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ABSTRACT Computational drug repurposing is an efficient method to utilize existing knowledge for
understanding and predicting their effect on neurological diseases. The ability of a molecule to cross the
blood-brain barrier is a primary criteria for effective therapy. Thus, accurate predictions by employing
Machine learning models can effectively identify the drug candidates that could be repurposed for
neurological conditions. This study comprehensively analyzes the performance of the well-known machine
learning models on two different datasets to overcome dataset-related biases. We found that random forest
and extratrees (i.e., tree-based ensembled models) have the highest accuracy with mol2vec fingerprint
for BBB permeability prediction, attaining AUC_ROC of 0.9453 and 0.9601 on BBB and B3DB dataset,
respectively. Additionally, we have analyzed the impact of the data balancing technique (i.e., SMOTE)
to improve the specificity of the models. Finally, we have explored the impact of different fingerprint
combinations on accuracy. By employing SMOTE and fingerprint combination, SVC attains the highest
AUC_ROC of 0.9511 on BBB dataset. Finally, we used the best-performing models of the B3DB dataset
to evaluate the BBB permeability for drugs intended to be used for repurposing. Model validation for
repurposing predicted the non-passage for most antihypertensive drugs and passage for CYP17A1 cancer
drugs.

INDEX TERMS Blood brain barrier, drug permeability, drug repurposing, empirical study,machine learning.

I. INTRODUCTION
An increasing number of neurological diseases and a
rapidly ageing population with several neuro-disorders has
substantiated the escalation of healthcare/drug development
expenditures. This has fueled the research toward expedit-
ing drug discovery and/or drug repurposing by utilizing
existing knowledge on the structure and function of the
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central nervous system (CNS), drug-target interactions and
pharmacological properties. The lower success rates of CNS
drugs can be attributed to the insufficient knowledge of the
pathophysiology of complex neuro-diseases, the presence of
the blood-brain barrier (BBB) and poor target engagement,
which could result in 15-19 years for drug advancement from
discovery to regulatory approval [1]. The most significant
challenge is the presence of BBB, a highly selective semiper-
meable barrier that protects the CNS from external insults,
thus rendering physiologically effective drugs non-practical
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for CNS applications [2], [3]. BBB acts as a physical and
metabolic barrier with simultaneous transport and secretory
functions. Clinical determination of the BBB permeability
of compounds, though accurate is time-consuming, cost-
ineffective and impractical for diverse drug candidates [4],
[5], [6]. Alternatively, in vitro and in vivo animal models are
employed to identify the permeability properties. However,
poor mimicking of in vitro models and clinical differences
in the drug-target interactions between animal models and
human data have hindered drug development progress [7],
[8]. Consequently, determining the physicochemical proper-
ties of the drug associated with the BBB permeability has not
been tackled enough in the in vitro or in vivo studies.
Over the years, progresses in high-throughput screening

(HTS) and omics technologies have resulted in enormous data
availability in chemical activity [9], [10], [11]. Processing
such large-scale data for faster drug development has been
the focus of several research groups in CNS drug discovery.
Predicting and forecasting the BBB transport by using
computational models including artificial intelligence (AI)
and machine learning (ML) can effectively accelerate the
drug development process for neurological conditions [1],
[12], [13]. Recent years have seen unprecedented applica-
tions of AI/ML methods in addressing diverse problems
ranging from medical image analysis [14], [15], [16] to
drug discovery [17]. Several AI/ML-based models have
been proposed to facilitate expeditious CNS drug discov-
ery/repurposing by minimizing the number of laborious
and time-consuming BBB permeability studies [4], [18],
[19], [20], [21]. Several approaches for the identification
and optimal generation of key molecular properties that are
involved in BBB permeability have been reported. Some of
the preliminary in silicomodels predicting BBB permeability
were based on quantitative structure-activity relationships
(QSAR) data [20]. QSAR modelling helps in the prediction
of specific characteristics from the molecular structure of
compounds. Some of the commonmolecular descriptors used
for this application are molecular property-based descriptors
like 1D (Molecular formula), 2D (atom connection), 3D
descriptors (Molecular shape) and Fragment-based descrip-
tors (fingerprints) [21]. Several ML and deep learning (DL)
techniques have been applied to predicting BBB permeability
in recent years [22]. While ML/DL models would not
necessarily provide the exact understanding of why some
drugs cross or do not cross the BBB, its significance lies in
the integrative practical applications, thus serving as an initial
screening filter in high throughput screening of chemicals.
ML techniques like support vector machine (SVM), random
forest (RF), k-nearest neighbours (KNN), multidimensional
linear regression and linear discriminant analysis (LDA) have
been used for prediction [23], [24], [25].

SVM based models were found to be more popular
and effective in predicting BBB permeability in several
studies [1], [21], [25], [26]. For instance, SVM with four
discrimination models was implemented on a dataset of
625 compounds with more than 85% accuracy, specificity

and sensitivity in prediction [27]. SVM can work effectively
with linear and non-linear datasets by mapping with higher
dimensions. Hence, SVMhas been commonly used for binary
classification problems such as biological barrier permeabil-
ity prediction. In 2018, Wang and team developed BBB
permeability prediction algorithms using SVM, RF, kNN and
multilayer perceptron (MLP) neural network for a dataset of
2358 compounds [28]. RF is an ensemble learning model that
circumvents the drawback of overfitting seen in the decision
tree (DT) model that works by constructing a binary tree of
decision nodes for either regression or classification [19].
A recent study employed DL algorithms with 5-fold cross-
validation to minimize redundancies involving undetected
overfitting and overestimation. This model was found to
achieve an accuracy of 0.97, an AUC_ROC of 0.98 and an
F1 score of 0.92, which is a benchmark result among CNS
drug studies. A couple of the key concerns regarding the
applications of AI models are access and usage control over
the clinical data [29]. While most of the present models have
been studied with publicly available data, adaptations of the
samewith secured patient data needs to be treatedwith utmost
care to maintain privacy and security. For this purpose several
usage control models could probably be utilized to address
the diverse security requirements [29].

