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ABSTRACT A two-layer structure model predictive control (MPC) for the low thermal efficiency of cement
raw material pre-decomposition is proposed. In the upper layer, an outlet temperature of the precalciner
automatic setting scheme is formulated with craft constraints by taking advantage of the energy flow and
thermal energy conversion models. In the lower layer, the stable control of the precalciner is achieved using
a model predictive control algorithm. Finally, extensive simulation results verify the proposed two-layer
MPC approach with excellent performance in energy saving and consumption reduction of raw meal pre-
decomposition link.

INDEX TERMS Two-layer structure model predictive control, precalciner, energy flow model, thermal
energy conversion model.

I. INTRODUCTION
In light of the increasingly stringent environmental policy,
research and applications on the digital and intellectual trans-
formation of the cement industry have received substan-
tial interest. Depending on the technology, the process of
burning cement clinker can be broken down into the link-
ages of raw meal pre-decomposition, clinker calcination, and
clinker cooling. The coal consumed during the raw meal
pre-decomposition link accounts for approximately 60% of
the total coal consumed during clinker calcination. Since the
precalciner is the most critical equipment in the raw meal
pre-decomposition chain and the principal location for raw
meal carbonate decomposition, its outlet temperature setting
and operation stability impact the energy consumption of the
complete clinker calcination process and the quality of the
cement clinker. Indeed, the temperature regulation of the pre-
calciner has received substantial attention due to the signifi-
cant inertia, long-time delay, and strong coupling concerns.
For instance, He and Zuo employ a proportional-integral-
derivative (PID) control scheme to automate the precalciner’s
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outlet temperature regulation, thereby reducing the operator’s
burden [1], [2]. Ma used fuzzy control to enhance the precal-
ciner’s control automation and better stabilize the outlet tem-
perature than human control [3]. Wang created a precalciner
temperature control system based on a fuzzy PID algorithm
that outperforms conventional PID and fuzzy control systems
in dynamic performance [4]. Currently, the control algorithms
listed above are the most prevalent in the cement sector.
However, these control algorithms do not consider real-time
optimization, making it challenging to meet the enterprises’
energy-saving and consumption-reduction objectives. Never-
theless, the two-layer structure model predictive control tech-
nique is widely utilized in the petrochemical, thermal power
plant, and other industries due to its superior optimization and
control performance [5], [6], [7], [8], [9]. Therefore, to satisfy
the process and equipment requirements, this work develops
a two-layer predictive control model, which optimizes the
precalciner’s outlet temperature in real-time.

II. THE PRE-DECOMPOSITION PROCESS OF CEMENT
RAW MEAL
The two main production equipment for raw material
pre-decomposition are suspension preheaters and precalciner,
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FIGURE 1. Flow chart of cement raw meal pre-decomposition.

with the technological process depicted in Fig.1. Among
them, the cyclone preheater comprises five cyclones series,
i.e., C1, C2,. . . , and C5, with its primary function being mate-
rial dispersion, gas-solid heat exchange, and a small portion
of calcium carbonate breakdown. In actual production, the
raw meal is delivered from the raw meal silo to the junction
of the C1 and C2 cyclones using a bucket elevator. Then
the high-temperature gas from the C2 cyclone is blown from
the bottom to the top into the C1 cyclone to separate the
gas from the solid. The raw meal enters the connecting pipe
between the C2 and C3 cyclone separators via the air gate
valve at the bottom of C1 and is then blown into the C2
cyclone by the high-temperature gas from the C3 cyclone.
After layer-heating, the raw meal’s moisture is evaporated,
and the clay minerals are dehydrated and decomposed, laying
a solid foundation for the future decomposition of calcium
carbonate and clinker calcination. Finally, the raw material is
delivered into the precalciner from the bottom of C4 follow-
ing preheating at a high temperature.

