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ABSTRACT Multi-exposure image fusion is an important task for high dynamic range imaging. The
performance of a fusion method is highly dependent on the quality of the input multi-exposure image.
However, it is often difficult to obtain a multi-exposure image thoroughly covering the dynamic range of
a scene. In such a situation, some areas are unclear in all the images contained by the multi-exposure
image, leading to a low-visibility fusion result. To overcome this problem, Kinoshita and Kiya proposed
scene segmentation-based luminance adjustment (SSLA). In SSLA, the scene is segmented into regions and
the luminance of each region is adjusted so that the region has mid-level brightness. A fusion result with
better visibility can be obtained by fusing the luminance adjusted multi-exposure image. Kinoshita and Kiya
proposed two scene segmentation approaches for SSLA. One of them is fast but sometimes fails to segment
dark areas and bright areas into different regions. The other can generate a better scene segmentation result
but it requires a time-consuming iterative process. In this paper, we propose a new scene segmentationmethod
for SSLA. The proposed scene segmentationmethod uses information obtained from the nonlinear luminance
distribution and area occupancy of the segmented regions. A fast implementation for the proposed scene
segmentation method is also described. Experimental results show that the proposed scene segmentation
method is fast and stably generates good scene segmentation results.

INDEX TERMS High dynamic range imaging, multi-exposure image fusion, scene segmentation-based
luminance adjustment.

I. INTRODUCTION
The dynamic range of luminance in natural scenery is very
wide, whereas the dynamic range of image sensors used for
general cameras and smart phones is relatively narrow. When
an image sensor with a narrow dynamic range is used, the
pixels whose luminance exceeds the dynamic range of the
sensor cause white-out or black-out.

Many attempts have been made to obtain high-quality
images in wide dynamic range scenes. One such attempt is
to use a high-spec image sensor whose dynamic range is
wider than those of general image sensors [1], [2]. Since
such image sensors are more expensive than general image
sensors, their applications are limited to special uses such as
security cameras and in-vehicle cameras. Another common
attempt to obtain high-quality images of wide dynamic range
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scenes is to use a multi-exposure image, which is a set of
multiple images taken under different exposure conditions
(in most cases, the exposure time is varied). Amulti-exposure
image can be easily obtained with a general image sensor.
Many methods have been proposed to create a single high
dynamic range (HDR) image by integrating a multi-exposure
image into a single image [3], [4], [5]. An HDR image differs
from a low dynamic range (LDR) image such as a jpeg image
in that its pixel values are linear to the luminance of the actual
scene and its dynamic range is wider than that of an LDR
image. To display an HDR image on a device with a stan-
dard dynamic range, the range of pixel values must be com-
pressed in accordance with the dynamic range of the device.
Such dynamic range compression is called tone mapping [6],
[7], [8]. Many methods of obtaining an LDR image directly
from a multi-exposure image without creating HDR images
have been proposed. Such methods are called exposure
fusion (EF) [9], [10], [11], [12], [14], [15], [16], [17]. EF has
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been widely studied in recent years because it is a simple and
convenient approach that does not require the creation of an
HDR image.

The quality of an image obtained by EF highly depends on
the quality of the input multi-exposure image. The following
two problems often occur when acquiring a multi-exposure
image.
Problem 1 There may be some misalignments between

images due to moving objects in the scene and
camera motion.

Problem 2 The dynamic range of a multi-exposure image
may not cover the entire luminance dynamic
range in a scene.

Problem 1 causes an artifact called a ‘‘ghost’’ in the fused
image. A multi-exposure image can be obtained without
spanning different points in time by using multiple sensors
[18], [19] or spatially varying exposures [20], [21], [22] to
avoid the occurrence of Problem 1. However, in these meth-
ods, the number of images that can be acquired at one time is
limited due to the constraint of the hardware architecture. The
effect of a ghost can be alleviated by using a fusion method
that is robust to dynamic scenes [14], [17]. These methods
have the advantage that they do not require a special hard-
ware design. Fig. 1 shows a multi-exposure image in which
Problem 2 occurs. In Fig. 1, the right side of the scene is dark
and unclear in all the images. This indicates that the dynamic
range of the scene is not fully covered by the multi-exposure
image shown in Fig. 1. In areas whose luminance is not
covered by the dynamic range of the multi-exposure image,
the fusion result will be unclear and its visibility will be
low. Problem 2 also degrades the performance of the fusion
algorithm for ghost removal. Problem 2 tends to occur when
the shooting time is limited. For example, in hand-held pho-
tography, setting a long exposure time is discouraged to avoid
image blurring, making it difficult to obtain long-exposure
images. A high shutter speed is required to take a photography
of rapidly moving objects, which makes it difficult to obtain
long-exposure images. In these situations, it is extremely
difficult to capture a large number of images under various
exposure conditions. In real-life shooting situations, it is often
difficult to obtain a multi-exposure image that covers the
luminance dynamic range of the scene clearly. Nevertheless,
most fusion algorithms are designed under the assumption
that the input multi-exposure image covers the entire lumi-
nance dynamic range of the scene. Recently, Kinoshita and
Kiya proposed an effective pre-processing method of EF to
suppress the adverse effect caused by Problem 2 [23]. They
named it scene segmentation-based luminance adjustment
(SSLA). SSLA can be used in various applications including
single image enhancement [24].