The first and foremost challenge in applying ML/AI
algorithms for BBB permeability prediction is data col-
lection. BBB is a highly complex biological system that
varies significantly within individuals and species. Hence,
the experimental data on the BBB permeability of drug
molecules exhibit poorly balanced datasets with several
discrepancies [30]. A direct comparison of results from
different studies cannot be done, as the data collection
strategy, descriptor/fingerprint used and the model applied,
vary significantly with each study. To address this, the current
study will focus on analysing the model performances of
two datasets (BBB and B3DB). As the model performances
reported in the literature are biased by the limitations set
by the datasets, a systematic study on the performance of
different ML models could answer some of the discrepancies
related to some of the best models for predicting BBB
permeability. Therefore, the present work will compare
and comprehensively analyse the model performance of
different types of ML models across multiple datasets. Data
imbalance is an another key challenge in BBB datasets.
Therefore, we also evaluate the impact of data balancing
technique (specifically SMOTE) on the classification accu-
racy. We believe that our empirical study will facilitate the
progress of ML-driven applications for drug repurposing in
neurological conditions.

Parallel to this, the predicting capability of the models
is also dependent on the representations that best describe
a chemical compound. Though several types of molecular
descriptors and fingerprints exit, no single descriptor type
can represent all attributes of the compounds. As an attempt
to capture all aspects of the compounds to improve the
predicting accuracy, the ML models will be exhaustively run
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for multiple descriptors/fingerprints and their combinations.
To the best of our knowledge, this is the first report to analyse
the performance of several models over different descriptors,
fingerprints and their combinations on two different BBB
datasets. Lastly, the validation of the developed ML model
will be done by venturing into the drug repurposing concept
by predicting the BBB permeability of drugs of different
applications.

II. METHODOLOGY
Drugs consumed to treat various diseases are typically 2D/3D
molecules that can interact with the proteins (target) of the
infected region of interest (ROI) [31]. By binding with the
target, the drugs change the chemical properties of the ROI,
thereby initiating healing. During the drug discovery, clinical
trials determine whether the drug crosses the semi-permeable
endothelial cells of the BBB and enters into the extracellular
fluids of the CNS [32]. These trials are expensive, convoluted,
time-consuming, and need biological and bioinformatics
expertise for their success.

The recent success of machine learning (ML) models
for classification and regression tasks has encouraged the
bioinformatics community to develop ML models for pre-
dicting the drug BBB permeability. These models serve as
a second opinion to the bioinformaticians, assisting in drug
selection for the clinical trials, thereby minimizing the time
and expense of clinical trials and improving the efficiency of
the drug discovery process.

The first step in training an ML system for drug discovery
is to represent the molecules in a standard format that can be
used for feature extraction. A conventional molecular-input
line-entry system (SMILES) comprehensively represents the
drug’s atoms, chemical bonds, cycles, and functional groups
in an ASCII string representation. Next, the SMILES are
processed to extract numerical handcrafted descriptors or
different molecular fingerprints. Finally, the trained ML
models map the numerical features of drugs to a probability
of BBB permeability. Figure 1 provides an overview of the
ML pipeline for drug BBB permeability prediction. This
section provides information about the different molecular
fingerprints, ML models, datasets, evaluation metrics, and
implementation details of our empirical study.

A. DATASETS
We evaluate the fingerprints and ML models on two BBB
datasets to overcome the biases to present findings consistent
across datasets.

1) BBB DATASET
Wang et al. [28] compiled a list of compounds with LogBB
concentrations from four different sources [33], [34], [35],
[36]. The compounds were processed with MacroModel 11.1
to generate populated neutral tautomers at PH 7.0. Further
processing with Open Babel standardized the dative bonds
and assisted in generating SMILES representation for the
compounds. The LogBB measure was used to generate

the ground truth of whether the drug crosses the BBB.
A compound was tagged BBB+ if LogBB> = −1 and
BBB− if LogBB< −1.
We utilized the list of chemicals provided byWang et al. [28]

to generate the SMILES from Pubchem and the SMILES
were further used to extract fingerprints and 1D/2D descrip-
tors. RDKit raised errors on 54 SMILES during fingerprint
extraction, resulting in a dataset with 2304 molecules.
Of these molecules, 1766 are labelled BBB+ and 538 BBB−.

2) B3DB DATASET
Meng et al. [30] compiled compounds and their BBB
permeability ground truth from fifty published articles
or open-access datasets. Systematic data collection, data
cleaning, and data curation protocols were followed during
the dataset generation phase to provide a standardized
benchmark for the BBB−related classification and regression
problems. The resulting dataset contains 7807 compounds
with BBB+/BBB− ground truth and 1058 compounds
with LogBB concentration values. Of the 7807 molecules,
4956 are labelled BBB+ and 2851 BBB−.

B. MOLECULAR FINGERPRINTS
Molecular fingerprints are binary vectors that aim to capture
different physical features of the molecules. Conventionally,
fingerprints capture the molecules’ path-based (e.g., FP2)
and substructure-based (e.g., FP3, FP4, MACCS) features.
The path-based fingerprints capture features that quantify
the series of atoms in different regions of molecules.
In contrast, the substructure-based fingerprints determine
whether a mini-molecular fragment (with specific functional
groups and bonds) is part of the large molecule. The
substructure-based fingerprints have had a better success
rate in drug discovery because of their ability to quantify
functional group, bond, and atomic positioning information
effectively. Some hybrid fingerprints (e.g., Avalon) calculate
both the path-based and substructure-based features to
comprehensively quantify the physical molecular properties.
Additionally, manually handcrafted 1D/2D descriptors (e.g.,
PaDEL descriptors) of the molecules are also a popular
way to capture molecular properties. Recently, unsuper-
vised machine learning techniques for natural language
processing have been employed to generate latent space
representation of the molecular substructures. We extract
the fingerprints from multiple chemistry toolkits (open
babel [38], cdk [39], RDKit) and comprehensively evaluate
the impact of molecular fingerprints, 1D/2D descriptors, and
latent space representation of molecules by training several
machine learning models and comparing their performance.
Since most of the present studies explore ML and DL
models with individual fingerprints are descriptors, there is
always scope for better representation of the molecules for
high predictive ability. While this could be addressed by
developing new encoders, the existing fingerprints need to
be systematically studied to identify the best representative
option for the molecule. Further, to the best of our knowledge
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TABLE 1. Summary of descriptors, fingerprints, and latent space vector representation of molecules along with their dimensions for BBB dataset.

