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ABSTRACT Blockchain-IIoT integration into industrial processes promises greater security, transparency,
and traceability. However, this advancement faces significant storage and scalability issues with existing
blockchain technologies. Each peer in the blockchain network maintains a full copy of the ledger which is
updated through consensus. This full replication approach places a burden on the storage space of the peers
and would quickly outstrip the storage capacity of resource-constrained IIoT devices. Various solutions
utilizing compression, summarization or different storage schemes have been proposed in literature. The
use of cloud resources for blockchain storage has been extensively studied in recent years. Nonetheless,
block selection remains a substantial challenge associated with cloud resources and blockchain integration.
This paper proposes a deep reinforcement learning (DRL) approach as an alternative to solving the block
selection problem, which involves identifying the blocks to be transferred to the cloud. We propose a DRL
approach to solve our problem by converting the multi-objective optimization of block selection into a
Markov decision process (MDP). We design a simulated blockchain environment for training and testing
our proposed DRL approach. We utilize two DRL algorithms, Advantage Actor-Critic (A2C), and Proximal
Policy Optimization (PPO) to solve the block selection problem and analyze their performance gains.
PPO and A2C achieve 47.8% and 42.9% storage reduction on the blockchain peer compared to the full
replication approach of conventional blockchain systems. The slowest DRL algorithm, A2C, achieves a run-
time 7.2 times shorter than the benchmark evolutionary algorithms used in earlier works, which validates
the gains introduced by the DRL algorithms. The simulation results further show that our DRL algorithms
provide an adaptive and dynamic solution to the time-sensitive blockchain-IIoT environment.

INDEX TERMS Blockchain, IIoT, reinforcement learning, scalability, storage efficiency, storage
optimization.

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar .

I. INTRODUCTION
The enormous popularity of cryptocurrencies like Bitcoin [1]
and Ethereum [2] enabled the development of blockchain
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technology as a secure solution for the Industrial Internet
of Things (IIoT). There are applications for blockchain in a
variety of industries, including health [3], [4], [5], agriculture
[6], [7], supply chain management [8], education [9], real
estate [10], [11] and manufacturing [12]. The blockchain’s
immutability, consensus, and smart contract capabilities
impose a robust architecture that does away with third-party
verification requirements, enables auditing and traceability,
and promotes transactions between various parties. In the
blockchain, a network of peers maintain a decentralized
ledger as each peer stores a full copy of the ledger. The ledger
can only be appended to and is updated through the consensus
of the peers in the network. A party performing a transac-
tion on the blockchain does not need to establish trust with
the other party through a third party since the blockchain’s
cryptographic nature and consensus ensures trust. Industrial
processes that demand cooperation between many entities,
like supply chains, may benefit from these capabilities [8].
Over time, data accumulates on the blockchain due to its
immutable nature. The blockchain network’s performance
and scalability are affected by the unchecked growth of the
blockchain ledger. Data generation may exceed the peers’
capacity to store blocks in the high transaction environment of
IIoT networks, which would limit the involvement of devices
with limited resources, such as low-power IoT devices. The
expansion of the blockchain ledger impacts the time it takes
a new node to integrate into the network entirely and impacts
the efficiency of the underpinning databases, causing delays
during database reading and writing.

Literature has proposed utilizing cloud storage systems
to mitigate the storage pressure on peers in IoT sys-
tems. However, this increases latency and impacts the
blockchain’s performance [13]. The authors of [13] devised
the non-dominated sorting genetic algorithm with cluster-
ing (NSGA-C) to discover the ideal number of blocks to
move to the cloud. Nartey et al. [14] addressed the problem
of block selection by presenting the advanced time-variant
multi-objective particle swarm optimization (AT-MOPSO)
algorithm. The algorithms proposed in [13] and [14] belong
to a class of nature-inspired meta-heuristic algorithms known
as multi-objective evolutionary algorithms (MOEAs), which
are commonly employed to solve complex multi-objective
optimization problems. Issues such as lengthy run-times and
a lack of sensitivity to variations hinder the performance of
these algorithms [15].

This paper provides a deep reinforcement learning (DRL)
solution to the block selection problem. We propose an
adaptive approach, in which a DRL agent on a peer moves
blocks between the cloud and local storage depending on
the organization’s needs and the network state to ensure
optimal blockchain performance. In our method, a reward
function for our DRL agent integrates the three objective
functions of the query probability of blocks in cloud stor-
age, the cost of cloud storage, and the local space occu-
pancy or storage availability of peers. The minimization of
these objective functions maximizes rewards, encouraging

smarter decisions about which blocks to transfer to the cloud.
The following is a summary of the main contributions of this
paper:

1) An adaptive optimization scheme is proposed to reduce
the storage demand on blockchain peers while optimiz-
ing query cost in blockchain-IIoT applications using
DRL. In our approach, bi-directional block movement
allows a DRL agent to adapt to the constantly changing
query frequency of blocks in specific applications.

2) The block selection problem is defined as a Markov
Decision Process (MDP). We model the blockchain
environment in terms of the states of the blocks on the
blockchain, the actions available to the agent and the
rewards that actions taken result in.

3) The proposed approach is evaluated using state-of-
the-art DRL algorithms. DRL models are trained on
a simulated environment to solve the block selection
problem for cloud storage and the performance of the
models are evaluated.

