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ABSTRACT The computer vision community hasmade tremendous progress in solving a variety of semantic
image understanding tasks, such as classification and segmentation. With the advancement of imaging
technology and hardware, image semantic segmentation, through the use of deep learning, is among the
most common topics which have been worked on in the last decade. However, image semantic segmentation
suffers from several drawbacks such as insufficient detection of object boundaries. In this study, we present
a new convolutional neural network architecture called CSU-Net that aims to self-enhance the results of
semantic segmentation. The proposed model consists of two strongly concatenated encoder-decoder blocks.
With this design, we reduced requirements on computing power and memory size to decrease costs and
increase the training/prediction speed. This study also demonstrates the advantage of the proposed system
for small training data sets. The proposed approach has been implemented on our private dataset, as well
as on a publicly available dataset. A comparative analysis was carried out with four popular segmentation
models and three other recently introduced architectures to show the efficiency of the proposed system. CSU-
Net outperformed the other competing neural networks that we considered for the comparative study. As an
example, it succeeded in improving the traditional U-Net result by approximately 50% in mean Intersection
over Union (mIoU) for both tested datasets. Based on our experience, the CSU-Net can improve results of
semantic segmentation in many applications.

INDEX TERMS Safety systems, head detection, head counting, semantic segmentation, self-enhancement.

I. INTRODUCTION
Semantic segmentation has attracted a lot of attention from
the computer vision community in numerous applications for
many years. Semantic segmentation is basically a building
block that allows understanding of the scene. By densely
classifying all the pixels of a scene image, it is possible to
construct abstract representations of objects and their shapes.

Deep convolutional neural networks (DCNNs) have been
driving significant advances in semantic image segmentation
due to their powerful feature representation for image
processing. However, their performance in preserving object
boundaries is still not satisfactory. This phenomenon is
described very explicitly in a recent study [1]. Here, the
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authors point out that although semantic image segmentation
methods using DCNNs provide impressive results, most of
them neglect the long-distance dependencies between inner
objects and boundaries. Another source pointing out this
problem is survey [2]. The authors here argue that the outputs
from the final layer of DCNNs are not sufficiently localized
for accurate object boundaries due to their invariance
properties. Thismakes precise boundary recovery of semantic
segmentation an academic challenge.

Person recognition and detection is one of the applications
that can be solved using semantic segmentation. One of
the highly demanded practical applications is the detection
of people in scenes captured by an RGB camera. With
this capability, the flow of people or crowd density in the
monitored area can be identified and analyzed, bringingmany
benefits to everyday life. A typical example is counting
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the exact number of passengers entering and exiting public
transport [3], which enables a forecast of passenger flows [4],
the planning of transport schedules [5], and the monitoring
of the loading of transport vehicles [6]. A second benefit is
tracking people in video, especially in surveillance systems,
to determine a person path and analyze their movement [7].
A third benefit is in stores and malls where this type of
technology is used to collect data and improve business
strategy [8].

Person detection is a very challenging environment for
autonomous systems because of the dynamics of observed
objects (pedestrian detection, behavior identification and
prediction, etc.). Besides, most object locations in these
scenes are very unpredictable; for example, it is possible
to find a person in the middle of the image as well as in
the corner of the image. Additionally, people’s body height
and thickness differ from several pixels to most of the
image. Moreover, especially in crowded images, people in
the scene are partially visible or only the upper part of their
bodies can be observed. As a consequence, the assumption
to take advantage of location information in the form of
a digital high-definition map in perception modules seems
unreasonable. The erroneous detection of a person can occur
due to the following reasons: the lack of richness of the
dataset, the low quality of the images, the overlap of several
persons, different sizes of the objects, and processing every
single image in a video sequence separately without any
relation to the adjacent images.

In this study, we propose a new neural network semantic
segmentation architecture to detect multiple persons from
an RGB image - the key feature of this detection method
is the focus on people’s heads. This work is based on a
long-term collaboration between the authors’ team and
industry partners. The achieved results follow the previous
publication [9], where the problem of classification and
detection of persons in visual data was solved using HOG
descriptors; and the publication [10], where an improved
DeepLabv3+ semantic segmentation approach was proposed
to detect a human head in an RGB image.