this is the first paper to address cross-toolkit fingerprint
analysis. While this can provide redundancy in fingerprints,
the SMILES processing by each toolkit provides a different
output. Additionally, when the outputs of SMILES reading
by different toolkit are close to each other, they are still
expected to be different. This could be attributed to the ability
of different toolkits capacity to process the records and the
difference in their aromaticity. The records accessed by one
toolkit might not be handled by another toolkit. However, the
real analysis should include records that could be handled by
both toolkits. A summary of fingerprints and other descriptors
is present in Table 1.

C. EMPIRICAL STUDY DESCRIPTION
We design a comprehensive empirical study to understand
the impact of different fingerprints and synthetic over-
sampling techniques on the classification accuracy of ML
models. First, we extract eighteen fingerprints (described in
Table 1) to create a dataset. The 1D/2D PaDEL descriptors
contained missing values. We employed KNN imputer to
fill the missing features of the descriptors. We observed
that fingerprints are sparse binary vectors. To condense
the fingerprint information, we use principal component
analysis (PCA) to reduce individual fingerprint dimensions,

retaining 95% of fingerprint variability (Figure 1). PCA is
preferred over other dimensionality reduction (e.g., Kernel
PCA) and feature selection methods (e.g., feature ranking-
based selection) because it provides a straightforward
mechanism to control the variability in the transformed
data relative to the original data. Fundamentally, PCA
projects the data on principle components/ Eigenvectors
(i.e., directions that capture the variability in data), thereby
suggesting directions in multi-dimensional space with the
most information. Thus, only retaining the components
with high variance can decrease the dimension of the data
without significant loss of information, resulting in improved
model efficiency and better generalizability on the test set.
Next, we normalize the feature vectors by removing the
mean and scaling it to unit variance, ensuring that the
individual feature range is limited. We apply PCA to the
entire dataset to reduce the dimensionality, the PCA enforced
dataset was further subjected to parameter choice with Grid
search to systematically choose the right dimensions and
parameters.

Parameter choice has a significant impact on the accuracy
of ML models. At the same time, a biased dataset split
may not accurately evaluate the prediction capability of ML
models for BBB permeability. We pair grid search with
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FIGURE 1. Empirical study pipeline summarizing, pre-processing, training, and inference stages.

10-fold cross-validation to select the parameters that provide
the best results across the folds (Figure 1). In each step
of the cross-validation, 1 fold of the dataset is treated as

the test set and the remaining 9 folds are used for model
training. We report the performance of the model which
is the average test performance of the 10 folds, allowing
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TABLE 2. Summary of hyperparameters employed for the gridsearch of
ML models.

us to evaluate the model robustly. We also employ Grid
search to exhaustively search the parameter space for the
best parameters for the 10 folds. Table 2 summarizes the
hyper-parameter space searched for each ML model. In this
initial experiment, we train and evaluate nine ML models
with eighteen individual fingerprints without upsampling
the minority class (i.e., BBB−), providing a baseline
performance for ML models and fingerprints. We also
examine the top-4 fingerprints for each model on the both
datasets. Additionally, to interpret the performance variations
of different fingerprints, we generate similarity matrix using
centered kernel alignment (CKA) [40]. CKA has been
proposed for comparing the neural network representations
generated from different initializations.We employ it because
it provides seamless and statistically correct method for
comparing fingerprints of different dimensions.

In the next phase of the study, we introduce the resampling
techniques to address the data imbalance. Resampling tech-
niques can be employed to either incorporate under-sampling
or oversampling the datasets. While under-sampling elimi-
nates data from majority class, oversampling adds data to
the minority class. Considering the criticality of each data
point provided by diverse drugs, oversampling the minority
class will retain such crucial information in the majority
class. We also analysed the existing work to weigh the choice
of using under-sampling techniques which indicates better
performances of oversampling techniques in comparison
to under-sampling [41], [42].Threfore, synthetic minority

oversampling technique (SMOTE) has been employed to
over-sample theminority class (Figure 1). SMOTE is initiated
by applying KNN to the existing minority class instance
(say, P). A new vector (say, V) is calculated between
instance P and one of its neighbors. V is then multiplied by
a random number between 0 and 1 to generate a synthetic
sample with the same ground truth label as P.We noted during
our literature review that a few papers applied SMOTE to the
entire dataset before splitting it into train/val/test sets [20],
[28], [43]. Applying SMOTE on the entire dataset introduces
synthetic samples in the val/test sets, thereby not providing
the actual performance of the ML models on the drugs of
the val/test sets. In our study, we apply SMOTE only to
the training set in each cross-validation fold, allowing us to
understand actual performance gain with SMOTE. We also
thoroughly compare the best performing fingerprints for each
ML model with/without using SMOTE. We quantify the
impact of SMOTE by computing the percentage increase
and decrease in specificity and sensitivity, respectively.
Additionally, we recommend the best fingerprint for eachML
model, based on specificity and AUC_ROC, (it may be noted
that these three measures are relatively correlated).

We observed in the literature that fingerprint combinations
(including 1D/2D descriptors, MACCS, Klekota-Roth, and
Pubchem) are heavily utilized for BBB permeability predic-
tion tasks [4], [28], [43]. In the final phase of the study,
we combine the best performing fingerprints for each model
to validate whether merging multiple fingerprints improve
the classification accuracy of the ML models. Additionally,
we recommend the best combination of fingerprints for every
ML model.