The main part of SSLA consists of three steps: (1) local
contrast enhancement of the input multi-exposure image
based on dodging and burning [25], (2) scene segmen-
tation, and (3) luminance scaling based on the result of
scene segmentation. In [23], two approaches are proposed
for scene segmentation. In the first approach, the scene is

FIGURE 1. Multi-exposure image that fails to cover the luminance
dynamic range of the scene clearly.

segmented by selecting one image with intermediate bright-
ness and dividing its luminance dynamic range equally. In the
second approach, the luminance distribution of the input
multi-exposure image is modeled by the Gaussian mixture
model (GMM) and the scene is segmented by clustering
pixels based on the probability density function obtained
through GMM fitting. The first approach is fast, but it often
fails to generate good scene segmentation results because it
makes little use of the luminance distribution information.
The second approach generates better scene segmentation
results. However, fitting a GMM requires a long computation
time. In addition, the second approach sometimes generates
regions with very few pixels. Such regions have little effect
on the final fusion result while increasing the computational
time for the EF process.

In this paper, we propose a new scene segmentationmethod
for SSLA. The proposed method repeatedly chooses one
region and divides it into two regions until the scene segmen-
tation result satisfies the stopping condition. In the proposed
method, the nonlinear luminance distribution and the area
occupancy of each segmented region are exploited. The pro-
posed method stably generates a better scene segmentation
result than Approach A by considering the information of the
nonlinear luminance distribution. It also reduces the number
of images in the output multi-exposure image, thus reducing
the overall computational cost for the following processes
such as EF by suppressing the generation of regions with very
few pixels. Furthermore, the proposed scene segmentation
method is much faster than Approach B and its processing
speed is comparable to that of Approach A. Through various
experiments, it is revealed that the proposed scene segmen-
tation method outperforms not only Approach A but also
Approach B.

The rest of this paper is organized as follows. Chapter II
describes the notations used in this paper. In Chapter III, the
algorithm of SSLA is described. In Chapter IV, our new
scene segmentationmethod for SSLA is proposed. Chapter V
describes the experimental results. Chapter VI concludes this
paper.

II. NOTATIONS IN THIS PAPER
In this section, the notations used in this paper are described.

The set of all pixels of an image is denoted as P. Each
element of P is a two-dimensional vector p = (u, v). A par-
tition of P, which is obtained by grouping elements of P into
M parts, is denoted as {Pm|m ∈ {1, 2, · · · ,M}}. For a set with
indexed elements such as i, the simplified notation {Pm} is
used to denote the same set. The height and width of an image

VOLUME 11, 2023 1129



S. Kojima, N. Suetake: Fast and Effective Scene Segmentation Method for Luminance Adjustment of Multi-Exposure Image

are denoted asU andV , respectively. The number of elements
in a set is represented by |·|. For example, the number of pixels
of an image is denoted as |P|.

A color image whose pixel value is the linear-RGB value is
represented by a boldface character as in x. The term ‘‘linear-
RGB value’’ is used here to mean a value represented by a
coordinate in a color space that has a linear relationship with
the CIE-XYZ color space. The pixel value of x at position p
is denoted as x(p). x(p) can be transformed to a value in the
CIE-XYZ color space by applying a linear transformation.
In this paper, the luminance of a color image is defined as the
Y component of the CIE-XYZ color space.

The pixel value of a monochrome image l at position p is
denoted as l(p). The geometric mean for Pm of l is defined as
follows:

G (l|Pm) = exp

 1
|Pm|

∑
p∈Pm

log (max(l(p), ε))

 , (1)

where ε is a small positive constant. The geometric mean of
a whole image is simply denoted as G(l). G(l) is obtained by
replacing Pm by P in the right-hand side of (1).

III. SSLA
In this chapter, each process of SSLA is described. Note that
the local contrast enhancement process of SSLA is referred
to ‘‘CE’’ in this paper.

A. CE
Let {xn} = {xn|n ∈ {1, 2, · · · ,N }} be the input multi-
exposure image, which contains N color images. In SSLA,
the luminance components of {xn} are first calculated, which
are denoted as {ln} = {ln|n ∈ {1, 2, · · · ,N }}. The contrast-
enhanced luminance images are denoted as {l ′n} = {l

′
n|n ∈

{1, 2, · · · ,N }}. Let l̄n be the image obtained by applying a
bilateral filter [26], [27] to ln. In accordance with [25], l ′n(p) is
calculated as follows:

l ′n(p) =
ln(p)
l̄n(p)

ln(p). (2)

If a user prefers, CE can be skipped. In such a case,
{l ′n} is obtained by the simple operation {l ′n} ← {ln},
where ← denotes substitution. Note that a bilateral filter
can be replaced with other edge-preserving smoothing filters
such as guided image filter [28] and weighted guided image
filter [29].