Consequently, a novel convolutional neural network archi-
tecture, based on two strongly concatenated shallow U-Net
networks, is proposed. The first block aims to apply semantic
segmentation, the second one is expected to self-enhance
the result gained from the first network. By forcing the
enhancement block to improve the output of the main block,
the system has the ability to allow additional convolutional
mappings to reflect more information about the original
input image when generating features of a higher level.
The motivation for using the enhancement block is the
ability to more accurately detect the boundaries of the
objects of interest, i.e, heads, especially in crowded and
poorly illuminated areas. We believe that this improvement
will bring better accuracy in person detection, in particular,
preventing multiple persons from merging into one and
mistaking the person for another object.

The proposed method was tested in several experiments
and it is compared with other similar methods to verify

its efficiency. The purposes of the experiments are to
prove the efficiency of our method by answering the
following questions: (1) can the model not only improve the
representation power of features but also enhance the object
contour performance? (2) is the model competitive in terms
of computational cost and memory required to infer? and
(3) why does the concatenation between the two networks
improve the results?

The approach has been implemented in our private dataset
as well as in the public dataset PAMELA UANDES [11].
With a 47% improvement in mIoU to the original U-Net
architecture, the result demonstrated that the proposed system
could be an efficient way to build a deep neural network
model for semantic segmentation. We believe this can be
applied not only for human head detection but also in other
semantic segmentation applications.

The rest of this article is organized as follows. In Section II,
we provide an overview of the research that has been carried
out in previous years in the area of improving semantic
segmentation. Section III gives a description of the CSU-
Net network architecture and the training procedure. The
benchmarking study is presented in Section IV. Section V
shows the experimental results in which we describe the
used datasets, the evaluation metrics, and the implementation
details. We also analyze, interpret, and discuss our results.
Finally, Section VI closes the article with conclusions and
future work.

II. IMPROVING SEMANTIC SEGMENTATION
Semantic segmentation problems have been investigated
using many different neural network architectures. Convo-
lutional Neural Networks (CNNs) are, these days, at the
center of attention when considering applications in semantic
segmentation [12]. Most CNN architectures are based on
an encoder-decoder design, such as [13], [14]. Moreover,
skip connections [15] and dilated convolutions [16] preserve
details in the segmentation, and spatial pyramid pooling [17]
or global pyramid pooling [18] aggregate different scales to
exploit spatial context information. Taken together, the CNNs
thus provide very accurate results for a variety of complex
semantic segmentation tasks.

Nevertheless, image semantic segmentation remains an
unsolved challenging problem in the field of low-level com-
puter vision, especially for complex scene understanding due
to limited receptive fields and short-range information [1].
Several attempts have been made to address the problem.

Hoyer et al. [19] introduced three strategies capable
of leveraging the knowledge learned from self-supervised
depth estimation to improve semantic segmentation in
both the semi-supervised and the fully supervised setting.
Li et al. [20], developed a framework to improve the semantic
segmentation results by decoupling features into the body and
the edge parts to handle inner object consistency and fine-
grained boundaries jointly. Equally, Yin et al. [21] proposed
a model that links a branch of edge features and a branch
of semantic features to ensure consistency between these
feature values. This model clearly improves the precision of
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segmentation results. Moreover, Fabio Yuluaga et al. [22]
presented the cooperation between two inception blocks with
an inner skip connection inside the blocks.

On the other hand, Zhu et al. [23] proposed joint image-
label propagation and boundary label relaxation to improve
the semantic segmentation results. They scaled up training
sets and mitigated label noise during training to achieve that
goal. Further, Pasad et al. [24] used models predicting depth,
egomotion, and camera intrinsics, to provide additional
supervision to a semantic segmentationmodel through spatio-
temporal consistency constraints and improve the result.
In addition, Zanjani et al. [25] focused on the scene dynamic
information between the streams of frames in a video in order
to increase the accuracy of semantic image segmentation. For
this purpose, they proposed a method for integrating short-
term temporal information with structural scene information
by using a conditional random field.

Furthermore, publications inspired by the original U-Net
architecture continue to appear. Colman et al. [26] introduced
a deep residual bottleneck to the U-Net, and Ange Lou [27]
added the dilated channel-wise CNN module and simplified
the U-shaped layout in order to get a lightweight but efficient
model.

Loukkal et al. [28] presented three different approaches
to inject location information in semantic segmentation
CNNs applied to urban scenes. Divecha et al. [29] pro-
posed an improvement system of semantic segmentation for
autonomous vehicles using synthetic images. To do so, they
took advantage of an unlimited source of annotated data in
virtual environments, and then transformed the data to have
a more photo-realistic look, which matched their real-world
counterparts. Furthermore, Huang et al. [30] developed an
encoder-decoder network to solve the issue of the mutually
exclusive relationship between the semantic response value
and the semantics of object/component.