To showcase the use our empirical study, we employ
the highly accurate models and their best performing
fingerprints to predict the BBB permeability of drugs that
are generally not intended for neurological applications
as a part of repurposing strategy. The drugs were chosen
carefully, considering their physiological implications to
indicate the importance of computational models in drug
repurposing. Additionally, we discuss our finding in detail
and relate the BBB permeability to the drugs molecular
characteristics.

D. MACHINE LEARNING MODELS
We incorporate nine different ML models in our study to
understand the performance of models for the individual
fingerprints and their combinations. A short description of
ML models is as follows:

1) KNN: KNN works by calculating K nearest points to
the query instance (i.e., test instance) using a distance
measure. The query point is then assigned the majority
label of the neighbors.

2) Support Vector Classifier (SVC): SVC finds an optimal
plane in the high dimensional feature space that
maximizes the margin between the instances of two
classes.

VOLUME 11, 2023 9895



M. Y. Ansari et al.: Re-Routing Drugs to Blood Brain Barrier: A Comprehensive Analysis of Machine Learning Approaches

3) Decision Tree (DT): DT is a tree-based ML model that
uses features to generate decision rules at the nodes and
classification outcomes at the leaves.

4) RF: RF is an ensemble learning method that outputs the
class determined by most decision trees in the forest.

5) Adaboost Classifier: Adaboost employs a base esti-
mator (e.g., DT) to fit the training set. Subsequently,
Adaboost fits additional copies of the base estimator
with higher emphasis (i.e., greater weight) on the
incorrect samples to improve model accuracy.

6) Gradient Boosting Classifier (GBC): GBC builds a
boosting ML model using an additive technique. In the
case of binary classification, a single regression tree is
introduced initially to fit the negative gradient of the
loss function.

7) Extratrees (ET): ET is an ensemble-based technique
that fits the training data on randomized decision trees
using various sub-samples of the dataset. Additionally,
it employs averaging across the decision trees to
improve the prediction performance and reduce over-
fitting.

8) LightGBM: LightGBM is an open-source gradient
boosting framework by Microsoft. Two crucial compo-
nents of LightGBM are gradient-based one side sam-
pling (GOSS) and exclusive feature bundling (EFB).
GOSS allows LightGBM to track the under-trained
instances, giving the model significant information
gain. EFB relies on the sparsity of higher dimensional
spaces to select a bundle of mutually exclusive features,
thereby improving memory complexity and training
time for the model.

9) XgBoost: XgBoost is a distributed gradient boosting
library which maximizes computational speed and per-
formance by building the trees in parallel. Furthermore,
it adopts a level-wise strategy by evaluating the partial
gradient sums to understand the quality of the possible
dataset splits.

E. METRICS
We evaluateMLmodels using a suite of metrics. For balanced
datasets, accuracy (i.e., no. of correctly classified instances/
total no. of instances) highlights the actual performance of
the models. However, in the case of unbalanced datasets (i.e.,
BBB and B3DB), accuracy may not highlight the capability
of the model to differentiate between the BBB+ and
BBB− classes. Therefore, we evaluate the model specificity
(i.e., true negative/(true negative + false positive)) and
sensitivity (i.e., true positive/(true positive+ false negative))
to measure the recall of the negative and positive classes.
We also compute the area under the receiver operator char-
acteristic curve (AUC_ROC) to quantify the model’s ability
to differentiate between the two BBB+/BBB− classes.

F. IMPLEMENTATION DETAILS
For extracting the fingerprints, we utilize pyfingerprint
(python library). pyfingerprint is a wrapper around CDK

and RDK, allowing fingerprint extraction with a single
function call. It also provides a pre-trainedmol2vecmodel for
latent space vector generation using SMILES. Additionally,
we employ padelpy (python wrapper library) for extracting
1D/2D PaDEL descriptors. Altogether, we extract 18 differ-
ent numerical representations of SMILES for the BBB and
B3DB dataset.

We utilize the Scikit-learn library to load the ML models
and perform grid search with cross-validation (using grid-
searchCV). The LightGBM and XgBoost models are loaded
from their independent packages. We also employ imbalearn
package for creating a pipeline that applies SMOTE only to
the training sets for each cross-validation fold.

The ML models are trained on an HP Z8 workstation
with 128 GB of RAM and 64 core Intelr Xeon(R)
Silver 4216 CPU with a 2.10 GHz base clock.

III. RESULTS
In our empirical study, we process the individual fingerprints,
1D/2D features, and unsupervised ML representation of
SMILES (i.e., mol2vec) using PCA to reduce data dimen-
sionality. A brief description and dimensions of the extracted
features are highlighted in Table 1. The empirical study
contains three phases. In the first phase, we train the ML
models with every feature and establish a baseline. In the
second phase, we analyze the impact of oversampling (i.e.,
SMOTE) on the performance metrics of the ML models.
In the final phase, we combine the best individual fingerprints
for ML models to investigate whether fingerprint combina-
tion improves classification accuracy. The last section of the
results addresses the validation of the developed model for
drug repurposing application of anti-hypertensives, cancer,
and anti-inflammatory drugs.

A. MODEL PERFORMANCE ON IMBALANCED BBB DATA
In the first phase of our study, we train nine ML models
with individual features (i.e., fingerprints, descriptors) for
predicting BBB permeability without rectifying the data
imbalance. The ML models can be categorized into four
categories, allowing us to reason about the classification
accuracy for the BBB task. The categories are as follows:
1) In-memory-based (i.e., KNN) 2) Vector separation-based
(i.e., SVC) 3) Tree-based (i.e., DT, RF, ET) 4) Boosting-based
(i.e., Adaboost, GBC, LightGBM, XgBoost). We employ the
grid-search with 10-fold cross-validation for training to find
the hyper-parameters that allow ML models to perform best
across the folds. The results for the ML model trained with
individual fingerprints can be found in the supplementary
material.