B. SCENE SEGMENTATION
In [23], Kinoshita and Kiya proposed two approaches
for scene segmentation. In this paper, Approach 1 and
Approach 2 in [23] are referred to Approach A and
Approach B, respectively.
Approach A: In Approach A, the geometric mean of l ′n,

namely G(l ′n), is first calculated for each n. Secondly, nmed

that satisfies G(l ′
nmed ) = mediannG(l ′n) is calculated. Then,

θω is calculated as follows:

θω =
ω

M

(
max
p
l ′nmed (p)−min

p
l ′nmed (p)

)
+min

p
l ′nmed (p), (3)

where ω ∈ {0, 1, 2, · · · ,M}. In Approach A, Pm is deter-
mined as follows:

Pm =

{{
p
∣∣θm−1 ≤ l ′med(p) < θm

}
(m < M ){

p
∣∣θm−1 ≤ l ′med(p) ≤ θm

}
(m = M )

, (4)

where m ∈ {1, 2, · · · ,M}. In Approach A,M is manually set
by a user.
Approach B: In Approach B, the N dimensional vector

l ′(p) = (l ′1(p), l
′

2(p), · · · , l
′
N (p)) is first generated for each

pixel p. Secondly, the distribution of l ′(p) is modeled by using
the GMM and its parameters are estimated. The GMMmodel
for l ′(p) is represented as follows:

p(l ′(p)) ∝
K∑
k=1

πkN
(
l ′(p)|µk , 6k

)
, (5)

where p(l ′(p)) is the probability of generating l ′(p).
N
(
·|µk , 6k

)
is anN -dimensional Gaussian distributionwith

mean µk and variance-covariance matrix 6k . πk and K are a
mixing coefficient and the number of components, respec-
tively. In [23], variational Bayesian inference is utilized to
estimate model parameters. Variational Bayesian inference
can avoid overfitting by automatically removing some com-
ponents from all K components. In Approach B, M , namely
the number of regions, is determined by the number of com-
ponents remaining after variational Bayesian inference. The
set of indexes of the remaining components is defined by
{km|m ∈ {1, 2, · · · ,M}}, where km ∈ {1, 2, · · · ,K }. Finally,
Pm is determined as follows:

Pm =

{
p

∣∣∣∣∣argmax
j

πkjN
(
l ′(p)

∣∣∣µkj , 6kj

)
= m

}
. (6)

C. LUMINANCE SCALING
Fig. 2 shows the explanatory diagram for luminance scaling
in SSLA. In the luminance scaling process, for each region
Pm, one image of {l ′n} is selected and its luminance is scaled
so that the luminance-scaled image has mid-level brightness
in Pm. TheM obtained luminance-scaled images are denoted

FIGURE 2. Explanatory diagram for luminance scaling in SSLA.
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FIGURE 3. Scene segmentation results of Approach A and Approach B for the multi-exposure image shown in Fig. 1. (a) Approach A
without CE, (b) Approach A with CE (bilateral filter), (c) Approach A with CE (guided image filter), (d) Approach A with CE (weighted
guided image filter), (e) Approach B without CE, (f) Approach B with CE (bilateral filter), (g) Approach B with CE (guided image filter),
(h) Approach B with CE (weighted guided image filter).

as {l ′′m} = {l
′′
m|m ∈ {1, 2, · · · ,M}}. To obtain {l ′′m}, ψm and

αm are calculated as follows:

ψm = argmin
n

(
0.18− G(l ′n|Pm)

)2
, (7)

αm =
0.18

G(l ′ψm |Pm)
. (8)

Then, l ′′m(p) is calculated as follows:

l ′′m(p) = αml
′
ψm

(p). (9)

From {l ′n}, (7) is used to select the image with highest quality
in region Pm. This image is the most suitable for generating
the luminance-scaled image corresponding to Pm. Note that
the luminance scaling in (9) is applied not to only the pixels in
Pm but to all the pixels of the image. As the same luminance
scaling operation is applied to all the pixels, l ′′m and l ′ψm have
the same image structure.

D. TONE MAPPING AND COLOR IMAGE GENERATION
After {l ′′m} is obtained, Reinhard’s tone mapping operator [6]
is applied to each image of {l ′′m}. Let l̂m be the tone mapping
result of l ′′m. l̂m(p) is calculated as follows:

l̂m(p) =
l ′′m(p)

1+ l ′′m(p)

(
1+

l ′′m(p)

Lm2

)
, (10)

where Lm is the parameter that controls the value of l ′′m(p)
satisfying l̂m(p) = 1. With l ′′m(p) = Lm, l̂m(p) = 1 holds.
The output multi-exposure image of SSLA is denoted as
{x̂m} = {x̂m|m ∈ {1, 2, · · · ,M}}. x̂m(p) is calculated as
follows:

x̂m(p) =
l̂m(p)
lψm (p)

xψm (p). (11)

The hue of x̂m(p) is made the same as that of xψm (p) [23] by
using (11).