Additionally, Huang et al. [31] investigated the utility
of motion boundaries in the improvement of semantic
segmentation. This approach avoids extracting feature maps
based on a high-to-low encoder, which may easily lose
important shape and boundary details.Wu et al. [32] proposed
a system that can maintain high-resolution features using
a relatively shallow and parallel network structure. Also,
Zhang et al. [33] proposed a probabilistic superpixel-based
dense conditional random field model to refine label assign-
ments as a post-processing optimization method, in order to
preserve object boundaries in the semantic segmentation.

Niu [34] proposed a semantic segmentation method for
remote sensing images based on CNN and mask generation.
They used the boundary box as an initial foreground segmen-
tation profile, and a multilayer feature of the convolutional
neural network to provide the edge information of the
foreground object. He et al. [35] designed advanced network
architectures to incorporate a more suitable context and
extract more representative features by developing an adver-
sarial feature generator. Dong [36] proposed a method of
image semantic segmentation using a generative adversarial
network (GAN) combined with the ERFNet model in order to

address the problems of insufficient segmentation of small-
scale targets and weak anti-noise ability.

Zhu et al. [37] used a self-training paradigm with a semi-
supervised approach to improve the semantic segmentation.
Specifically, they trained a model on labeled data, and then
generated pseudo labels on a large set of unlabeled data.
To improve the semantic segmentation result, Shen et al. [38]
proposed a novel region attention network for modeling
the dependency between the object regions in order to
compute the contextual representations. Moreover, Farsi and
Mohammadzadeh [39] developed a model to reduce the
amount of computational cost and memory required, and to
increase speed/accuracy by proposing a 15-times reduction in
the number of parameters of a SegNet network.

Wu et al. [40] proposed extra learning of dilated affinity
information in the DeepLab v3+ training to help the learning
process and to refine it with a fast affinity propagation post-
processing, which exploits the extra information generated by
the network. As well, Tran et al. [41], developed a system
using focal loss, poly learning rate, and context module to
improve the robustness of semantic segmentation for satellite
images. Finally, Gritzner and Ostermann [42] mitigated the
problem of an insufficient amount of training examples by
using labeled source domain training examples and unlabeled
target domain images to train a model.

The survey of the state-of-the-art methods shows that in
this field there are different deep learning approaches applied
to improve the outcome of semantic segmentation. However,
there is no application developed for a self-improvement
semantic segmentation system, which is our focus for this
study.

III. METHODOLOGY
A. NETWORK ARCHITECTURE
The network design is illustrated in Figure 1. Our model
consists of two blocks: the main block and the enhancement
block. Both blocks use an encoder-decoder architecture
inspired by the U-Net model. The main block takes an RGB
image as input and provides a single depth mask image,
where head contours are depicted in white. The input to the
enhancement block is the input RGB image, concatenated
with the mask obtained from the main block, to generate
the enhanced mask in its output. The network architecture is
detailed in Figure 2.

Our model is a convolutional neural network architecture
based on two shallow U-shaped strongly concatenated
networks. The first one aims to apply semantic segmentation,
the second one to self-improve the result from the first
one. By forcing the enhancement block to improve the
output of the main block, the system will have the ability
to allow additional convolutional mappings to reflect more
information about the original input image when generating
features of a higher level. This constitutes the advantage of
this system.

The core idea of this paper is to utilize features typically
extracted by fully convolutional network architecture during
semantic segmentation, and then to increase the predicted
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FIGURE 1. CSU-Net design. It is composed of two blocks strongly concatenated to each other.

FIGURE 2. Block diagram describing the architecture of the CSU-Net.

segmentation result to match with a ground truth boundary.
Specifically, we propose a series of concatenation combina-
tions between a layer of the encoder of the main block and the
corresponding layer of the decoder in the enhancement block.
The concatenation is applied in order to providemore detailed
feature information about the input data to the enhancement
block, which is responsible for self-enhancing the result; see
the dashed lines in Figure 2. This concatenation is applied
with freezing of the convolutional layer weights and biases of
themain block encoder to ensure the constancy of the features
acquired during the training of the main block.