III. DIFFICULTIES ANALYSIS OF PRECALCINER OUTLET
TEMPERATURE CONTROL
The analysis in Section II reveals that timely optimization and
accurate control of the precalciner outlet temperature play a
crucial role in improving the thermal efficiency of the raw
food pre-decomposition link. Currently, the most challenging
aspect of controlling the precalciner outlet temperature is the
severe coupling of all links, which is easily impacted by the
kiln tail coal supplied, the raw material quantity, and the ter-
tiary air from the grate cooler.

A. INFLUENCE OF THE COAL INJECTION AT KILN TAIL
The heat released by coal injection at the kiln tail is the pri-
mary heat source of the raw material decomposition. Under

the condition that the tertiary air volume remains unchanged,
increasing the amount of coal injection at the kiln tail will
easily increase the CO2 concentration, resulting in insuf-
ficient combustion of pulverized coal in the furnace, and
even leading to the ‘‘temperature upside down’’ phenomenon,
which affects the equipment’s safety. Suppose the injection
of coal is lowered. In such a scenario, the precalciner’s outlet
temperature will decrease, the rate of the rawmaterial decom-
position will reduce, and the rotary kiln’s load will increase.

B. INFLUENCE OF THE RAW MATERIAL QUANTITY
Clinker yield can be improved by increasing the raw material
input after stabilizing the system. However, if the amount of
feed is excessive, the balance in the furnace will be disturbed,
decreasing the precalciner outlet temperature and the raw
material decomposition rate and thus affecting the clinker
quality. If the feeding amount is too little, the raw materials
in the furnace will undergo excessive decomposition, leading
to equipment crusts and other safety hazards.

C. INFLUENCE OF THE TERTIARY AIR
Tertiary air is a high-temperature gas with a temperature
above 900◦C formed by the grate cooler to cool the clinker.
These hot gases enter the precalciner through tertiary air
ducts, providing much heat for the precalciner and promoting
the combustion of pulverized coal in the furnace. Neverthe-
less, the valve opening of the tertiary air almost remains
unchanged in actual production, and therefore the tertiary
air temperature significantly influences the precalciner outlet
temperature. If the tertiary air temperature is too low, the
outlet temperature of the precalciner will be reduced.

IV. DESIGN OF TWO-LAYER MODEL PREDICTIVE
CONTROL STRATEGY
Based on the traditional model predictive control algorithm,
the two-layer predictive control introduces a real-time opti-
mization layer, and its structure is shown in Fig.2. It retains
the advantages of excellent anti-interference and tracking
effect of the traditional model predictive control algorithm,
as well as solves problems such as the decline of thermal effi-
ciency and energy waste, due to the untimely and unreason-
able artificial control of the precalciner outlet temperature.

A. REAL-TIME OPTIMIZATION LAYER
In order to realize automatic optimal setting of precalciner
outlet temperature. In this paper, firstly analyzes the energy
flow in the cement raw material pre-decomposition, and then
establishes thermal efficiency optimization objective function
with the energy conversion model. Finally, the real-time opti-
mization of the precalciner outlet temperature is realized by
the particle swarm optimization algorithm.

1) ENERGY FLOW ANALYSIS OF CEMENT RAW MATERIAL
PRE-DECOMPOSITION
Energy flow analysis has numerous applications in energy
conservation and scheduling in the steel, aluminum,
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FIGURE 2. Two-layer structure model predictive control structure diagram.

FIGURE 3. Generalized energy flow model.

FIGURE 4. Energy flow of raw material pre-decomposition process.

and automotive power design industries, among oth-
ers [10], [11], [12], [13], [14], [15]. According to diverse
sources and orientations, energy in the process industry can
be classified as energy from other processes, external input
energy, recycling self-use energy, energy taken away by
products, energy recovered for other uses, and process loss
energy [16], [17], [18]. The model is shown in Fig.3.

According to the above division principles, the energy flow
of cement raw material pre-decomposition is shown in Fig.4
(The heat value below 50KJ/kg.cl is not considered). The
meaning of parameters is shown in Table 1.

