten gate, and output gate. In our work, LSTM
was defined with 100 neurons in the first hidden layer and
1 neuron in the output layer for predicting the Attack Group
in time steps. The normalized data set was constructed as
such that each observation of the input variable was set as
the previous time-step (t − 1) and the target variable as the
current time-step (t). Mean Absolute Error (MAE) was used
as a loss function and Adam as the optimization algorithm.

FIGURE 17. Loss values.

FIGURE 18. Prediction.

The training and test loss is plotted in Fig. 17. The model
was fit for 10 training epochs with a batch size of 70 and a
dropout rate of 20%. The root mean square error (RMSE) of
the test is 0.218. The actual and predicted values are depicted
in Fig. 18. From Fig. 17 and Fig. 18, it seems that LSTM is
performing well in predicting the attack types, as the loss val-
ues drop considerably after 4 epochs and stabilize after that.
Even performing better on the test data than on the training
data. However, this phenomenon can be attributed to having
smaller test data, and even so, having fewer instances of some
of the attacks. Another common cause of performance is the
regularization technique (dropout) used. The dropout is only
used during the training phase and not the testing phase. This
could also be the reason that LSTM performs better on the
validation set than on the training set. As of now, the study has
not emphasized much on the performance of LSTM, as we
do understand that the results will be better and more inter-
pretable as more attacks against SDC get registered and the
data becomes less skewed. Although one of the approaches
would be to do cross-validation to remove any doubts about
over-fitting. However, we do have the dropout rate set at 20%
to better generalize the results and avoid overfitting. Since
many of the limitations are from the dataset itself, we have
kept the recommendations for future work.
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FIGURE 19. SDC attack group density.

FIGURE 20. SDC attack group proportion.

IV. DISCUSSION
It is important to note that this study argues that in the foresee-
able future, there will be an increase in the number of attacks,
and traditional measures of security will not suffice, hence the
need for appropriate attack modeling techniques to develop
better resilient approaches. This section gives an insight into
the argument made and reveals how susceptible SDCs will be
in the near future, besides discussing the limitation and future
directions of the work.

Overall, the density and occurrences of each attack
have been increasing over the years, with code injec-
tion/modification attacks having a much higher density, that
is, such attacks have taken place more frequently and have
been increasing over the years. This was followed by inci-
dents of spoofing, replay and relay attacks, and so on. This
finding is depicted in Fig. 19. Similarly, the proportion of
each attack has also grown over the years. That is, the vulner-
abilities that lead to each attack category have also increased
and been exploited. This finding is depicted in Fig. 20. Like-
wise, the mean impact of categories for all the attacks has
been depicted in Fig. 21. From the figure, it can be concluded
that the general increase in the number of attacks throughout
the years has resulted in each of the features being exploited
considerably to cause severe effects.

In summary, the paper identified accidental factors and
gave an attack analysis of the vulnerabilities faced by SDCs.
Although there are limitations to the approach, the authors
believe that this is the first work that details the attack

FIGURE 21. Impact of attacks over the years.

analysis model of SDCs. Further, there is no data-oriented
approach that gives the attack model and that highlights the
vulnerabilities in the SDC infrastructure. With SDC concepts
gaining investment from major companies around the world,
their safety and reliability remain a concern. Further, SDCs
will likely have to be maintained remotely by their vendors
for security and maintainability, which will open doors for
exploits against them. With a greater number of SDCs on
the road, the possibility and likelihood of being compromised
will also increase. Unfortunately, unlike other cyber-physical
systems, in SDCs, this can lead to fatal consequences.

Currently, there are a few limitations to the approach used
in this study. The authors did not consider an accident anal-
ysis separately, since the focus of the study was more on
the attacks, and the assumption was that the outcome of
the accidents would be the same as the attacks. However,
in the case of attacks, there is adversarial motivation. Future
work aims to propose a thorough accident analysis based on
fault trees and data, if available, on failures of SDCs. Further,
owing to the lack of data available on attacks against SDC,
the data is a bit skewed. As more data is made available on
different attacks on SDC, it will improve the classification
and prediction results. For futurework, the authors would also
like to engineer more features that would help to increase the
accuracy results for classification and prediction results. For
the current work, one of the pragmatic approacheswould have
been to drop the classes with fewer instances; however, the
current paper is not focused on the accuracy of the classifica-
tion but rather on proposing an attack model and identifying
the vulnerabilities and attacks that SDCs would be facing.
Further, the authors plan to employ NLP techniques for the
identification of attacks through multi-word expressions in
future work. This would allow automating themanual process
of selecting SDC vulnerabilities from the summary of each
vulnerability description.

Further, the SAAMR severity score could be improvised
and fine-tuned to SDC architecture. Currently, contrary to
other fields of research, the domain lacks enough data to give
details pertaining to the SDC vendors, the technologies they
use, and the vulnerabilities identified with each technology.
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Hence, further improvements could be made in streamlining
the data.

V. CONCLUSION
There is currently a lack of study on identifying vulnera-
bilities in the SDC architecture. This work aims to fill the
gap, although there is scope for improvement over the model
proposed. However, this work lays a sound foundation in the
direction and is a preliminary step in devising an SDC frame-
work that is resilient to attacks, which is a work in progress.
For now, in the context of current work, the authors presented
an LSTM-based deep-learning approach that predicts the type
of attack on SDC architecture in addition to providing amodel
for identifying vulnerabilities in SDC architecture.
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