B. TRAINING PROCEDURE
We denote by xi the input image and by qi the ground truth,
where xi ∈ R288×288×3 and qi ∈ R288×288. We assume that
both xi and qi are normalized in the interval [0,1]. The ground
truth preparation will be explained in Section V-A.

The main and enhancement blocks of our architecture
are defined with the functions Tm(xi, θm) and Te(xi, θe)
respectively. All trainable parameters of the main block
are defined with vector θm, and similarly with θe for the
enhancement block.

We train our network using a set of corresponding
images and ground truth xi, qi, i = 1, . . . ,N , with the
loss function based on the binary cross-entropy loss, since
the problem is analogous to semantic segmentation, i.e.,

pixel-wise classification [43]. The loss is presented in eq. (1):

Loss(θ ) = −
1
N

N∑
i=1

ym,i log(pm,i)+ (1− ym,i) log(1− pm,i))

−α
1
N

N∑
i=1

ye,i log(pe,i)+ (1− ye,i) log(1− pe,i))

(1)

where ym,i is a binary indicator (0 or 1) if Tm(xi, θm)
provides the correct classification for input image pixel xi.
The same applies for ye,i and Te(xi, θe). Furthermore, pm,i is
the predicted probability of the classification using the main
block, and pe,i is the predicted probability of the classification
using the enhancement block. Lastly, α is the hyperparameter
that weights the importance of the main and enhancement
terms in the loss function. The optimal value of α was
empirically found on validation data, and was set to α = 1 by
evaluating its effect on the network performance metrics.

IV. COMPARATIVE ANALYSIS
Deep learning convolutional neural networks are widely used
to solve semantic segmentation problems. It allows more
complex tasks to be tackled through image segmentation.

To show the efficiency of the proposed system, we have
chosen to compare it with four very popular segmentation
models and three promising recently published architectures.
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The original articles, source codes and most important
features are summarized in Table 1.

A. U-NET
With a ‘‘U’’ shape, the U-Net architecture is symmetrical
and its operation is somewhat similar to autoencoders.
It can be reduced to three main parts: the contraction
path (downsampling), the bottleneck, and the expansion
(upsampling) path. The encoder portion of the neural network
compresses the input into a latent space representation, then
a decoder constructs the output from the compressed or
encoded representation. With the U-Net, skip connections
are used to transfer fine-grained information from the low-
level layers of the analysis path to the high-level layers of
the synthesis path. This information is needed to generate
reconstructions that have fine detail [15].

B. PSPNet
The architecture of the Pyramid Scene Parsing Network
(PSPNet) is based on the global pyramid pooling feature,
which provides additional contextual information. First, the
feature maps are obtained by a base network (ResNet101,
DeepLab, etc.). A pyramid analysis module is applied to
collect different representations of sub-regions. Convolution
is applied to the maps of grouped features. Next, all
feature maps are oversampled to a common scale and
concatenated to form the final feature representation. Finally,
the representation is introduced into a convolutional layer to
obtain the final prediction per pixel [18].

C. LinkNet
Similarly to other segmentation architectures, LinkNet uses
the encoding-decoding strategy. The issue on this approach
is upsampling this feature map to the original resolution and
preserving the categorization of the pixels. In LinkNet, the
input of each encoder layer is also provided to the output of
the corresponding decoder. Using these connections, the lost
spatial information is recovered and can be therefore used by
the decoder and its upsampling operations [44].

D. FPN
The idea of Feature Pyramid Network (FPN) is to adopt
a strategy of hierarchical prediction to achieve the goal
of complementary advantages. FPN consists of two paths.
The first path is the usual convolutional network for
feature extraction. As the signal is propagated through the
network, the spatial resolution decreases. With more high-
level structures detected, the semantic value of each layer
increases [17].

E. IRUNet
The model architecture is designed using the cooperation
between two inception blocks. In order to reduce the
vanishing gradient problem, the network architecture is built
wide rather than deep, with a strategic positioning of skip con-
nections. Two different types of skip connections are applied
to provide an alternative gradient path in backpropagation.

TABLE 1. Description of the models selected for the comparative analysis.

The first type of skip connection is positioned between the
encoder and the decoder part similarly to U-Net. The second
type is situated inside the two inception blocks. A detailed
explanation of the architecture can be found in [22].

F. DR-Unet104
Deep residual U-Net with 104 convolutional layers (DR-
Unet104) is based on the U-Net, but it brings multiple
additions. It uses deep residual blocks in the decoder part of
the architecture, implies a specific version of the bottleneck
residual block, and adds dropout after each convolution block
stack [26].