The ML model’s performance without SMOTE and
best-performing fingerprints for BBB and B3DB datasets
are summarized in Tables 3 and 4, respectively. KNN
performs lowest in terms of specificity among all the ML
models for the BBB dataset. The performance comparison
of KNN with that of the literature indicated similar results
including the reduced specificity [44], [45]. Considering the
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TABLE 3. Performance summary of ML models with and without SMOTE on the BBB dataset. The best performing ML models and their corresponding
fingerprints is highlighted in gray gradients.

similarity-based KNN algorithm used, it is not surprising
that the imbalanced data predicted more BBB+ than BBB−.
Interestingly for the B3DB dataset, KNN achieves similar
and better specificity as other ML models. As a result, the
AUC_ROC for KNN is higher for the B3DB dataset. The
performance discrepancy of KNN between the dataset is
due to the higher imbalance in the BBB dataset and the
distribution of training instances in the high-dimensional
feature space. SVC attains higher specificity and similar
sensitivity on the BBB dataset compared to the KNN model,
thereby improving the AUC_ROC. We could not train
SVC for the B3DB dataset because of its poor scalability
due to its cubic training complexity (i.e., O(n3), where n
is no. of dataset instances). SVC is one of the widely
exploredmodel in literature for BBB prediction with different
approaches to improve the model performance. In SVC,
the model is built to assign unclassified new compounds to

BBB+ or BBB−, thus making it a non-probabilistic binary
linear classifier. Among all the models, DT has the lowest
AUC_ROC for both datasets. The lower performance of
DT can be explained due to its simple tree-based structure,
which may not be able to utilize all the features of the
input data due to tree-depth/leaf constraints. Interestingly, the
DT model is preferred in pharmaceutical practice due to its
simple structure. DT model has been popularly employed in
understanding themechanistic data on pharmacodynamic and
pharmacokinetic properties [46]. However, their applicability
in BBB permeability prediction was not effective due to their
low specificity score [24]. Among the tree-based models,
ET and RF achieve the highest AUC_ROC for the BBB and
B3DB datasets, respectively. The higher performance of these
tree-based models is due to their ensembled nature, allowing
them to train individual DT on subsets of instances/features
and combining their results with sophisticated strategies to
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TABLE 4. Performance summary of ML models with and without SMOTE on the B3DB dataset. The best performing ML models and their corresponding
fingerprints is highlighted in gray gradients.

generate the final prediction. We also trained the well-known
ML models (i.e., Adaboost, GBC, LightGBM, and XgBoost)
that boost weak learners to maximize classification accuracy.
For both the datasets, XgBoost follows the performance
ensemble-based models and achieves the highest AUC_ROC
among the models that employ boosting strategy. Further-
more, XgBoost acquires the highest specificity among all
the models for the B3DB dataset. LightGBM attains the best
specificity among all the ML models (i.e., 0.7882 for BBB
and 0.838 for B3DB). The higher specificity of LightGBM
is because it internally handles unbalanced datasets and
provides regularization parameters for the estimators to
prevent the model from favoring the majority class. The
performance of LightGBM is in line with the results of
Shaker et al. [47], which were calculated on a dataset
similar to B3DB. Overall, by comparing the ML models
across two datasets, we find that the performances of
the top three models (i.e., RF, ET, XgBoost) are almost
similar in terms of AUC_ROC irrespective of the dataset
used.

There are several representations to describe drug
molecules. However, no one descriptor can comprehensively
capture all aspects of the molecule. Molecular descriptors are
formulated for holistic representations, including molecular
size, weight, and shape. Molecular fingerprints encode
topological geometrical, thermodynamic, electronic, and
constitutional information. To capture the impact of descrip-
tors and fingerprints, each ML model is exhaustively trained
with individual molecular representations to identify the best
feature set for BBB predictability. To some extent, BBB
permeability depends on the lipophilicity of the molecules
for effective transport passive diffusion [7], [48], which in
turn depends on the functional groups. Fingerprints and
descriptors that are the best representative of this property are
expected to show high performance. Information provided by
the fingerprints and descriptors determines the performance
of the models since the ML models cannot engineer new
features out of the input. We analyze the fingerprints
consistently in the top-4 ranked by AUC_ROC for the ML
models in both datasets. We observed that the representation
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FIGURE 2. Radial basis function (RBF) CKA similarity matrix for descriptors and fingerprints before (A) and after PCA (B).

of molecular SMILES generated by the unsupervised ML
(i.e., mol2vec) performed the best for 8 of 9 models for BBB
and 7 of 8 models for the B3DB, suggesting that neural
network-generated representations are more effective for
training ML models as compared to handcrafted descriptors
and other molecular fingerprints. 1D/2D PaDEL descriptors
and B3DB features follow the performance of mol2vec for
most models across both datasets. Experts in physical and
organic chemistry have carefully crafted these descriptors
to highlight the different molecular properties, allowing
the ML models to make BBB predictions based on the
properties. MACCS (CDK or RDK implementation) is also
in the top-4 fingerprints for 7 of 8 models on the B3DB
dataset. Another popular fingerprint is Avalon, which is
present in 5 of 9 models for BBB and 6 of 8 models for
B3DB. The presence of MACCS and Avalon in the top-
4 fingerprint suggests that capturing essential substructures
of the molecules or combining path-based and substructure-
based features can help boost the performance ofMLmodels.
Interestingly, we observed that FP3 has a low variance.
Thus, PCA significantly decreases the dimensions of FP3
(from 1024 to 20) for the BBB dataset. Due to a limited
number of features, FP3 has the lowest performance for
all models except DT. The performance of FP3 for DT is
acceptable because DT can effectively use a small set of
features.