E. PROBLEMS OF SCENE SEGMENTATION METHOD
PROPOSED BY KINOSHITA AND KIYA
Figs. 3(a), 3(b), 3(c), and 3(d) show the scene segmentation
results of Approach A (M = 5) for the multi-exposure image
shown in Fig. 1. In Fig. 3(a), CE was not applied before
scene segmentation. In Figs. 3(b), 3(c), and 3(d), CE was
applied before scene segmentation with bilateral filter, guided
image filter [28], and weighted guided image filter [29],
respectively. The parameter setting of the bilateral filter in
SSLA is the same as that in [23]. For the bilateral filter, the
fast implementation described in [27] is utilized. The filter
radius and regularization parameter in the guided image filter
and weighted guided image filter are set to 15 and 0.0003,
respectively. For the guided image filter and weighted guided
image filter, the linear time implementation of mean filter-
ing [30] is utilized. From Figs. 3(a), 3(b), 3(c), and 3(d), it can
be seen that Approach A was not able to separate the right
dark areas and upper-left bright areas regardless of whether
CE is applied or not applied. Fig. 4(a) shows the output
multi-exposure image generated by Approach A without CE.
FromFig. 4(a), we observe that ApproachA failed to generate
an image that is sufficiently bright in the right area. Approach
A may be able to separate the right dark areas and upper-left
bright areas by increasing M . However, increasing M means
increasing the memory consumption and the computational
cost for the fusion process following SSLA.

Figs. 3(e), 3(f), 3(g), and 3(h) show the scene segmentation
results of Approach B for the multi-exposure image shown
in Fig. 1. In Fig. 3(e), CE was not applied before scene
segmentation. In Figs. 3(f), 3(g), and 3(h), CE was applied
before scene segmentation with bilateral filter, guided image
filter, and weighted guided image filter, respectively. The
parameter settings for the bilateral filter, guided image filter,
and weighted guided image filter are the same as those used
to obtain the results in Figs. 3(b), 3(c), and 3(d). In this
example, K was set to 10 and five images were generated as
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FIGURE 4. Output multi-exposure image generated by Approach A and Approach B for the multi-exposure image shown in Fig. 1.
(a) Approach A without CE, (b) Approach B without CE.

FIGURE 5. Distribution of l′(p) for the multi-exposure image shown in
Fig. 1. (a) Without CE, (b) with CE (bilateral filter).

a result (i.e., M = 5). From Figs. 3(e), 3(f), 3(g), and 3(h),
it can be seen that Approach B was able to separate the
right dark areas and upper-left bright areas. Fig. 4(b) shows
the output multi-exposure image generated by Approach B
without CE. From Fig. 4(b), we see that Approach B was able
to generate an image that is sufficiently bright in the right
area.

Fig. 5 shows the distribution of l ′(p) = (l ′1(p), l
′

2(p), l
′

3(p))
for the multi-exposure image shown in Fig. 1. From Fig. 5,
it is difficult to conclude that the GMM model is suitable
for modeling the distribution. In addition, one of the regions
generated by Approach B contains only 0.2% of all the pixels
in the image. Such a region has only a small effect on the
final fusion result, whereas it increases M . The second and
third images from the left in Fig. 4(b) have almost the same
brightness, which indicates that one of them can be removed.
The other problem of Approach B is its long computational
time, variational Bayesian inference takes a long time even
if the maximum number of iterations is limited as described
in [23].

IV. PROPOSED SCENE SEGMENTATION METHOD FOR
SSLA
In this chapter, our new scene segmentationmethod for SSLA
is proposed.

FIGURE 6. Histogram of

{(
l ′
ψm

(p)
) 1

2.2

∣∣∣∣∣p ∈ Pm

}
for the widest region in

Fig. 3(a), which is colored red.

A. IMPORTANT INFORMATION FOR SCENE
SEGMENTATION IN SSLA

Fig. 6 shows the histogram of
{(
l ′ψm (p)

) 1
2.2
∣∣∣∣p ∈ Pm

}
for

the widest region in Fig. 3(a), which is colored red. The
histogram indicates that l ′ψm has not only dark pixels but also
pixels with mid-level brightness in Pm. Therefore, the geo-
metric mean of

{
l ′ψm (p)

∣∣∣p ∈ Pm
}
(i.e., G(l ′ψm |Pm)) becomes

closer to 0.18. In such a case, the correction coefficient αm
calculated using (8) becomes close to 1. This means that
the dark pixels in Pm of l ′ψm are not brightened sufficiently.
To avoid such insufficient luminance correction, the distri-

bution information obtained from
{(
l ′ψm (p)

) 1
2.2
∣∣∣∣p ∈ Pm

}
is

important for scene segmentation in SSLA. As explained
in Section III-E, the generation of a region containing too
few pixels should be avoided in SSLA. Hence |Pm| is also
important information for helping detect whether the number
of pixels in Pm is too small.