G. CFPNet-M
Channel-wise Feature Pyramid Network for Medicine
(CFPNet-M) is a very lightweight architecture proposed for
various biomedical applications. It implements a feature
pyramid channel to a U-shaped architecture. It is expected
to show competitive performances with great advantages of
much fewer parameters and smaller model file size [27].

H. ABLATION STUDY
Moreover, a series of ablation experiments was performed
to explore the efficiency and robustness of the proposed
CSU-Net.
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First, the performance of the main block itself from the
CSU-Net architecture was explored. Explicitly, we consid-
ered the output of the main block as if it were the output of
the overall model. This model is referred to as SU-Net.

Next, the effect the concatenation between the main block
and the enhancement block (the dashed lines in Figure 2) was
examined. Specifically, a series of concatenation combina-
tions between a layer of the encoder of the main block and
the corresponding layer of the decoder in the enhancement
block were disconnected, and both blocks were trained
independently. This model is referred to as 2SU-Net.

V. EXPERIMENTAL WORK
A. DATASETS
The proposed CSU-net was tested on the private and
PAMELA UANDES dataset [11].

1) PRIVATE DATASET
This dataset is prepared from scratch (from acquisition
over preprocessing to manual labeling of data). Here,
we captured videos from different locations with the RGB-
Depth RealSense D435 camera [50]. Out of these videos,
we obtained a sequence of images, from which the images
were randomly selected until a sufficient quantity was
obtained. RGB images were only used for the purposes of
this dataset, which consists of 7,000 images taken from seven
locations. Figure 3 shows some examples taken from this
dataset.

2) PAMELA UANDES DATASET
PAMELA UANDES dataset [11], which we used in this
study, is composed of a monocular camera recording
videos looking down on passengers alighting/boarding a
metropolitan train, as it is shown in Figure 4. Ground truth
data of this dataset were prepared manually.

We preprocessed this dataset before working on it (we
obtained 11,315 images at the end of this step).We considered
the following points when preparing the images:
• Cropping the original video to take only the region of
interest and to decrease the calculation time during the
training of the models.

• The need to take consecutive images in pieces so that the
tracking can be applied in future work.

Eventually, two specific datasets (private and PAMELA
UANDES dataset) were annotated in a specific way. In order
to simplify the labeling process, it was reasonable to
approximate the positions and shapes of heads using an
appropriate geometric formation. Considering the elliptic
shape of heads, ellipses of suitable size were implemented.
An example of the labeling process is illustrated in
Figure 5. We view the elliptical shape of the heads in
ground truth images as an acceptable compromise between
annotation accuracy and the difficulty of manual dataset
creation.

Note that there is a large difference in the complexity of
the two selected datasets. While PAMELA UANDES dataset
contains only scenes from a single environment, and the

FIGURE 3. Examples taken from the first dataset.

persons are always at approximately the same distance from
the camera sensor, the private dataset contains a range of
environments and distances, and is taken under changing
lighting conditions.

B. EVALUATION METRICS
The evaluation was made according to the following criteria.
All the scores are expressed as a percentage (%):

a: MEAN ACCURACY
Mean accuracy allows to indicate the percentage of correctly
identified pixels for all classes. I can be calculated by eq. (2).

MC =
1
M

M∑
c=1

TPc
TPc + FNc

, (2)

where TP and FN represent true positive and false-negative
errors respectively.M is the number of classes.
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FIGURE 4. Example taken from the second dataset in which figure (a) is
before and (b) is after the preprocessing of the dataset.

b: MEAN IoU
The Mean IoU is the average IoU score of all classes in
all images. IoU is used to establish a measure of statistical
precision that penalizes false positives. IoU is the ratio of
correctly classified pixels to the total number of ground truths
and predicted pixels in a class. The mean IoU is calculated by
eq. (3).

MI =
1
M

M∑
c=1

TPc
TPc + FPc + FNc

, (3)

where FP refers the false positive error.

c: MEAN BOUNDARY F1 SCORE
Mean boundary F1 (called as well BF Score) is the mean
BF score of all classes in all images. Mean BF Score is the
average BF score of the overall images of that class. BF score
is a value in the range [0, 1]. A score of 1 means that the
contours of the corresponding class objects, in prediction and
in ground truth,match perfectly. TheMean boundary F1 score
can be determined by eq. (4).