The remainder of this paper is structured as follows: The
related works are presented in Section II, the system model
is presented in Section III, the problem formulation and pro-
posed approach are discussed in Section IV, the evaluation of
our experimental findings is presented in Section V and the
study is concluded in Section VI.

II. RELATED WORKS
Numerous strategies to optimize storage in blockchain sys-
tems have been proposed in the literature [16]. Some of
these methods include compression and summarization tech-
niques to minimize the number of blocks on the blockchain,
hence decreasing the total size of the ledger [17], [18], [19],
[20], [21]. Other methods suggest alternatives to the typical
blockchain’s full replication storage approach. One of these
methods is to distribute blocks among peers in the network
based on their relevance to the peer’s operation and resources
so that other peers can request blocks they do not keep locally.
In the sharding-based strategy, various shards of peers within
the blockchain each maintain their ledger and only process
transactions of their shard [22]. Some works partition the
blockchain network into storage units, in which component
peers donate storage resources to store the entire ledger and
query within their storage unit for blocks they do not store
locally [23], [24], [25]. Another intuitive concept discussed in
depth in this study is optimizing blockchain storage via cloud
storage [13], [14]. Several works have recommended evo-
lutionary algorithms to supplement this approach to ensure
that cloud-based block storage maintains optimal blockchain
performance.

A. MULTI-OBJECTIVE OPTIMIZATION IN BLOCKCHAIN
SYSTEMS
Multi-objective optimization challenges are very ubiquitous
in the real world. They require effective decision-making in
the face of several conflicting objectives. Evolutionary algo-
rithms and handcrafted heuristics have been widely applied
as iteration-based problem solvers to solve multi-objective
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optimization problems. Evolutionary algorithms’ population-
based nature enables them to generate multiple solutions in
a single run efficiently. However, the performance of these
classical methods is hindered by constraints that have been
extensively reviewed in the literature [15], [26]. First, for
problems with large dimensions, the number of iterations
required for population update or iterative searching to obtain
near-optimal solutions sometimes leads to long execution
times. Another difficulty with these strategies is their failure
to account for problem variability. Since they are frequently
tailored to the problem to which they are applied, even minor
modifications necessitate a reapplication of the approach to
produce satisfactory results. This trait is elaborated upon
in the No Free Lunch Theorem [27]. These techniques are
impractical for usage in applications with stringent latency
requirements.

Xu et al. [13] first described the storage optimization of the
blockchain for IoT systems as a block selection problem for
cloud storage. They proposed the NSGA-C algorithm to per-
form this task. They reduced storage overhead by an average
of 30%. However, their approach had a comparatively high
run-time compared to the benchmarks. To improve the work
of [13], Nartey et al. [14] introduced the AT-MOPSO algo-
rithm. The AT-MOPSO algorithm had a significantly shorter
run-time and greater energy efficiency than the NSGA-C.
However, this algorithm fared worse on one of the trade-off
objectives than NSGA-C.

B. DEEP REINFORCEMENT LEARNING
Even though classical optimization techniques, such as evolu-
tionary algorithms and handcrafted heuristics, are suitable for
enhancing performance, recent advances in machine learning
have led to the development of algorithms that look promising
for solving a wide range of computational problems. We pro-
pose DRL as an alternative to the evolutionary algorithms
introduced in [13] and [14] for solving the multi-objective
optimization problem of block selection for storage optimiza-
tion in blockchain-IIoT systems. This approach may offer
benefits over evolutionary algorithms and custom heuristics
such as [15]:
• Shorter run-time: Solutions can be directly obtained by a
simple forward propagation of the model once a trained
model is available.

• Strong generalization ability: The nature of the DRL
ensures it can be used for new instances of the problem
without modifications.

• Scalability: As demonstrated by Li et al. [15], the DRL
approach may scale better for a large number of
blockchain peers.

RL focuses on sequential decision-making in dynamic,
partly controlled environments. A reinforcement learning
problem consists of two fundamental elements: an agent and
an environment. The agent’s interactions with the environ-
ment are geared towards maximizing an objective, defined
as the cumulative reward obtained by the agent through its

actions. The agent collects observations and rewards from
the environment and utilizes this data to build a policy,
which is a function that maps the states of the environment
to actions. The agent’s action influences the environment,
transitioning to a new state. Repeated interactions with the
environment offer the essential data for the reinforcement
learning algorithm to discover the best policy that maximizes
the cumulative reward.

DRL blends deep learning and reinforcement learning.
Reinforcement learning is concerned with agents that learn
via interactions with their environment, without understand-
ing of the system model, in order to maximize long-term
performance or accomplish a specific goal. Deep learning has
its roots in early attempts to mimic the networks of neurons
in the brain using computational circuits [28]. It involves the
use of artificial neural networks that are oftenmultilayered for
high-dimensional sensory representation and are well-suited
for universal approximation. DRL employs deep learning as
a method for function approximation to escape the curse of
dimensionality [29].