B. PROPOSED SCENE SEGMENTATION METHOD
FOR SSLA
The proposed scene segmentation method is also applied
to {l ′n} similarly to the methods described in Section III-B.
In the proposed scene segmentation method, P is iteratively
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segmented. Let {P(i)
m } and M (i) be the scene segmentation

results and the number of regions in the ith iteration, respec-
tively. In the initial state (i = 0), P(0)

1 = P andM (0)
= 1 hold.

In the (i + 1) th iteration, ψ (i)
m and α(i)m are first calculated

with (7) and (8), respectively. Then, the set S(i)m is obtained as
follows:

S(i)m =
{(
l ′
ψ

(i)
m
(p)
) 1

2.2
∣∣∣∣p ∈ P(i)

m

}
. (12)

After S(i)m is obtained, κ (i) is calculated as follows:

κ (i) = argmax
m

|P(i)
m |

|P|
λ(i)m , (13)

λ(i)m =

√√√√ 1

|S(i)m |

∑
s∈S(i)m

(
s− S̄(i)m

)2
, (14)

S̄(i)m =
1

|S(i)m |

∑
s∈S(i)m

s. (15)

Note that |S(i)m | = |P(i)
m | holds. If λ

(i)
m is large, l ′

ψ
(i)
m

has pixels
with the widely varying brightness similarly to the example
in the previous section. P(i)

m with a large value of λ(i)m should be
divided on the basis of the discussion in the previous section.

On the other hand, if |P
(i)
m |
|P| is too small, P(i)

m contains too
few pixels. To avoid generating a region containing too few

pixels, it should be checked whether |P
(i)
m |
|P| is sufficiently large

before segmenting P(i)
m . Equation (13) is used to determine

κ (i) so that both λ(i)
κ (i)

and

∣∣∣P(i)
κ(i)

∣∣∣
|P| are large. P(i)

κ (i)
is divided into

two regions by the Otsu method [31]. In this method, the
threshold totsu is calculated as follows:

totsu = argmax
t∈Sκ

|Q1(t)||Q2(t)|
(
Q̄1(t)− Q̄2(t)

)2
, (16)

Q1(t) = {s|s ≥ t, s ∈ Sκ} , (17)

Q2(t) = {s|s < t, s ∈ Sκ} , (18)

Q̄1(t) =
1

|Q1(t)|

∑
q∈Q1(t)

q, (19)

Q̄2(t) =
1

|Q2(t)|

∑
q∈Q2(t)

q, (20)

where the superscript (i), which means the ith iteration,
is omitted for notational convenience. P(i)

κ (i)
is divided into two

regions, P(i)
κ1 and P

(i)
κ2 , by using t (i)otsu as follows:

P(i)
κ1
=

{
p ∈ P(i)

κ

∣∣∣∣(l ′ψ (i)
m
(p)
) 1

2.2
≥ t (i)otsu

}
, (21)

P(i)
κ2
=

{
p ∈ P(i)

κ

∣∣∣∣(l ′ψ (i)
m
(p)
) 1

2.2
< t (i)otsu

}
. (22)

The scene segmentation result in the (i + 1) th iteration,

namely {P(i+1)
m }, is obtained as follows.

P(i+1)
m =


P(i)
m (m 6= κ)

P(i)
κ1 (m = κ)

P(i)
κ2 (m = i+ 1 = M (i)).

(23)

In the proposed method, the above segmentation process
is repeated until the stopping condition is satisfied. The stop-
ping condition is defined as follows:

max
m∈{1,2,··· ,M (i)}

|P(i)
m |

|P|
λ(i)m ≤ tstop, (24)

where tstop is a parameter. To avoid the generation of too
few regions, the minimal number of regions is set to 3 in the
proposed method (i.e.,M must be greater than 2).
Fig. 7 shows the segmentation result of the proposed scene

segmentation method for the multi-exposure image shown
in Fig. 1. In Fig. 7(a), CE was not applied before scene
segmentation. In Figs. 7(b), 7(c), and 7(d), CE was applied
before scene segmentation with bilateral filter, guided image
filter [28], and weighted guided image filter [29], respec-
tively. The parameter setting for scene segmentation is the
same as those described in Subsection V-A4. The parame-
ter settings for the bilateral filter, guided image filter, and
weighted guided image filter are the same as those used to
obtain the results in Figs. 3(b), 3(c), and 3(d). In Fig. 7,
it can be observed that the right under-exposed region and the
upper-left medium-exposed region are properly segmented as
different regions. It also can be observed that the choice of the
edge-preserving smoothing filter for CE has no significant
effect on the result of scene segmentation. In the rest of this
paper, the bilateral filter is utilized for CE. Fig. 8 shows
the output of SSLA based on the scene segmentation result
shown in Fig. 7(a). Similarly to in Fig. 4(a) and 4(b), CE was
not applied. In Fig. 8, it can be seen that an image that is
sufficiently bright in the right region is generated (see the
rightmost image).