MBF =
1
M

M∑
c=1

TPc
TPc + 1

2 (FPc + FNc)
. (4)

FIGURE 5. Preparation of the ground truth. (a) and (b) represent an
example of: original bounding boxes superimposed on its raw image and
the extracted ground truth respectively.

TABLE 2. Relevant features of the tested models.

d: RELATIVE RESPONSE TIME
The relative response time of each considered model is
defined as follows.

τ =
tA
tCSU

, (5)

where tA is the response time of the considered model, and
tCSU is the response time of the proposed CSU-Net using the
implementation conditions described in Section V-C.

C. IMPLEMENTATION DETAILS
The models were trained from scratch using the Adam
optimizer. 180 epochs were used, along with a mini-batch
size of 8, a learning rate of 0.001, and an L2 regularization
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FIGURE 6. Performance of CSU-Net compared with U-Net in terms of mean accuracy, mean IoU and mean BF score with respect to
the fraction of the amount of data used to train the models.

factor of 0.0005. All training algorithms were performed
using Keras/Python on a GPU of NVIDIA Quadro P5000
graphic card running on an operating system Windows.

Data augmentation was used for our application to
improve network accuracy by randomly transforming the
original data during training. For our application, random
horizontal/vertical reflection, left/right random reflection,
randomX /Y translation of +/- 10 pixels, and random rotation
were used for data augmentation.

D. RESULTS AND DISCUSSION
The objective of our study was to develop a system capable
of enhancing the performance of state-of-the-art models.
We have applied our proposed system and evaluated it by
several metrics: Accuracy, IoU, and BF score. We used the
boundary F1 (BF) score because it gives us a metric that
tends to correlate better with human qualitative rating than
the IoU metric. Moreover, the BF score is more significant
than accuracy because the number of true negatives is not
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FIGURE 7. Experimental results on the first dataset. Columns (a), (b), (c), and (d) represent respectively: the tested image superimposed on its
ground truth, image superimposed on its detected mask, ground truth on its corresponding detected mask, and the final object detection task.
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FIGURE 8. Experimental results on the second dataset. Columns (a), (b), (c), and (d) represent respectively: the tested image superimposed
on its ground truth, image superimposed on its detected mask, ground truth on its corresponding detected mask and the final object
detection task.
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taken into account. In imbalanced class situations, true
negative results often completely skew the perception of the
performance. However, considering the BF score, a large
number of true negatives leaves it unmoved.

Our method concentrates on reusing the relationship
among the first network features, and broadcasting the
important information by freezing them to the second
network for further convolution operations. By concatenating
extracted features with the original feature maps, the second
network has more information about the input image, so it
can compare and enhance the predicted boundary to match
the ground truth boundary. This setting allows a considerable
improvement in the efficiency of extraction and use of spatial
features in CNNs without too many additional calculations.
This explains the presented results.

In general, the number of trainable parameters, memory
size, and response time are the important parameters to
consider for implementation in real-time applications. Table 2
shows a comparison between these relevant features for the
tested models. As we can observe, due to the low depth of
the proposed network, the number of parameters that should
be adjusted during the training period is much lower than
the original U-Net, resulting in faster training and faster
convergence.

The purpose of this network design was also to reduce the
amount of memory required, and to increase speed, while
at the same time, to increase the accuracy of the network
behavior. Therefore, with a 49.61% reduction in the number
of parameters and a very similar response time, compared to
the U-Net network, our system has succeeded in achieving
higher accuracy than other methods.

To investigate the advantage of the proposed system for
small training data sets, we randomly selected a subset of
1%, 5%, 10%, 25%, 50% and 100% of the set of data and
calculated the performance of the proposed system in terms
of scores of monitored criteria versus the fraction of the
amount of data used to train the models. We applied the same
procedure for the U-Net network to compare the results.

Figure 6 demonstrates the strongest of the proposed
systems in a small dataset for semantic segmentation. The
first and second rows represent the result of the first
and second datasets. The CSU-Net model performance is
consistently better than U-Net by a solid margin. In this
experiment, we showed that our strategy procedure helps the
learning to be more effective in visual representations from a
small number of images.