Recently, DRL has been discussed in literature as an effi-
cient approach for multi-objective optimization particularly
in blockchain-enabled systems. Works such as in [30] and
[31] proposed the use of DRL-based optimization schemes
for resource management in blockchain-based mobile edge
computing (MEC) systems. The authors in [32] proposed a
multi-agent reinforcement learning framework for resource
management in blockchain-enabled digital twin IoT sys-
tems. The authors in [33] proposed utility optimization for
blockchain-empowered edge computing using multi-agent
deep deterministic policy gradient (DDPG). The authors
in [34] employed a DRL-based scheme for blockchain-
based resource trading and autonomous radio access net-
work (RAN) slicing in 5G. The authors in [35] proposed a
blockchain framework for healthcare systems with an intelli-
gent blockchain manager. The blockchain manager uses DRL
algorithms for the optimization of blockchain performance
based on transaction characteristics.

The work of [36] explores a similar storage optimiza-
tion problem to that addressed in a blockchain-IIoT setting
within this work. MEC provides cloud computing resources
in proximity to end devices to reduce service latency and
is further supplemented by edge caching techniques [37],
[38], [39]. The authors in [36] proposed a dynamic edge
caching technique with privacy preservation in MEC net-
works to ensure efficient utilization of caching resources.
The optimization of edge caching under the constraint of
privacy preservation is described as a distributed optimization
problem and converted into a distributed model-free MDP.
They proposed a distributed DRL algorithm for preserving
privacy and maximizing the cache hit rate of devices in MEC
networks. They also made use of federated learning to predict
content popularity. Despite all these proposed works with
DRL in blockchain systems, to the best of our knowledge,
DRL has not been applied to the block selection problem.
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III. SYSTEM MODEL
Inspired by the works of [13] and [14], we propose the
optimization of storage with a focus on individual peers. Our
model presents a fully decentralized approach that allows
each peer to optimize storage based on the storage resources
available to the peer and the requirements of the organiza-
tion operating the peer. The proposed scheme forms part
of a blockchain-IIoT architecture that satisfies the following
requirements:

1) The architecture should facilitate data sharing between
different organizations and different IIoT networks
using a blockchain network. Different organizations set
access controls on their IIoT networks tomaintain secu-
rity and privacy. These IIoT networks can be integrated
with permissioned blockchains, further extending this
security but enabling better auditing and traceability for
the benefit of relevant stakeholders.

2) The proposed solution should focus on the optimization
of storage on individual peers.We argue that solving for
the global optimum on each peer would demand a lot
of computational resources and require using a central
agent or server to perform the computation and relay
the solution to the peers.

The system depicted in Figure 1 shows the proposed adap-
tive optimization scheme that is executed on the blockchain
peer. Dedicated peers serving various organizations and fac-
tories on the blockchain network are linked to cloud ser-
vices for block offloading. IIoT devices generate transactions
within the internal networks of these organizations, which are
then published to the blockchain by the linked peer. Peers
in the blockchain network would execute the DRL-based
optimization scheme during idle periods to send the optimal
amount of blocks to the cloud.

Users submit transaction proposals and queries through a
client application that communicates with the peer service.
The peer service handles the transmission of transaction pro-
posals to other peers on the blockchain and the reception of
blocks from other peers. The peer service of the blockchain
application commits blocks to the ledger and retrieves queried
information. The peer service handles the transmission of
transaction proposals to other peers on the blockchain and
the reception of blocks from other peers. The DRL model
interacts with the ledger and moves blocks between cloud
and local storage on the local peer. It updates the peer service
with the current state of the ledger before queried information
can be retrieved. The block selection is made during idle
time to reduce the impact of the DRL computation on other
processes.

The optimization scheme that is proposed in this work and
detailed in the subsequent section focuses primarily on three
aspects of the problem under scrutiny, each of which corre-
spond to an objective function in the mathematical frame-
work. These aspects are:

1) The effect of queries due to storage location on the
blockchain’s performance.

2) The cost of combining cloud storage and local
blockchain storage and ensuring efficient communica-
tion between both storage locations.

3) The availability of local storage by offloading blocks
to cloud storage.

These objectives directly affect the performance of the
blockchain peer. The conflicting nature of these objectives
leads to their presentation as a multi-objective optimization
problem. Although not in the scope of this paper, the security
of the blockchain data stored in the cloud is another objective
that can be considered. The security of cloud storage services
can sometimes be called into question. Thus it may be note-
worthy to determine the sensitivity of information stored on
the blockchain and whether it should be stored in the cloud
or not.

IV. PROBLEM FORMULATION
Certain factors need to be considered when exploring the
optimization of storage in the blockchain-IIoT environment
by offloading blocks to cloud storage. Traditionally, the full
replication approach of blockchain technology ensures that
each peer stores the entire ledger, and queries for information
on the peer are handled locally. A blockchain architecture
that stores the ledger partially in the cloud introduces extra
query costs due to the communication between the peer and
the cloud service and read/write operations in the cloud. This
inevitable query cost should be optimized to ensure the query
efficiency of the blockchain system is not heavily affected.
In the high transaction environment of blockchain-IIoT, the
data stored in older blocks may be queried less frequently
as the blockchain ledger grows. The determination of the
query frequency of a block and thus the likelihood of a query
on that block when stored in the cloud should affect our
decision to select the block to be stored in the cloud. The
costs associated with cloud services should also be evaluated.
The block selection problem encapsulates the impact of these
considerations.