C. FAST IMPLEMENTATION OF PROPOSED SCENE
SEGMENTATION METHOD
ψ

(i)
m , α

(i)
m , and t (i)otsu are calculated on the basis of simple

statistics such as the mean and standard deviation. The mean
and standard deviation can be approximately estimated by
using some samples instead of all the data. Hence, the com-
putational cost of calculating ψ (i)

m , α
(i)
m , and t (i)otsu can be easily

reduced by limiting the maximum number of samples to be
used.

V. EXPERIMENT
A. SIMULATION CONDITIONS
1) METRICS USED FOR QUANTITATIVE EVALUATIONS
In this experiment, the following four metrics were used for
quantitative evaluation.
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FIGURE 7. Scene segmentation results of the proposed method for the multi-exposure image shown in Fig. 1. (a) Without CE, (b) with
CE (bilateral filter), (c) with CE (guided image filter), (d) with CE (weighted guided image filter).

FIGURE 8. Output multi-exposure image generated by the proposed method for the multi-exposure image shown in Fig. 1. Note that CE was
not applied.

a: MEF-SSIM
MEF-SSIM [32] is the metric for measuring the quality of
the fusion result for a multi-exposure image. To calculate
MEF-SSIM, the structural similarity is calculated between
the fusion result and the multi-exposure image in a multi-
scale manner. MEF-SSIM can evaluate both the global and
local structure preservation. MEF-SSIM assumes that the
multi-exposure image contains a sufficient number of images
and that the overall quality of the images is high.

b: TMQI
TMQI [33] is a metric for measuring the quality of the tone
mapping result of an HDR image. TMQI consists of struc-
tural fidelity and statistical naturalness (SN) measurements.
Structural fidelity measures the structural similarity between
the HDR image and the tone mapping result. SN measures
the naturalness of the luminance distribution of the image
obtained by tone mapping.

c: STATISTICAL NATURALNESS (SN)
SN, which is calculated in TMQI [33], can be calcu-
lated for an arbitrary 24-bit color image. SN is defined
as N

(
L̄|115.94, 27.992

)
B (σ̄l/64.29|4.4, 10.1) /O, where

B (·|α, β) is a beta probability density function with parame-
ters α and β. L̄ and σ̄l are the average luminance of an image
and the average of the local standard deviation of luminance,
respectively. O is a normalization factor.

d: DISCRETE ENTROPY (DE)
Discrete entropy (DE) is a metric for measuring the global
contrast of a monochrome image. To calculate the DE,
an image histogram with 256 bins is first created. The DE is
calculated as the entropy of the histogram. In this paper, the
DE is calculated for the luminance of the final fusion result.

2) DATASET USED FOR EXPERIMENTS
In this experiment, we use five different datasets, which are
denoted as Dataset 1, Dataset 2, Dataset 3, Dataset 4, and
Dataset 5. For each set of multi-exposure images, a few of the
darker images are selected as the input for SSLA. Dataset 1
comprises multi-exposure images created by applying the
tone mapping operator to 104 HDR images selected from
an online database [34]. In accordance with [23], the tone
mapping operator is applied with a linear response function.
For each HDR image, a multi-exposure image with EV values
of {−7,−6, · · · , 6, 7} is created. From the 15 created images,
the images with EV values of−7,−5, and−3 are selected as
the input of SSLA. MEF-SSIM is calculated from the final
fusion result and the 15 images with all EV values. TMQI
is calculated from the final fusion result and the HDR image
used to create the multi-exposure image. In this experiment,
eachHDR image is downsized so that it has 1024 pixels on the
longer side. Dataset 2 is the dataset used in [3] and contains
eight sets of multi-exposure images. Each set in Dataset 2
is a multi-exposure image of a dynamic scene and contains
some misalignments. Feeding Time consists of three images
and the other sets consist of five or more images. For Feeding
Time, the two darkest images are selected as the input for
SSLA. For the other seven sets, the three darkest images are
used as the input for SSLA.Dataset 3 is taken from an online
database [35] and contains 12 sets of multi-exposure images
of a static scene. For Cave, even the second brightest image is
so dark that more than 15% of the pixels are zero due to clip-
ping. Therefore, all the images are used as the input for SSLA.
For the sets except for Cave, the two darkest images are
used as the input for SSLA. Dataset 4 and Dataset 5 are the
dataset extracted from the dataset used in [36]. The indexes
of the sets extracted from the dataset in [36] are summarized
in Table 1. Dataset 4 consists of 45 sets of multi-exposure
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FIGURE 9. Three sets of multi-exposure images used for the explanations in Section V-C. (a) Bar Harbor Sunrise in Dataset 1 (-7EV, -5EV, -3EV), (b) Baby
at Window in Dataset 2 (three darker images), (c) Kluki in Dataset 2 (two darker images).

FIGURE 10. Scene segmentation results for Bar Harbor Sunrise. (a)-(f) are the results of A, A (CE), B, B (CE), Pr., and Pr. (CE), respectively.