2) ESTABLISHMENT OF THERMAL ENERGY CONVERSION
MODEL IN RAW MATERIAL PRE-DECOMPOSITION PROCESS
Under stable working conditions, the conversion relationship
between various energies in an industrial production process
usually satisfies Equation 1. The conversion model is shown
in Fig.5. In (1), Qinput is the input energy of the system, α
is the energy conversion coefficient, and Qoutput is the output

TABLE 1. Meaning of energy flow parameters in the raw material
pre-decomposition process.

FIGURE 5. Generalized energy conversion model.

FIGURE 6. Multi-input and multi-output generic energy conversion model.

energy of the system.

Qoutput = α × Qinput (1)

According to the energy flow analysis in 4.1.1, it can be
seen that there are multiple energy inputs and outputs in the
raw material pre-decomposition link, so the general energy
conversion model can be transformed into Fig.6, where con-
version relationship can be expressed by (2). For details of
the energy conversion model, please refer to [19].
Qoutput(1)
Qoutput(2)

...

Qoutput(m)

 =

α1,1 . . . αm,1
α1,2 · · · αm,2
...

. . .
...

α1,m · · · αm,m

×

Qinput(1)
Qinput(2)

...

Qinput(m)


(2)

As shown in Fig.4, although the energy flow of raw mate-
rial pre-decomposition is multi-input and multi-output, there
is only one energy type: heat energy. In constructing the
energy conversion model, the following assumptions are con-
sequently made:
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FIGURE 7. Ratio of each thermal energy output to total thermal energy
input.

Hypothesis 1: Under stable working conditions, each ther-
mal energy input will supply the same proportion of heat to
each thermal energy expenditure item.
Hypothesis 2: According to Hypothesis 1, the proportion

formula of thermal energy expenditure as shown in (3) can
be established, and the calculation results are shown in Fig.7.
In order to improve the calculation accuracy of the model,
it is assumed that the conversion coefficient of the heat energy
conversionmodel can be regarded as the ratio of a certain heat
energy expenditure to the total heat input, and this value is
constant under the steady-state condition.

αi =
Qi

Qmfrs + Qscf + Qywyq
(3)

where, αi is the ratio of thermal energy expenditure; Qi is the
thermal energy expenditure item, i = 1 · · · 3.
Thus, the thermal energy conversion formula of raw mate-

rial pre-decomposition process can be established as shown
in (4).

Qslfj = 0.543250× (Qmfrs + Qscf + Qywys)

Qrywl = 0.258207× (Qmfrs + Qscf + Qywys)

Qyrfq = 0.181797× (Qmfrs + Qscf + Qywys) (4)

To determine whether the thermal energy conversion
model’s assumptions are reasonable, this research picks
around 3 hours of continuous production data for simula-
tion verification and calculates the percentage of data error
using Formula 5. After the energy conversion model, the
percentage error of sensible heat for preheated exhaust gas is
less than ±1.5%, the percentage error of heat consumption
for carbonate decomposition is less than ±1.2%, and the
percentage error of sensible heat for materials entering the
rotary kiln is less than±2.5%. The results of the calculations
are depicted in Fig.8, The percentage error is less than five
percent of the experimental requirements, and the thermal
energy conversion model’s assumptions are fair.

δj =
Tj − tj
Tj
× 100% (5)

FIGURE 8. Percentage of thermal energy error after conversion.

where, δj is the error percentage of the thermal energy con-
version model; Tj is the actual heat expenditure of a thermal
energy. tj is the estimated value of a heat energy expenditure
after heat energy conversion model; j = 1 · · · 3.