A. THE BLOCK SELECTION PROBLEM
The block selection problem is an optimization problem
in which the conflicting objectives of query probability of
blocks in the cloud, cloud storage cost, and local space
occupancy should be minimized. This optimization problem
entails getting some blocks to cloud storage in order to reduce
the amount of local storage needed by the blockchain on a
peer while preserving optimal blockchain performance. The
objective is to select M, the ideal set of blocks to transfer to
cloud storage, out of N, the total number of blocks on the
blockchain. In our method, cloud and local storage blocks
can be selected and moved. As illustrated in Figure IV-A4,
a selected locally stored block is transferred to the cloud.
Likewise, a block in the cloud that is selected is brought back
to local storage.
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FIGURE 1. DRL-based storage optimization scheme.

1) QUERY PROBABILITY
In real-world blockchain applications, the query frequency of
information is in constant flux. Depending on the application
under consideration, the query frequency of a block on the
blockchain can be determined under three different query cir-
cumstances [13]: the fixed case, linear decay, and exponential
decay.

F(t) = F0, (1)

F(t) = F0 − α1t , (2)

F(t) = F0e−α2t . (3)

F0 is the initial query frequency of a block, while ax is
the attenuation coefficient. The query frequency of a block
in the fixed case, given by (1), remains constant through-
out the block’s existence. The fixed case arises in appli-
cations for traceability. The linear decay shown by (2) is
typical of situations where blocks are not regularly queried.
As indicated in (3), the exponential decay most accurately
characterizes financial applications like cryptocurrency net-
works. A block’s query probability depends on the deployed
application’s query frequency. In this case, minimizing the
query probability of blocks in cloud storage reduces the query
cost as fewer cloud requests are made.

When a block is created, its time value t is set to 0. The
addition of a new block raises the value of t for the preceding
block by 1. At t = 0, a block has the initial frequency, F0. The
query probability of a block on a peer is {Pb1 ,Pb2 , . . . ,PbN }
where bk (1 ≤ k ≤ N ). The block bN has a query probability
equal to the initial query frequency. The query probability of
a block is given by:

Pbk =


1∫ N−k

0 F(t)dt
, 1 ≤ k ≤ N − 1,

F0, k = N .
(4)

The total of all query probabilities for a peer’s blocks is used
to normalize the query probabilities. The normalized query
probabilities are denoted asP′b1 ,P

′
b2
, . . . ,P′bN . Consequently,

the normalized query probability of a block is given by:

P′bk =


1

Ptotal
∫ N−k
0 F(t)dt

, 1 ≤ k ≤ N − 1,

F0
Ptotal

, k = N .
(5)

where Ptotal =
∑N−k

k=1 Pbk+F0. The overall query probability
of the peer is given by:

PM =
M∑
k=1

P′bk , 1 ≤ M ≤ N . (6)

2) CLOUD STORAGE COST
The cloud storage cost entails both the latency and monetary
expense of keeping blocks in cloud storage. For industrial
applications, the block size can vary and impact both the
cost and latency of cloud service requests. Cloud service
providers define their price structures, enabling people and
businesses to select packages suited for the intended purpose.
We can determine the cost of block offloading by referencing
the selected price plan. While moving some blocks to the
cloud is vital, it cannot be done without considering the
organization’s budget and the cloud requests’ influence on
latency. The minimization of cloud storage cost ensures that
the system implementation incurs less cost in terms of money
and latency.

The storage cost, CM , depends on the monetary cost of
cloud storage and the request latency for querying and trans-
mitting a block [40]. The request latency of a block is given
by:

lqi = (Et × 2)+ (
sbk
B

), (7)
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where Et × 2 is the round-trip time (RTT) caused by TCP
connection establishment, sbk is the size of the block and B is
the network bandwidth. The monetary cost can be calculated
from the pricing plan of the cloud service provider [40]:

Mb = (us ×
M∑
k

sbk )+ (rb × ur )+ (ut ×
M∑
k

sbk ), (8)

where Mb is the monetary cost, us is the unit monetary cost
for storage, rb is the total number of requests, ur is the
unit monetary cost for number of requests and ut is the unit
monetary cost for the total transmission size. The pricing used
in our work is based on the Amazon S3 pricing plan. The
storage cost is given by:

CM = θ lqk +Mb, (9)

where θ ∈ [0,∞] is a trade-off factor, given in dollar
per second, showing the relative importance of latency and
monetary cost in the storage cost function [41]. By varying θ ,
the storage cost ranges from low impact of latency to the
highest impact.

3) LOCAL SPACE OCCUPANCY
The local space occupancy describes the local storage that the
blockchain occupies. This objective is related to the fraction
of blocks stored locally and the physical storage size. The
higher the local space occupancy, the less storage is avail-
able for other applications on the blockchain peer. Minimiz-
ing local space occupancy increases the number of blocks
transmitted to the cloud for storage and the cloud’s storage
charges. Due to their limited physical storage capacity, peers
may prioritize this objective. Reducing local space occupancy
without considering query frequency and cloud storage cost
would negatively impact query performance on the peer.

The local space occupancy can be denoted by OM and is
given by:

OM =
e
Ns−M
Ns − 1
e− 1

, 1 ≤ M ≤ N , (10)

where M is the number of blocks in cloud storage and Ns is
the maximum number of blocks that can be stored on a given
peer based on the available physical storage, which can be
expressed as:

Ns =
D
savg

, (11)

where D is the available physical storage on the peer and savg
is the average size of a block.