Figure 2 shows a heat-map of CKA similarities between
different fingerprints and features before and after applying
PCA. It is evident from the heat-map that PCA conserves the
information present in the features, and similarities between
the fingerprints are retained. But, fingerprints with lower
similarities have a lower CKAmetric because of 5% decrease
in variance. The following fingerprints have high similarity
according to the CKA matrix: 1) substructure and FP4 have
a higher magnitude of CKA because they search for similar
SMART patterns in drug molecules. 2) Similarly, standard,

fp2, and extended have high similarity because they compute
similar substructures. 3) Relative to other fingerprints,
mol2vec shows high similarity to 1D/2D descriptors, thus
explaining the similar performance of the two features for
both datasets. 4) rdk-MACCS and MACCS also have high
similarities. This phenomenon is expected because the two
fingerprints nearly search the same molecular substructure,
slightly differing in their implementation (i.e., CDK and
RDK). 5) Avalon and rdkit display high CKA suggesting
that rdkit implementation is inspired by the Avalon toolkit.
Hybridization shows proximity to both Avalon and rdkit,
indicating that hybridization states are part of the Avalon and
rdkit fingerprints.

Interestingly, we observed after PCA that klekota-roth
shows lower similarity to other extracted fingerprints. FP3
shows dissimilarity to all fingerprints, specifically with
Avalon and rdkit, because the former is a substructure-
based fingerprint, and the latter are hybrid fingerprints.
Furthermore, the substructures searched by FP3 may be
very different from those computed by Avalon and rdkit.
mol2vec shows high dissimilarity to the graph, indicating the
ring structures and atomic connectivity may be lacking from
mol2vec.

Key findings:
1) Tree-based ensemble models (i.e., ET and RF) achieve

the highest AUC_ROC for BBB permeability classifi-
cation on BBB and B3DB datasets.

2) LightGBM attains the highest specificity for both
datasets among all ML models.

3) mol2vec is the best performing fingerprint for most
ML models, followed by 1D/2D descriptors / B3DB
features. The CKA similarity of the two features
supports the finding.

4) Substructure-based fingerprints like MACCS perform
well for most models on the both dataset. Additionally,
standard, extended, and FP4 fingerprints performs
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poorly across both datasets. These fingerprint show
high similarity as evidenced by CKA value due to
potential overlaps in the SMART patterns.

B. IMPACT OF SMOTE
One primary challenge for the ML models for BBB perme-
ability is the class imbalance between BBB+ and BBB−
instances, resulting in the inferior predictive capability of true
negatives or low specificity. Albeit the considerably higher
prediction accuracy than those reported in the literature,
the imbalanced dataset results in a low recall ratio for the
minority BBB− class (i.e., low specificity). In the case
of BBB permeability, the minority class is crucial as it
represents the molecular features restricted explicitly by
the BBB phenotypes. While the application of grid search
parameters and 10-fold cross-validation addressed this issue
to a certain extent, the prediction capability of the minority
class remains considerably low. In order to address this issue,
SMOTE resampling technique is applied as suggested in the
empirical study description. SMOTE ensures that number of
BBB+ and BBB− instances are the same in the training set
of each cross validation fold. SMOTE is an oversampling
technique proposed by Chawla et al. [49] by constructing
synthetic minority samples through the interpolation between
minority data and its k-nearest neighbors. SMOTE was
initially employed on the BBB dataset by Wang et al. (2018)
[28] to improve the specificity score up to 88.6%. In our
empirical study, the application of SMOTE enhanced the
specificity for all models except LightGBM across both
datasets. The performance gain with SMOTE is particularly
evident in KNN, with more than a 52% increase in specificity
in the BBB dataset. The imbalance ratio in BBB dataset
(23.3% for BBB−) is higher than B3DB (36.5% for BBB−);
as a result, the improvement in specificity is more evident in
the BBB dataset. Among the tree-based models, RF observes
the highest gain in specificity. In contrast, the ET experience
the lowest increment in specificity.

Even though it is expected that AUC_ROC will improve
after using SMOTE, we observe that it slightly decreases for
all MLmodels, except LightGBM for the B3DB dataset. This
phenomenon can be explained by the gain in specificity and
a slight drop in sensitivity experienced by all models except
LightGBM. On the other hand, every ML model experiences
a slight improvement in AUC_ROC except LightGBM on
the BBB dataset. By analyzing these differences across the
dataset, we can deduce that performance gains in AUC_ROC
after SMOTE are associated with the degree of imbalance in
data, thus assisting the ML models on the BBB dataset more
than the B3DB dataset. Interestingly, LightGBM suffers a
loss of specificity after SMOTE application for both datasets,
suggesting that oversampling techniques may not assist the
models that internally handle class imbalance. Altogether,
ET achieves the highest AUC_ROC of 94.66% after SMOTE
application on the BBB dataset, whereas RF attains the
highest AUC_ROC of 96.01% without SMOTE application
on the B3DB dataset.

In addition to SMOTE, studies have incorporated other
resampling methods like adaptive synthetic sampling
(ADASYN), random under sampler (RUS) [50]. These
studies found that SMOTE is more effective in dealing
with class imbalance than other techniques employed in
the literature. However, the application of oversampling
needs to be done cautiously. Employing SMOTE to the
entire dataset as suggested in the literature [43] leads to
synthetic samples in the test set, which could result in a
model overfitting and inaccurate evaluation of the model’s
predictive capability. We observed that incorrect application
of SMOTE may provide high specificity and AUC_ROC (as
noted by [43]) that may hide the model’s performance on
the actual drug molecules while highlighting it on synthetic
samples. Furthermore, resampling prior to feature selection
or dimensionality reduction could result in the selection
or elimination of crucial dimensions, as seen in [50]. Our
study has carefully analyzed the appropriate application
of resampling techniques (i.e., SMOTE) to avoid incorrect
model evaluation and overfitting while providing its impact
on all the well-known ML models.