To show the overall performance of the proposed system,
a comparative analysis was carried out on nine deep learning
semantic segmentation models for two considered datasets.
Table 3 shows the comparative results of our proposed system
by comparing it with U-Net, Linknet, PSPNet, FPN, IRUNet,
DR-Unet104, and CFPNet-M. Additionally, as a part of the
ablation study, the proposed system is compared with the
main block of the CSU-Net itself (referred to as SU-Net),
and with the same architecture of two shallow U-shaped
models, but without the concatenation between the main
block and the enhancement block. This model is referred

TABLE 3. Comparative analysis of our proposed model with four
state-of-art models of deep learning semantic segmentation algorithms:
U-Net, Linknet, PSPNet, FPN, IRUNet, DR-Unet104, and CFPNet-M. The
bolded text corresponds to the best results.

to as 2SU-Net. For qualitative evaluation of our method,
we employed three widely used performance metrics for our
image semantic segmentation, including the mean Accuracy,
mean IoU, and the mean BF score. We have bolded the
text that corresponds to the best results for all algorithms
o visually facilitate the benchmarking of performance. The
proposed system outperformed the other competitors in all
cases, when consideringmean Accuracy. The only competing
model that provided a better result in somemetrics is IRUNet.
In those cases, however, the resulting metric values are close.
Additionally, IRUNet provides significantly worse response
times; see Table 2. Moreover, if CSU-Net, SU-Net and 2SU-
Net are compared, the first one gives better results for all
metrics. Therefore, a series of concatenation combinations
between the main block and the enhancement block seems
to provide a considerable advantage.

Figures 7 and 8 show experimental tests for the 1st
and 2nd datasets. The selected test images are of low to
high complexity. The first column represents images labeled
in pixels (ground truth) by superimposing them on their
raw images. The second one represents the detected head
mask superimposed on the RGB image. The third column
represents a comparison of our system’s results with the
expected ground truth. The colors highlight areas where the
segmentation results differ from the expected ground truth
(the green color indicates false positive segmentation and
the magenta color indicates true negative segmentation). The
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FIGURE 9. Examples of failure. The first column in each row represents
the tested image, the second column is the ground truth, and the third
column represents the response of CSU-Net. In the first row, the hairless
head is not detected correctly, which is probably due to the
under-representation of hairless persons in the training set. In the second
row, the poorly detected head on the bottom right seems to blend in with
the clothes of the other people in the image. In addition, the whole scene
is poorly illuminated.

fourth column represents the final output of the system with
all detected objects in red bounding boxes.

Experimental tests proved very satisfactory. We can see the
strong effect by precisely detecting the heads that are very
close to each other without overlapping them and considering
them as a single head. Experimental tests also showed that the
CSU-Net system detected almost all the heads correctly, even
in a complex environment.

The evaluation of CSU-Net also aimed to capture signif-
icant failures of the presented model. Intuitively, the model
may fail if there are objects in the scene that are similar to
human heads and were not present in the training set. Other
causes of failure can be poor lighting conditions, low-quality
(blurry) image of the scene, or unexpected overlapping of
people in the frame. Therefore, every response of CSU-Net
was manually checked for failure. Several responses that can
be classified as failures were found. Almost all of them were
related to the private dataset, which can thus be described as
more difficult to deal with. Surprisingly, all of themwere false
positives. Hence, no objects in the scene (bags, backpacks,
suitcases) were falsely detected as heads. Typical examples
of failures can be seen in Figure 9.

VI. CONCLUSION
Semantic segmentation suffers from many drawbacks, such
as poorly predicted object contours. In this paper, our aim
was to self-enhance the semantic segmentation result with
minimal computational cost. For this purpose, we developed
a new convolutional neural network architecture based on two
shallow U-Net networks, which are strongly concatenated
with each other. The goal was to force the second network to
improve the output of the first block. The proposed strategy
allowed the system to have the ability to learn additional
convolutional mappings to reflect more information about
the original input image when generating features of a
higher level. Even though the proposed system has two
encoder-decoder architectures, it has been designed with
the consideration of reducing the amount of computational

cost and memory requirement for training and testing. If we
compare our proposed architecture with the original U-
Net, the number of parameters in the proposed system is
about 49.61% lower. A comparative analysis was carried
out on several deep learning semantic segmentation state-
of-art models for two datasets (one private and the other
public). We also showed the advantage of the proposed
system for small training data sets. This paper confirms
that the idea of the concatenation of two networks, with
reducing the trainable parameters, helps to improve the
semantic segmentation and presents encouraging results. The
results thus indicate that the proposed system can also be
applied in several other semantic segmentation applications.
Future work will be conducted on head object detection
using semantic instance segmentation and head tracking on
sequenced images.
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