4) MULTI-OBJECTIVE FORMULATION
The work aims to minimize all the objective functions while
transferring the maximum number of blocks possible to cloud
storage. The corresponding objective functions are repre-
sented as shown in (12) – (14).

min
M∑
k=1

P′bk , (12)

min θ lqi +Mb, (13)

min
e
Ns−M
Ns − 1
e− 1

, (14)

min (OM ,PM ,CM ),

s.t. 1 ≤ M ≤ N . (15)

As shown in (15), the block selection problem is formu-
lated as a minimization problem based on the three objec-
tive functions: the query probability, the cloud storage cost
and the local space occupancy. The storage of blocks on
the cloud increases the latency of transaction queries, which
could impact the network’s performance. Consequently, it is
desirable to reduce this delay by analyzing the probability
of queries on blocks and identifying which blocks would
incur the least latency due to the frequency of their queries.
The latency of the connection between the cloud servers and
the peer and the monetary cost of using the cloud service
culminates in an overall cost to storing blocks in the cloud.
Reducing the portion of the blockchain held locally on each
peer despite the attendant challenges of increasing query
latency and storage cost is important. These conflicting objec-
tives constitute the crux of our multi-objective optimization
problem, whose minimization leads us to the ideal solution
for the blockchain system.

B. BI-DIRECTIONAL BLOCK SELECTION
The approach proposed in solving the block selection prob-
lem for storage optimization is a DRL approach. The goal is
to train a DRL model to select the optimal set of blocks that
can be transferred to cloud storage. The next step is to present
this task as a reinforcement learning problem.

1) BLOCK SELECTION PROBLEM AS AN MDP
The Markov Decision Process (MDP) forms the basis for
reinforcement learning problems. The MDP offers a formal
framework to describe decision making in partly stochastic
and partly controlled environments. As shown in Figure 3,
state transitions in an MDP must satisfy the Markov property
which means the next state of the observed environment
depends exclusively on the current state and action taken
by an agent in that environment [29]. An MDP can be
defined by the 4-tuple (S,A,P,R), which corresponds to the
state space, action space, state transition function and reward
function.

Concerning our block selection problem, the agent lacks
knowledge of the state transition function which is the proba-
bility of transitioning from one state to another given a certain
action is taken by the agent. The information used by the
agent in learning is obtained through its experience of the
states, actions and rewards from the environment. In this
work, the block selection problem is formulated as an MDP
and solved using DRL algorithms.

The system state s, at any given time step t , can be denoted
by:

st = [Ft , st ,Bt ], (16)
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FIGURE 2. Bi-directional block selection: (a) The agent selects a locally stored block and moves it to the cloud. (b) The agent
selects a block stored in the cloud and moves it to local storage.

FIGURE 3. Block selection as an MDP.

where Ft = {F1t , . . . ,FNt }, st = {s1t , . . . , sNt } and Bt =
{B1t , . . . ,BNt }. Ft represents the initial query frequency of a
block, st represents the size of the block and Bt represents the
block status.

The agent needs to select an action at every time step. The
actions available to the agent is given by the discrete set of
block numbers. The action is given by the number of the block
to be selected. If no block is selected, the action is represented
by zero.

at =

{
k, 1 ≤ k ≤ N ,
0, no block selected.

(17)

The reward function incorporates the objective functions to
ensure maximum system rewards related to the optimization

objective [42], [43]. The definition of the reward function
expresses the prime goal of optimizing the trade-offs in the
query probability, cloud storage cost and the local space
occupancy whilst guaranteeing that application-level require-
ments such as limits on cloud cost and local storage usage are
met. In contrast to the optimization problem, which seeks to
minimize objective functions, reinforcement learning algo-
rithms aim to maximize rewards. Consequently, the mini-
mization function is transformed into maximization in the
reward function. Penalties are applied to the reward under cer-
tain conditions as stipulated in (19) to provide dense rewards
for the agent. The reward function is given by:

R = α(1− PM )+ β(1−
CM
Cmax

)+ γ (1− OM ). (18)
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α, β and γ represent the objective function weights for
denoting the importance of each objective relative to the other
objectives and are such that α + β + γ = 1.

rt =



R, DU < DL and CM ≤ CL ,
−R, DU ≥ DL and Cs = 0,

(
DL − DU

DL
)× R, DU ≥ DL and Cs > 0,

0, CM > CL .
(19)

The conditions under which the reward is provided to the
agent is described as follows:
• DU < DL and CM ≤ CL DU is the used or occupied
physical storage at time t , DL is the maximum physical
storage for blockchain storage imposed by the adminis-
trator and CL is the maximum cloud cost imposed by the
administrator. The agent receives the full reward when
the physical storage and cloud storage usage remain
below the thresholds set.

• DU ≥ DL and Cs = 0 Cs is the storage occupied by
the blocks in the cloud. When the used physical storage
goes beyond the threshold set but cloud storage remains
at zero, the agent receives a negative reward.

• DU ≥ DL and Cs > 0 When DU goes beyond
the threshold and Cs is increasing, the agent receives a
negative reward whose magnitude depends on how close
DU is to DL .

• CM > CL If the action selected by the agent results in
cloud storage cost higher than the cloud cost limit, the
reward received is zero and the episode terminates.