It is also crucial to evaluate whether the best fingerprints
for ML models alter after applying SMOTE. The results
in Supplementary Tables give the overall evaluation of
models with each fingerprint after SMOTE application.
While the best performing fingerprints after SMOTE have
not changed for most models, their order of effectiveness
changed to a certain extent. Tables 3 and 4 show the
ranked fingerprints for ML models after the application
of SMOTE. While SMOTE has been effectively used in
literature and proved to be advantageous in overcoming the
limitations set by imbalanced data, the choice to employ it
needs to be assessed carefully. Specifically, drug design and
development approaches must carefully analyze the intended
drug’s application. For instance, a drug designed for treating
neurological conditions is required to cross the BBB to reach
the site of pathological origin. In such cases, information on
the chemical aspects of a molecule that restricts transport
across BBB can be avoided during drug design for targeted
delivery. As this information is mainly from the minority
class data, applying SMOTE to the data or using models that
address the data imbalance like LightGBM can provide better
drug design outcomes for neurological conditions.

Key findings:
1) Application of SMOTE on the data improves speci-

ficity of models at a slight cost of sensitivity except
LightGBM.

2) Extent of class imbalance impacts the performance
gains observed with the application of SMOTE.

3) Oversampling techniques (i.e., SMOTE) must be
applied only on the training set (when using train-test
split or K-fold cross validation) to avoid the presence
of synthetic samples in the test set.

4) The best performing fingerprint remain the same for
most ML models before/after application of SMOTE
with slight changes in their ranking.
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FIGURE 3. Performance summary of ML models with top fingerprint combinations using SMOTE on the BBB dataset.

C. IMPACT OF FINGERPRINT COMBINATION AND SMOTE
The existing datasets on BBB permeability of drugs contain
molecules that cross BBB by several transport properties. The
predictability of the methods mostly relies on the passive
diffusion across BBB driven by the molecular properties.
However, crucial molecules like glucose and insulin occur
via highly selective transporters/receptors interaction like
ATP-binding cassette, efflux transporters etc. Such mech-
anisms are poorly defined by the physicochemical proper-
ties of the compounds. Thus the use of physicochemical
descriptors in the form of 1D/2D handcrafted vectors and
unsupervised generation of molecular vectors by mol2vec
showed better predictability in all the models employed in
the current study. The similarly between these two features
have already been established using CKA similarity search
(Figure 1).

To overcome this limitation we propose the combined use
of property-based features influencing passive diffusion and
molecular fingerprints influencing receptor interactions like
uptake, efflux and binding. Figures 3 and 4 summarize the
best performing fingerprint combinations for each model on
both datasets. Overall the highest performance was obtained
using SVC model for BBB dataset with 95.1% predictability.
A combination of Avalon, mol2vec and MACCS fingerprints
further improved the specificity in SVC model indicating

the integrated learning of the model to predict true negatives
using more fingerprint information. While this result cannot
be compared with B3DB dataset due to poor scalability, it is
consistent with Yuan et al. (2018) [21]. The authors identified
the use of 1D/2D descriptors or fingerprints individually
for the SVM classification model resulted in 91.7% and
96.8% predictability, respectively. However, the combination
of these two improved the predictability to 97.5%. While
essentially, physicochemical features of the molecule have
more contribution to the BBB permeability, fragment-
based features add more value to the molecular properties
responsible for permeability. As mentioned previously,
MACCS is a substructure fingerprint that include predefined
atom symbols, bonds, atom properties and environment.
Specifically, MACCS provides information like the presence
of nitrogen heterocycle which is a major contributing factor
to BBB permeability [19]. The presence of this nitrogen
heterocycle can further influence physicochemical properties
like lipophilicity, polarity and hydrogen bonding capacity.
This could be attributed to the higher performance of the
combination of MACCS and mol2vec in SVC model. For
both datasets, most models experienced a mild increase in
predictability (AUC_ROC) upon using the combination of
top fingerprints but a significant reduction in the specificity.
This can be due to the suppression of information essential for
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FIGURE 4. Performance summary of ML models with top fingerprint combinations using SMOTE on the B3DB dataset.

BBB− predictability when PCA is applied on a combination
of fingerprints (e.g., mol2vec and MACCS). Interestingly,
AUC_ROC of ET models decreased slightly with finger-
print combination relative to individual fingerprints. The
performance of XgBoost remained the same after fingerprint
combination for BBB and B3DB datasets, respectively. These
observation suggest that every model may not benefit from
training with combination of fingerprints. Our findings imply
that SVC and RF are effective in predicting the passive dif-
fusibility of drugs attributed to the physicochemical features
rather than the fragment-based information contributing to
the other transport properties.

Key findings:
1) For B3DB dataset, MACCS and mol2vec combination

works well for most model, whereas for the BBB
data, mol2vec or 1D/2D features is present in the best
performing fingerprint combination.

2) For both datasets, the specificity of the models
decrease with fingerprint combination. Nevertheless,
KNN achieves the highest specificity among the trained
models.

3) For BBB and B3DB dataset, some models performed
similarly with and without fingerprint combinations.
ET experienced a slight dip in accuracywith fingerprint
combinations.