3) ESTABLISHMENT OF THERMAL EFFICIENCY
OPTIMIZATION OBJECTIVE FUNCTION
Under stable working conditions, the preheater sensible heat
outlet is the largest heat loss source in the process of raw
material pre-decomposition. Therefore, reducing the sensible
heat of preheated exhaust gas is the most important way
to improve the pre-decomposition link thermal efficiency.
This paper combined with the ‘‘Methods for the calculation
of heat balance, heat efficiency and comprehensive energy
consumption of cement rotary kiln’’, the following objective
function as shown below [20].

min Qyrfq = Vfql × Cfq × Tc1B

s.t. 1.15 ≤
Msl

ρO2

≤ 1.28◦C

290◦C ≤ Tc1B =
Qyrfq

Vfql × Cyrfq
≤ 330◦C

85% ≤ η =
Qslfj

Msl × β ×
100
44 × 1660

≤ 95%

860◦C ≤ Tfjl

=
Qrhzywl

[(Msl × η × β × C1)+ (Msl × (1− η)× C2)]
≤ 900◦C (6)

where Vfql is the amount of preheated exhaust gas; Cfq is the
specific heat capacity of preheated exhaust gas; Tc1B is the
outlet temperature of the preheater;Msl is the amount of raw
material feeding; ρO2 is the oxygen content in the precalciner;
ηis the decomposition rate of raw material; β is the raw
material loss on ignition; C1is the specific heat capacity of
decomposed raw material;C2 is the specific heat capacity
of undecomposed raw material; Tfjl is the precalciner outlet
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temperature; 100/44 is the ratio of CaCO3molecular weight
toCO2v molecular weight; 1660 is the unit mass ofCaCO3
decomposition energy consumption.

4) SOLUTION OF THERMAL EFFICIENCY OPTIMIZATION
OBJECTIVE FUNCTION
At present, there are many optimization algorithms, such as
the gradient method, simplex method, and particle swarm
optimization [21], [22], [23], [24], [25], [26].The gradient
method is generally applicable to unconstrained function
optimization problems.The convergence rate of the simplex
method is slow when solving functions with constraints.
Particle swarm optimization (PSO) is widely presented in
many engineering fields because of its simple structure and
fast convergence speed. The PSO algorithm is inspired by
the natural foraging activity of birds. In the algorithm, flock
members are replaced by particles. Each particle has its own
speed and position. During the optimization process, each
particle continuously updates its own position and speed until
it gets the optimal solution that meets the conditions. The
optimization process is shown in Fig.9. The updating formula
of particle speed and position is shown in (7).

Vi(k + 1) = wVi(k)+ c1r1(Pibest (k)− Yi(k))

+ c2r2(Pgbest(k)− Yi(k))

Yi(k + 1) = Yi(k)+ Vi(k + 1) (7)

In Equation 7, w is the inertia weight, Yi is the current
position of a particle i,Vi is the current velocity of the particle,
Pibest is the current optimal position of a particle i, and Pgbest
is the optimal global position of all particles at moment t;
c1,c2 is the learning factor, and r1, r2 is a random number
within [0,1]. The value of w is essential to PSO, and there
are usually two kinds of fixed and variable values. After
simulation, it can be known that the algorithm with a fixed
value is 0.5s-1s faster than the algorithm with a variable
value, so this paper selects the particle swarm optimization
algorithm with a fixed value of w.

B. DYNAMIC CONTROL LAYER
As a representative of advanced process control, the MPC
has been widely used in complex industrial processes because
of its advantages, such as low computational effort and high
robustness [27], [28], [29], [30]. Fig.10 depicts the construc-
tion of the MPC system, which consists of three components:
prediction model, rolling optimization, and feedback correc-
tion.

1) PREDICTIVE MODEL
Predictive model serve to predict future outputs based on
historical information and future inputs. Since raw material
decomposition and pulverized coal combustion are complex
physical and chemical reactions, it is hard to accuratelymodel
the precalciner outlet temperature input and output through
mechanism modeling. This article uses a Back Propagation

FIGURE 9. Flow chart of particle swarm optimization search.