The MDP environment represents the blocks stored in the
blockchain ledger. The agent observes the ledger, selects a
block and receives a reward as feedback from the environment
at every time step. The episode terminates after a specified
number of time steps based on the number of blocks on the
blockchain. If an action at leads to CM > CL , the episode
will terminate and an application-level alert is given to the
administrator to prevent additional cloud costs. The agent is
oblivious to the environment’s design and discovers the opti-
mal policy by interacting with the environment and observing
the rewards for different actions in different states. The agent
attempts to maximize the cumulative reward through an opti-
mal policy. The agent learns a good policy by interacting with
the environment over many episodes.

2) PROPOSED DRL ALGORITHMS
DRL employs three learnable functions: the policy, the value
function, and the environment model. All reinforcement
learning algorithms are based upon these functions. The pol-
icy, π , maps states to actions and dictates the actions of the
agent in the environment. The value function, which has two
forms, V π (s) and Qπ (s, a), enables agents to evaluate the
quality of accessible states and actions based on the expected
future return. The environment model is represented by the
transition function P(s′|s, a).

Model-free reinforcement learning is considered in our
proposed method because we lack a model of the environ-
ment’s dynamics. Model-free reinforcement learning algo-
rithms are not required to utilize the transition dynamics
of the environment explicitly. We propose using two deep
reinforcement algorithms, Advantage Actor-Critic (A2C) and
Proximal Policy Optimization (PPO), to evaluate the effec-
tiveness of this approach to the block selection problem.

A2C utilizes a learned value function and a parameterized
policy for learning in the environment. The actor learns a
parameterized policy, while the critic learns a value function
to send as feedback to the actor. In the A2C algorithm, the
feedback signal is the advantage function Aπ (s, a), which
defines how desirable or poor an action is relative to the
average action that is accessible, as illustrated in (20).

Aπ (st , at ) = Qπ (st , at )− V π (st ), (20)

The advantage function, as a relative measure, prevents
actions from being punished due to the policy’s current state.
The advantage function does not reward actions when the
policy is in a good state either. Instead, the advantage function
evaluates actions based on how they change the value in the
future. The variance of the learned value function is less than
that of other methods, such as a Monte Carlo estimate. The
introduction of the advantage function as a baseline improves
the stability of the learning. As demonstrated in (21), the
actor employs the policy gradient to learn a parameterized
policy πθ .

∇θJ (πθ ) = Et [Aπt ∇θ logπθ (at |st )], (21)

where πθ (at |st ) is the probability of the agent taking the
action at time step t . The parameters for the actor network
are updated using gradient ascent over the policy gradient:

θ ′←− θ +∇θJ (πθ ), (22)

where θ ′ represents the new parameters.
PPO [44] addresses the problem of performance collapse

in policy gradient algorithms by adding a surrogate objective
for monotonic policy improvement. The surrogate objective,
shown in (23) is usually constrained by a Kullback–Leibler
(KL) penalty or a clipping heuristic as shown in (24) and (25)
respectively.

J CPI (θ ) = Et [rt (θ )A
πθold
t ], (23)

where J CPI (θ ) is the surrogate objective and A
πθold
t is the

advantage computed using the old policy. J CPI (θ ) is called
the surrogate objective because it contains a ratio of the old
and new policies. The superscript CPI stands for conservative
policy iteration.

J KLPEN (θ ) = Et [rt (θ )A
πθold
t − βKL(πθ ||πθold )], (24)

where β is the adaptive coefficient and KL(πθ ||πθold ) is
the KL penalty. PPO with adaptive KL penalty converts the
KL constraint Et [KL(πθ (at |st )||πθold (at |st ))] into an adaptive
KL penalty that is subtracted from the importance-weighted
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Algorithm 1: A2C

1 Assign the entropy regularization weight β ≥ 0 ;
2 Assign the actor learning rate αA ≥ 0 ;
3 Assign the critic learning rate αC ≥ 0 ;
4 Initialize the actor and critic parameters θA, θC with

random values ;
5 for episode = 0 . . . max do
6 Gather and store data (st , at , rt , s′t ) by acting in

the environment using the current policy
7 for t = 0 . . . T do
8 Calculate predicted V-value Ṽ π (st ) using the

critic network θC
9 Calculate the advantage Ãπ (st , at ) using the

critic network θC
10 Calculate V πtar (st ) using the critic network θC

and/or trajectory data
11 Optionally, calculate entropy Ht of the policy

distribution, using the actor network θA
12 Otherwise, set β = 0
13 end
14 Calculate the value loss using MSE:
15 Lval(θC ) = 1

T

∑T
t=0 (Ṽ

π (st )− V πtar (st ))
2

16 Calculate policy loss:
17 Lpol(θA) =

1
T

∑T
t=0 (−Ã

π (st , at )logπθA (at |st )− βHt )
18 Update critic parameters using SGD:
19 θC = θC + αC∇θCLval(θC )
20 Update actor parameters using SGD:
21 θA = θA + αA∇θALpol(θA)
22 end

advantage resulting in the KL-penalized surrogate objective
shown in (24).