FIGURE 11. Scene segmentation results for Baby at Window. (a)-(f) are the results of A, A (CE), B, B (CE), Pr., and Pr. (CE), respectively.

FIGURE 12. Scene segmentation results for Kluki. (a)-(f) are the results of A, A (CE), B, B (CE), Pr., and Pr. (CE), respectively.

TABLE 1. Indexes of sets extracted from the dataset used in [36]. Note
that the dataset used in [36] is divided into Part 1 and Part 2.

images of a static scene and Dataset 5 consists of 15 sets of
multi-exposure images of a dynamic scene. For each set of
Dataset 4 and Dataset 5, the two darkest images are used as
the input for SSLA. ForDataset 2,Dataset 3,Dataset 4, and
Dataset 5, MEF-SSIM and TMQI are not used for quantita-
tive evaluation.

3) FUSION METHODS USED IN EXPERIMENTS
The fusion methods used in this experiment are those of
Mertens et al. [9], Nejati et al. [12], Kou et al. [13], and

Li et al. [17]. For each fusion method, the codes provided by
the authors and the default parameter settings in the codes
are used. For Dataset 2 and Dataset 5, only Li et al.’s
method is applied since only this method can be applied to
the multi-exposure image of a dynamic scene.

4) PARAMETER SETTING FOR SSLA
The parameter setting of the bilateral filter in SSLA is the
same as that in [23]. For the bilateral filter, the fast imple-
mentation described in [27] is utilized. For the GMM fitting
in Approach B, l ′n is downsized in accordance with [23]
so that it has 256 pixels on the longer side to reduce the
computational cost. Themaximum number of iterations in the
GMM fitting is set to 100 in accordance with [23]. For the
scene segmentation of the proposed method, the maximum
number of samples used for calculating ψ (i)

m , α
(i)
m , and t (i)otsu is

limited to 10,000. tstop is set to 0.05. Lm in (10) is determined
as maxp l ′′m(p).
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FIGURE 13. Comparison of three segmentation methods (Approach A, Approach B, and proposed scene segmentation method) for Bar Harbor
Sunrise. (a)-(d) are the results with Mertens et al.’s fusion method [9] for w/o SSLA, A (CE), B (CE), and Pr. (CE), respectively. (e)-(h) are the
results with Nejati et al.’s method [12] for w/o SSLA, A (CE), B (CE), and Pr. (CE), respectively. (i)-(l) are the results with Kou et al.’s method [13]
for w/o SSLA, A (CE), B (CE), and Pr. (CE), respectively. (m)-(p) are the results with Li et al.’s method [17] for w/o SSLA, A (CE), B (CE), and Pr.
(CE), respectively.

FIGURE 14. Comparison of three segmentation methods (Approach A, Approach B, and proposed scene segmentation method) for Baby at Window.
Li et al.’s method [17] was used for EF. (a)-(g) are the results for w/o SSLA, A, A (CE), B, B (CE), Pr., and Pr. (CE), respectively.

B. NOTATIONS IN THIS CHAPTER
In this chapter, the following notations are used. w/o SSLA
means that SSLA was not applied. A, B, and Pr. mean that
SSLA was applied without CE and the scene segmentation
in the SSLA was implemented by Approach A, Approach B,
and the proposed scene segmentation method, respectively.
(CE) after A, B, and Pr. means that CE was applied before
scene segmentation.

C. VISUAL EVALUATION
Fig. 9 shows three sets of multi-exposure images used for
the explanations in this chapter. Figs. 9(a), 9(b), and 9(c)

show Bar Harbor Sunrise in Dataset 1, Baby at Window
in Dataset 2, and Kluki in Dataset 3, respectively. Note
that Fig. 9 shows only the images that were input to SSLA.
Figs. 10, 11, and 12 show the scene segmentation results for
BarHarbor Sunrise, Baby atWindow, andKluki, respectively.
We see that the proposed method was able to separate the
dark regions and bright regions, whereas Approach A and
Approach B were not able to do so.

Fig. 13 shows the fusion results for Bar Harbor Sunrise.
It can be seen that Pr. and Pr. (CE) were able to generate
fusion results with high visibility, whereasA,A (CE), B, and
B (CE) failed to generate fusion results with high visibility
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FIGURE 15. Comparison of three segmentation methods (Approach A, Approach B, and proposed scene segmentation method) for Kluki. (a)-(d)
are the results with Mertens et al.’s fusion method [9] for w/o SSLA, A (CE), B (CE), and Pr. (CE), respectively. (e)-(h) are the results with Nejati
et al.’s method [12] for w/o SSLA, A (CE), B (CE), and Pr. (CE), respectively. (i)-(l) are the results with Kou et al.’s method [13] for w/o SSLA, A
(CE), B (CE), and Pr. (CE), respectively. (m)-(p) are the results with Li et al.’s method [17] for w/o SSLA, A (CE), B (CE), and Pr. (CE), respectively.

in the bottom of the scene. This is because Approach A and
Approach B were not able to separate the dark region at the
bottom of the scene, as seen in Fig. 10. Fig. 14 shows the
fusion results for Baby at Window. We see that Pr. and Pr.
(CE) generated fusion results with higher visibility than those
of A, A (CE), B, and B (CE). From the boxed regions in
Fig. 14, we also see that A (CE), B (CE), and Pr. (CE)
amplified noise in the lower dark region. This indicates that
CE sometimes amplifies noise as pointed out in [23]. From
Fig. 15, which shows the fusion results for Kluki, we see that
the proposed scene segmentation method generated a better
effect on the fusion result than Approach A and Approach B,
as already observed from Figs. 13 and 14.