D. VALIDATION OF MODELS FOR DRUG RE-PURPOSING
To validate the performance of the top ML models as an
application for drug repurposing, a set of 30 drugs is selected
from the literature (Table 5). Some of the drugs are chosen
based on the results of the network medicine approach using
ML for neurological disease drug repositioning reported by
Dias et al. [51]. The study maps the genes responsible for
neurological diseases and the gene targets of drug candidates
from the last 50 years. While genetic targets of the drug are
mapped using the ML model in the mentioned study, pre-
dicting the BBB crossing ability of these drugs could further
predict the actual effectiveness of these drugs in neurological
conditions. This study is chosen as a representative of the
huge applications and opportunities provided by machine
learning tools in the drug development process. We eliminate
the redundant drugs from this list that are present in the
B3DB dataset. Further, hypertension-associated neurological
effects have been long identified to be linked with dementia,
potentiating Alzheimer’s pathology, pre-eclampsia etc. [52],
[53]. Hypertensive drugs like beta-blockers, calcium channel
blockers, and renin-angiotensin system (RAS) drugs have
been studied to lower dementia risk [54]. Though RAS is
primarily involved in maintaining homeostasis, the presence
of RAS in the central nervous system indicates its importance
in cognition and neuronal functions. Thus, RAS drugs that
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TABLE 5. BBB permeability prediction with models trained using B3DB data for recently proposed drugs targeting neurological diseases and
hypertension. Here, 1 and 0 represent the BBB+ and BBB− classes, respectively.

could cross BBB can be expected to improve Alzheimer’s,
Parkinson’s, and Huntington’s diseases that are characterised
by a cognitive decline [51], [55]. Hence, most of the
hypertensive drugs with more focus on RAS-acting drugs
(Table 5) are also studied forMLmodel validation as an effort
toward their repurposing for neurological diseases.

To accurately determine the BBB permeability of the
above-mentioned drugs, we train the best performing ensem-
ble tree-based models (i.e, RF and ET) on the B3DB
dataset (with SMOTE enabled) using themol2vec fingerprint.
We use mol2vec because it is one of the best-performing
fingerprints for these models (Table 4). Additionally, We also
infer using the KNN model due to its higher specificity and
lower false positive rate. By considering the predictions of
three different ML models, we utilized majority voting to
further minimize the chance of incorrectly predicting BBB
permeability.

Table 5 presents the list of drugs for which the selected
models had 100% agreement in predicting BBB+ and
BBB−. It can be seen that CYP17A1 gene inhibitors like
seviteronel and orteronel commonly intended for cancer
treatment indicated a majority value for BBB permeability.

A recent study on the Chinese Han population indicated the
involvement of the CYP17A1 rs743572 allele in the late
onset of Alzheimer’s disease [56]. The BBB permeability
of these drugs can indicate a possible new application of
these drugs for preventingAlzheimer’s disease. Asmentioned
previously, the presence of heterocycle is one of the major
contributing factors to BBB permeability. Thus, the aromatic
heteropolycyclic compounds, seviteronel and orteronel are
predicted to pass BBB by all the models. In contrast,
a sterol-based CYP17A1 inhibitor (Abiraterone) is predicted
as BBB− indicating the high specificity of the developed
model. Similarly, anti-hypertensive drugs are gaining popu-
larity as repurposing targets for neurological diseases [57],
[58], [59]. However, the majority of the anti-hypertensive
drugs are predicted to possess poor BBB permeability
irrespective of their mechanism of action. As brain RAS
is involved in several cognitive functions, BBB is mostly
equipped to selectively transport the molecular components
of this system tomaintain the functions. Since they are crucial
compounds of neuronal functions, their transport is mediated
by highly selective transporters like p-glycoprotein and efflux
transporters [60]. However, beta-blocker anti-hypertensive
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like nadolol is predicted as BBB+ by all the models based
on their physicochemical properties (Table 5).

Table 5 also highlights the list of drugs for which the
models disagreed in terms of BBB permeability. We can
observe that RF and KNN have more agreement in this class
of drugs relative to ET. This is because ET has the highest
sensitivity and lowest specificity among the models used for
inference, resulting in more BBB+ inference than BBB−.
This can be understood from the case of non-steroidal anti-
inflammatory drugs, where the ET model predicted BBB+
permeability while KNN and RF models predicted BBB−.
As KNN and RF models have relatively higher specificity
in comparison with ET (Tables 3&4), the prediction of
false positives is lower, implying the non-crossing property
of these drugs. Several studies have explored the potential
application of NSAIDs in the prevention and treatment
of Alzheimer’s and Parkinson’s and found them to be
ineffective [61]. This can be attributed to their poor BBB
permeability as identified in this study. Another example
indicating the high specificity of KNN and RF models is
the prediction of the transport of anti-hypertensive drug
Nifidepine (calcium channel blocker). This is in contrast to
similar calcium channel blocker nicardipine, that is predicted
as BBB−. This can be attributed to the relatively smaller
size of nifidepine in comparison with nicardipine. Some of
the primary criteria for BBB passage is small molecules and
lipophilic nature [7].

IV. CONCLUSION
In this paper, we conduct a comprehensive empirical study to
evaluate the performance ofMLmodels with different molec-
ular fingerprints and handcrafted descriptors, to establish the
best performing ML model and corresponding fingerprints
for BBB permeability prediction. We ensure to eliminate
dataset bias by conducting the study on two different datasets
and analyzing the performance with several fingerprint
types. A correlation among best-performing fingerprints has
been made using the CKA similarity measure. We further
evaluate the performance impact of the data balancing
technique (i.e., SMOTE) on all models for both datasets.
The developed model indicates the correct usage of such
resampling techniques depending on the type of model
and the intended application of the model. Additionally,
we examine whether the combination of different fingerprints
improves the performance of ML models. Finally, we utilize
the models trained in our study to infer BBB permeability on
drugs proposed for repurposing/repositioning.

AI/ML-assisted drug development for neurological appli-
cations has seen unprecedented success in recent years. It is
to be noted that the use of these models in drug discov-
ery/repurposing needs to be carefully applied considering the
limitations and bias in the datasets. Thus, a proper amalgama-
tion of the research knowledge, BBB physiology, and existing
permeability models can help in developing robust models
with better accuracy, thereby making drug development
a rapid process. Hence, we envision the exploitation of

computational AI by using neural networks and deep learning
models as an application-driven screening framework for
neuro-oncology, CNS infections, and neurodegenerative dis-
orders such as Alzheimer, Parkinsonâ and multiple sclerosis.
With increasing scope for nanotechnology-based targeted
delivery across BBB, we further visualize the huge prospects
of AI in designing engineered nanomaterials (ENMs) for
CNS theranostics development.
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