J CLIP(θ ) = Et [min(rt (θ )A
πθold
t , clip(rt (θ ),

1− ε, 1+ ε)A
πθold
t )], (25)

where ε is the clipping neighbourhood and the term
clip(rt (θ ), 1− ε, 1+ ε)A

πθold
t ) constrains the value of J CLIP

between (1 − ε)At and (1 + ε)At . The calculation of the
KL for the KL-penalized surrogate objective can be compu-
tationally expensive. This is remedied by PPO with clipped
surrogate objective which introduces a simpler modification
to the surrogate objective. The clipped surrogate objective
limits the probability ratio rt (θ ) of the new policy to the old
policy to an ε-neighbourhood [1− ε, 1+ ε]. The bounds on
the objective J CLIP ensures that policy updates are safe as
large policy updates do not deviate beyond the neighbourhood
[1−ε, 1+ε]. The clipped surrogate objective variant of PPO
is preferred over the KL-penalized surrogate objective variant
since it is simpler and performs better.

The DRL algorithms chosen for our implementation are
two of the state-of-the-art algorithms that are widely used.
They support both discrete and continuous action spaces

Algorithm 2: PPO

1 Assign the entropy regularization weight β ≥ 0 ;
2 Assign the clipping variable ε ≥ ;
3 Assign the number of epochs K ;
4 Assign the number of actors N ;
5 Assign the minibatch sizeM ≤ NT ;
6 Assign the actor learning rate αA ≥ 0 ;
7 Assign the critic learning rate αC ≥ 0 ;
8 Initialize the actor and critic parameters θA, θC with

random values ;
9 Initialize the old actor network θAold ;

10 for i = 1, 2, . . . do
11 Set θAold = θA
12 for actor = 1, 2, . . . ,N do
13 Run policy θAold in environment for T time

steps and collect the trajectories
14 Compute advantages A1, . . . ,AT using θAold
15 Calculate V πtar,1, . . . ,V

π
tar,T using the critic

network θC and/or trajectory data
16 end
17 Let batch with size NT consist of the collected

trajectories, advantages, and target V-values
18 for epoch = 1, 2, . . . ,K do
19 for minibatch m in batch do
20 The following are computed over the

whole minibatch m
21 Calculate rm(θA)
22 Calculate J CLIP

m (θA) using the advantages
Am from the minibatch and rm(θA)

23 Calculate entropies Hm using the actor
network θA

24 Calculate policy loss:
25 Lpol(θA) = J CLIP

m (θA)− βHm
26 Calculate predicted V-value Ṽ π (sm) using

the critic network θC
27 Calculate value loss using the V-targets

from the minibatch:
28 Lval(θC ) = MSE(Ṽ π (sm),V πtar (sm)
29 Update critic parameters using SGD:
30 θC = θC + αC∇θCLval(θC )
31 Update actor parameters using SGD:
32 θA = θA + αA∇θALpol(θA)
33 end
34 end
35 end

and this makes them compatible with our MDP formulation.
The algorithms chosen provide certain advantages that are
essential in an IIoT environment. They are easy to implement,
fast and computationally inexpensive.

V. PERFORMANCE EVALUATION
The proposed DRL approach is evaluated based on the
rewards obtained, the objective functions, the blockchain
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storage reduction on the local peer and the run-time. TheDRL
algorithms used are compared to the evolutionary algorithms:
the Advanced Time-Variant Multi-Objective Particle Swarm
Optimization (AT-MOPSO) and the Non-dominated Sorting
Genetic Algorithm - III (NSGA3). The curves shown in the
graphs in this section were smoothed over a window of
50 episodes to provide better visualization of the trends.

A. EXPERIMENTAL SETUP AND DESIGN
The simulated environment for training was implemented
in Python using OpenAI’s Gym. The agents based on the
proposed DRL algorithms were also implemented in Python
using Stable Baselines3 which is based on PyTorch. The DRL
agents used in our approach were first trained over 50,000
time steps before being evaluated.

TABLE 1. Optimization parameters.

The starting parameters for the environment before training
and evaluation are shown in table 1. Most of the values used
were based on the earlier works in [13] and [14] to make
some comparisons. The number of blocks on the blockchain
when the environment starts is set at 200. The monetary cost
Mb is derived from Amazon’s S3 pricing but is scaled from
per 1 GB to per 100 MB for easier analysis. The trade-off
factor θ is set at 0.1 and can be varied depending on the value
placed on latency in the cloud storage cost. The threshold
for blockchain storage on the local storage is set at half the
physical storage available and the monetary limit is also set
at $0.1766 which is a 100 MB maximum in the cloud. The
objective function weights are set at 0.5, 0.2 and 0.3 for
the query probability, cloud storage cost and local space
occupancy respectively. The query probability objective is
given the highest weight to ensure that blocks are not sent to
the cloud despite high query costs. We consider a fixed case
scenario for our query frequency for simplicity and have an
initial query frequency set at 0.95. The size of a block can be
variable and is generated randomly between 1 KB and 2 MB.
The block status is toggled between 0 and 1 for local and
cloud storage respectively. At initialization, all blocks are
stored locally and thus have a block status of 0. The training
and experiments in this work were performed on an Intel Core
i5-10500T, 6-core, with 8 GB RAM.

B. REWARD EVALUATION
The trained DRL agents were tested on the simulated envi-
ronment to evaluate their performance in terms of rewards
obtained. On average, the A2C agent received higher rewards
than the PPO agent. However the PPO agent showed improve-
ment over the course of the test and received a higher reward
at the end of the test compared to the A2C agent. The A2C
agent started with an improvement in the earlier episodes
of the test but dropped off at the end. A longer run would
have seen a steady improvement in the PPO and most likely
a higher average reward. The steady improvement of the
PPO agent’s rewards can be attributed to the ability of the
algorithm to prevent large updates to the policy that could
destabilize performance.