D. QUANTITATIVE EVALUATION
Fig. 16 summarizes the results of the quantitative evaluation
for Dataset 1 in terms of MEF-SSIM [32], TMQI [33], SN,
and DE. In each box plot, the box represents the range from
the first quartile q1 to the third quartile q3. The whiskers
represent the maximum and minimum scores in the range
[q1−1.5(q3−q1), q1+1.5(q3−q1)]. The horizontal line in the

box represents the median and the cross represents the mean.
We see that Pr. generated better scores for MEF-SSIM than
A and B. This indicates that the proposed method performed
better than Approach A and Approach B. From Fig. 16,
we also see that Pr. stably generated favorable scores for DE,
SN, and TMQI when any of the fusion methods were applied.
Table 2 shows the results of the quantitative evaluation for
Dataset 2 in terms of SN and DE, where the boldface num-
bers are the maximum value in each row. It can be seen that
Pr. (CE) and B (CE) generated good scores. Fig. 17 summa-
rizes the results of the quantitative evaluation for Dataset 3
in terms of SN and DE. We see that Pr. and Pr. (CE) stably
generated favorable scores when any of the fusion methods
were applied. The same thing can be observed from Fig. 18,
which summarizes the results of the quantitative evaluation
for Dataset 4 in terms of SN and DE. Fig. 19 summarizes the
results of the quantitative evaluation forDataset 5 in terms of
SN and DE. We see that Pr. stably generated favorable scores
compared with A and B.

The numbers of regions generated (i.e.,M ) for all 184 sets
in Dataset 1,Dataset 2,Dataset 3,Dataset 4, andDataset 5
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FIGURE 16. Quantitative evaluation scores for Dataset 1.

TABLE 2. Quantitative evaluation scores for Dataset 2.

FIGURE 17. Quantitative evaluation scores for Dataset 3.
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FIGURE 18. Quantitative evaluation scores for Dataset 4.

FIGURE 19. Quantitative evaluation scores for Dataset 5.

TABLE 3. Numbers of generated regions for all sets in the dataset. Note
that A and A (CE) are not included since the numbers of generated
regions are manually set for them.

are summarized in Table 3. Note that A and A (CE) are not
included because M = 5 was manually set for Approach A.
We see that Pr. and Pr. (CE) generated fewer regions than B
and B (CE) in most cases. On the other hand, B and B (CE)
often generated six or more regions. This has a non-negligible
impact on the memory consumption and the computational
time required for the fusion process. From Table 3, we also
see that applying CE has no significant effect onM .

E. COMPARISON OF COMPUTATIONAL EFFICIENCY OF
EACH SCENE SEGMENTATION METHOD
The average executing time forDataset 3 is shown in Fig. 20.
An Intel R©CoreTM i9-11900 2.50GHz CPU with 16.0 GB
of memory and a Windows 11 Pro operating system were
used for the experiments. MATLAB R2021a was used as the
programming language. The executing time for the fusion
process was the average of those for the methods of Mertens
et al. [9], Wang et al. [16], Kou et al. [13], and Li et al. [17].
The maximum, minimum, and average numbers of pixels in
Dataset 3 are 425430, 1306200, and 634425.8, respectively.

FIGURE 20. Average executing time for Dataset 3.

From Fig. 20, it can be seen that A and Pr. are much faster
thanB. It can also be seen thatPr. required less computational
time than A and B for the fusion process. The same trend can
be seen for luminance scaling, tone mapping, and color image
generation. This is because the number of regions generated
by Pr. was smaller than those generated by A and B in most
cases.

VI. CONCLUSION
In this paper, we proposed a new scene segmentation method
for SSLA. The proposed method exploits information of the
nonlinear luminance distribution of each segmented region,
which enables us to avoid the situation where the effect of
luminance scaling in SSLA is weakened. In addition to this
merit, the proposed scene segmentation method can avoid the
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generation of regions with very few pixels, which reduces the
computational cost for the processes following scene segmen-
tation. The computational cost of the proposed method itself
can also be easily reduced. In the experiment, the proposed
method generated good scene segmentation results with a
small number of regions. Overall, the experimental results
showed that the proposed scene segmentation method is very
effective for generating high-visibility fusion results and is
faster than the conventional scene segmentation approaches
for SSLA.
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