FIGURE 10. Precalciner outlet temperature model prediction control
structure diagram.

(BP) neural network to predict the precalciner outlet temper-
ature due to its strong generalization capabilities. Depending
on the length of the forecast, the predictionmodel can be clas-
sified into single-step prediction and multi-step prediction.
In this paper, a recursive multi-step prediction model with the
structure given in Fig.11 and the derivation formula shown in
Equation 8 is employed for the multi-step prediction of the
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FIGURE 11. Recursive multi-step prediction structure.

FIGURE 12. Multi-step prediction error percentage.

TABLE 2. Value of multi-step prediction error percentage.

system.

ŷ(k + 1) = fbpnn [y(k), · · · , y(k−n+ 1),
u(k), · · · , u(k−m+ 1)]

...

ŷ(k + i) = fbpnn [y(k + i− 1), · · · , y(k + i− n),
u(k + i− 1), · · · , u(k + i− m)]

...

ŷ(k + N ) = fbpnn [y(k + N − 1), · · · , y(k + N − n),
u(k + N − 1), · · · , u(k + N −m)]

(8)

where, fbpnn is the BP neural network, ŷ(k+ i) is the predicted
output at the moment k+i, n is the output order of the system,
m is the input order of the system, and N is the step size of
the prediction.

The prediction error percentage is shown in Fig.12 and
Table 2. Although the error increases with the increase of
the prediction step, the maximum percentage error is 0.137%,
which is lower than the error requirement of the temperature
sensor and satisfies the algorith’s conditions.

FIGURE 13. Rolling optimization schematic.

FIGURE 14. Preheating exhaust gas temperature reduction.

2) ROLLING OPTIMIZATION
Rolling optimization aims to use optimization indicators to
calculate the future M control increments, so that the pre-
dicted value yr of the next P period is as close as possible to
the target value w. This is a rolling optimization in a finite
time domain, as seen in Fig.13 At each sampling moment,
the optimization performance index only involves a limited
time in the future from that moment, and the optimization
period of the following sampling moment is moved forward
simultaneously. Thus optimization is not performed offline at
one time but iteratively online in predictive control.

The optimized performance metrics are shown below:

min J (k) =
P∑
i=1

qi[w(k + i)− yr (k + i)]2

×

M∑
j=1

rj[(u(k + j)− u(k + j− 1)]2 (9)

where, qi and ri represent the weight coefficients, P and
M represent the optimized and control time-domain lengths,
respectively. w(k + i) is the objective value computed by the
real-time optimization layer, yr(k + i) is the anticipated value
at time k + i, and u(k + j) is the control quantity at time k + j
as determined via rolling optimization.

3) FEEDBACK CORRECTION
After the predictive control algorithm determines a series of
future control actions through optimization to prevent model
mismatch or environmental disturbances from causing the
control to deviate from the ideal state, only the control action
at the current moment is realized. Before a new optimization
is done, the actual output of the object is checked at the next
samplingmoment, andmodel-based predictions are corrected
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FIGURE 15. Comparison of precalciner outlet temperature before and
after optimization.

FIGURE 16. Precalciner outlet temperature setting.

FIGURE 17. Dynamic performance of PID control and MPC systems.

using real-time data. In this paper, the error e(k) is determined
by comparing the actual system output y(k) to the predicted
output ym(k):

e(k) = y(k)− ym(k) (10)

The reference output is then corrected using e(k):

yr (k + i) = ym(k + i)+ δe(k) (11)

where, δ is the correction factor, and yr (k + i) is used instead
to achieve rolling optimization and complete the feedback
correction.

V. SIMULATION
A. REAL-TIME OPTIMIZATION LAYER SIMULATION
ANALYSIS
Fig.14 depicts the optimized preheater output temperature
reduction value after roughly 8 hours of simulation, which
is generally lower than the temperature before optimization

FIGURE 18. Dynamic performance of Fuzzy control and MPC systems.