FIGURE 4. Rewards obtained by trained agents over 200 episodes.

C. PERFORMANCE ON QUERY PROBABILITY
Figure 5(a) shows the query probability at the end of each
episode over 200 episodes. The results showed that the PPO
agent consistently produced the highest query probability
in the cloud while the NSGA3 produced the least query
probability. The AT-MOPSO and A2C also had relatively low
query probability. The poor performance of the PPO agent in
this objective could be as result of the policy it learns over
time. Since it does not allow for too large updates to the
policy, the current policy used in the block selection may be
over-optimistic in its selection of blocks to the cloud leading
to a higher query probability.

D. PERFORMANCE ON CLOUD STORAGE COST
Figure 5(b) shows the storage cost of the DRL agents com-
pared to AT-MOPSO and NSGA3 over 200 episodes. The
values recorded are similar for the agents which are better
than the AT-MOPSO and the NSGA3 in this objective. The
DRL agents are more critical with regards to cloud storage
costs. Since they are punished for exceeding a cloud mon-
etary cost limit, they maintained a lower cloud storage cost
hence showing better performance than the AT-MOPSO and
NSGA3 in this objective.
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FIGURE 5. Comparison of algorithms on objective functions.

E. PERFORMANCE ON LOCAL SPACE OCCUPANCY
Figure 5(c) shows the local space occupancy of the
DRL agents compared to AT-MOPSO and NSGA3 over
200 episodes. The results showed that the A2C agent main-
tained the highest local space occupancy and thus the worst
performance in this objective. The PPO agent produced a
lower local space occupancy than the A2C. The AT-MOPSO
gave the best performance in this objective and had the
least local space occupancy on average. The AT-MOPSO
and NSGA3 produced relatively lower local space occupancy
than the DRL agents. While the evolutionary algorithms gave
the best performance in this objective, they are not necessarily
the best choice. The evolutionary algorithm-based approach
does not allow selected blocks to move back into local stor-
age. However, in the DRL-based approach, the same block
could be selected more than once and shifted between the
local and cloud storage based on the observed state of the
ledger and how it would affect performance. The effect of
this design would be more evident in a live blockchain system
over a long period of time where the performance of the
blockchain can be evaluated as the query frequency of blocks
change. Consequently, the average local space occupancy in
our limited setup using the evolutionary algorithms is lower
than the proposed approach.

F. STORAGE REDUCTION PERFORMANCE
Figure 6 shows the percentage storage reduction made
using the proposed approach compared to the AT-MOPSO
algorithm used in [14]. The A2C and PPO agents provided

average storage reductions of 42.9% and 47.8% which
are less than the NSGA3’s 50.1% and the AT-MOPSO’s
59.5%. The percentage storage reduction also reflected the
local space occupancy objective, of which AT-MOPSO and
NSGA3 performed better than the proposed approach. How-
ever, the storage saved by the DRL agents was still significant
since, on average, that was nearly half of the blockchain size.
Combined with their runtime, the DRL agents had an edge
regarding efficiency.

FIGURE 6. Comparison of storage reduction.

G. RUN-TIME PERFORMANCE
Table 2 shows the run-time of the trained agents over 200 iter-
ations with 200 blocks compared to the evolutionary algo-
rithms. The results show that the DRL approach has a
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much faster run-time than the evolutionary algorithms once
a trained model is obtained.

TABLE 2. Run-time of DRL algorithms and evolutionary algorithm.

The significant difference in speedwe observe between our
approach and the evolutionary algorithms is because the DRL
agent, once trained, only needs to examine the current state of
the ledger and determine the best action to take based on its
experience in training. The evolutionary algorithms generate
a random set of solutions and spend time searching for the
best solution in the search space for every iteration.

VI. CONCLUSION
In this paper, we examined the impact of the high stor-
age requirements of the blockchain on its integration into
IIoT systems. We proposed an adaptive optimization scheme
for blockchain-IIoT systems that leverages cloud storage to
reduce storage demand on local peers. To find the optimal
set of blocks that should be kept in cloud storage, we pro-
posed using a DRL agent that learns from interacting with
the blockchain and evaluating the parameters of the blocks
to discover which blocks should be selected. Our approach
allowed the transfer of blocks in both directions as opposed
to the earlier works which only looked at how blocks could
be moved to the cloud. To fit as a reinforcement learning
problem, we formulated the block selection problem as an
MDP. We modelled the states of the blockchain environment
and the actions available to the agent, and designed the reward
function and reward conditions based on the objective func-
tions for our optimization problem.We designed a blockchain
simulation environment based on the MDP to train and test
our models. We observed from our experimental results that
storage on the local peer could be reduced by up to 47.8%.
Our results also confirmed that given a trained model, our
DRL approach produces solutions much faster than the clas-
sical methods used in prior works. In future works, we will
explore the design of a DRL algorithm to solve the block
selection problem and improve its convergence in terms of
rewards. The query probability objective can also be explored
in terms of temporal and spatial locality of blocks. Thus, the
relationship between blocks that are linked on the blockchain
could provide insight into the likelihood of queries on such
blocks. It is also noteworthy to look at the integrity and
security of the blockchain when blocks are transferred to and
from the cloud.
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