FIGURE 19. Dynamic Performance of Fuzzy-PID control and MPC systems.

and can be decreased by up to 9◦C. The precalciner outlet
temperature is depicted in Fig.15; following optimization,
the temperature changes smoothly and satisfies the process
specifications of 870◦C—890◦C.
The simulation results indicate that this solution positively

impacts the energy consumption of the pre-decomposition
of raw materials link. Given the large inertia and hysteresis
characteristics of the precalciner, to avoid system instability
caused by frequent changes in setting values, the temperature
adjustment cycle of the precalciner is set to 20 minutes,
and the temperature setting curve of the precalciner outlet
is shown in Fig.16. In the current actual production, the
precalciner outlet temperature does not attract the operator’s
attention, and according to the data collected in the database,
it can be seen that the precalciner outlet temperature is
always 890◦C. Although this way of setting can lower the
operator’s work intensity, it also causes reduces thermal effi-
ciency to some degree. In contrast to artificial adjustment, the
precalciner outlet temperature setting technique described in
this study is more compliant with energy conservation and
consumption reduction needs.

B. MODEL PREDICTIVE CONTROL SIMULATION ANALYSIS
Actual mathematical model of the controlled item is neces-
sary for the MPC simulation. In order to simplify the system
model, this research uses the kiln tail coal feed as input
and the precalciner outlet temperature as output. Utilizes
the MATLAB system identification toolbox to identify the
transfer function of the decomposer system, as indicated in
(12). To evaluate the system’s dynamic performance, the
simulation time is set to 2000s, and the temperature is set
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FIGURE 20. Anti-interference performance of PID control and MPC
systems.

FIGURE 21. Anti-interference performance of Fuzzy control and MPC
systems.

FIGURE 22. Anti-interference performance of Fuzzy-PID control and MPC
systems.

to 890◦C for the first 1000s and 860◦C for the remaining
1000s. The control effect is shown in Fig.17-19. Interfer-
ence will inevitably occur in the field. In order to test the
anti-interference ability of the control system, white noise is
introduced in the simulation system, and the effect is shown
in Fig. 20-22.

G(s) =
109

120s+ 1
× e−26s (12)

According to the simulation data in Table 3, it can be seen
that the overshoot of the MPC is 1.4%, which is lower than
4.5% for PID control, 2.5% for fuzzy control, and 2.8% for
fuzzy PID control. The settling time is about 300s, which
is significantly faster than 650s for PID control, the 1200s
for fuzzy control, and 800s for fuzzy PID control. When
the setpoint is altered, the MPC has a shorter settling time

TABLE 3. Simulation performance data.

and a smoother control process than the other three controls.
MPC is more robustness than other control systems when
disturbances are introduced.

VI. CONCLUSION
In this paper, a two-layer structure model predictive control
strategy is proposed to solve the current situation of low
thermal efficiency in the raw material pre-decomposition
link. In the real-time optimization layer, the energy flow
and thermal energy conversion model of the raw material
pre-decomposition process are initially studied to determine
the objective function and constraints for thermal efficiency
optimization. The optimal precalciner outlet temperature is
then calculated in real-time using the particle swarm opti-
mization algorithm, which achieves not only the real-time
optimization of the precalciner outlet temperature setting
value, but also the energy saving and consumption reduc-
tion of the raw material pre-decomposition process. In the
dynamic control layer MPC algorithm, a recursive multi-step
BP neural network is used to realize a multi-step predic-
tion of the outlet temperature of the resolver. The greatest
percentage error of the prediction effect is only 0.137%,
which is highly accurate and offers a solid foundation for the
MPC algorithm’s stability control. Matlab simulation results
show that the MPC is better than the more widely used PID,
fuzzy control, fuzzy PID and other algorithms in the field in
terms of settling time, steady-state error, overshoot, and anti-
interference performance, which provides a solid guarantee
for the long-term stable and efficient operation of the pre-
decomposition link.
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