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ABSTRACT Prognostics and health management (PHM) is an engineering approach dealing with the
diagnosis, prognosis, and management of the health state of engineering systems. Methods that can analyze
system behavior, fault conditions, and degradation are crucial for PHM applications, as they create the
basis for determining, predicting, and monitoring the health of engineering systems. Data-driven methods
have been proven to be suitable for automated diagnosis or prognosis due to their pattern recognition and
anomaly detection abilities. Moreover, they do not require knowledge of the underlying degradation process.
However, training data-driven methods usually requires a large amount of data, whose collection, cleansing,
organization, and preparation are generally very time-consuming and costly. There are usually little or no
run-to-failure data available at market launch, especially for new systems such as new machine generations.
Nevertheless, related systems, hereinafter referred to as similar systems, often already exist, differing only in
some technical characteristics. In this paper, the similar system problem is defined, and explanations of the
difficulties that arise when using data from similar systems are presented. Furthermore, it is discussed why
the usage of these data offers great potential for condition diagnosis and prognosis of engineering systems.
An overview of data-driven methods that can be used to utilize data from similar systems is provided, and
the methods that such systems already consider are highlighted. Two related research areas are identified,
namely, fleet learning and transfer learning. In the paper, it is shown that similar system approaches will
become an important branch of research in PHM. However, some difficulties must be overcome.

INDEX TERMS Condition diagnosis, condition prognosis, data-driven methods, fleet learning, prognostics
and health management (PHM), similar system approach, similar system problem, transfer learning.

I. INTRODUCTION
Prognostics and health management (PHM) addresses fault
detection, diagnosis of the specific fault, and prognosis
of the future degradation of engineering systems. Fig. 1
shows the possible elements of the PHM. Based on current
operational data and additional (historical) knowledge about
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the system, an attempt is made to estimate the system’s
current state of health. With this estimation, predictions of
future degradation are possible. In this way, the time of failure
can be predicted, and the remaining useful life (RUL) can
be determined. This allows health management processes
such as maintenance planning, logistics measures, and
performance regulations to be improved. PHM thus forms the
basis for advanced maintenance strategies such as condition-
based maintenance, predictive maintenance, and prescriptive
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FIGURE 1. Elements of PHM.

maintenance [1], [2], [3]. As seen in Fig. 1, the elements of
the PHM are arranged in a circle, where recursive evaluation
and optimization can take place.

When using PHM

• downtime and the number of unexpected failures can be
reduced,

• uptime between maintenance actions can be maximized
without causing serious outages, and

• the life of components can be extended by avoiding
unfavorable operating conditions.

This results in reduced maintenance and life cycle costs while
increasing the productivity and system reliability [4], [5], [6].

To make statements about the current and future health of
an engineering system, both condition diagnosis and condi-
tion prognosis methods are necessary. Condition diagnosis
methods aim to identify the current health of a system (e.g.,
the current health index or the presence of a fault), while
condition prognosis methods predict the future degradation
pattern (e.g., by using the health index) or the RUL. In this
paper, a more detailed distinction between fault detection
and fault state assignment, e.g., the fault cause or the fault
severity [7], is omitted.

In the literature, existing PHM methods for condition
diagnosis and prognosis are divided into different categories.
The most common distinction is between model-based and
data-driven methods. When model-based and data-driven
methods are combined, they are referred to as hybrid
methods. Literature using this division includes [5], [8], [9],
[10], [11], [12], [13], [14]. This categorization is also used in
this paper. Depending on the authors, additional divisions of
the existing methods are made, e.g., in [15] and [16].

Model-based methods use mathematical models that
describe a process, machine, or system in general and are
based on physical or chemical principles. In addition to
modeling the exact processes in the system, a mathematical
description can also be obtained through system identifi-
cation techniques. For example, mechanically oscillating
components behave somewhat like a damped spring-mass
oscillator. Once the model is created, condition diagnosis
algorithms then monitor, for example, the agreement between
the measurements on the real system and the values predicted

by the model to identify any deviations that occur and to
detect faults that may be present in the system [12], [17], [18],
[19]. However, the term ‘‘model-based’’ is not unambiguous.
For instance, a neural network could also be seen as a model.
To avoid confusion, model-based methods are referred to
below as physical methods using physical models. One of the
main drawbacks of physical models is the need for a physical
understanding to describe the system behavior. In addition,
the design of such a model can be very time-consuming and
quickly reach its limits for complex systems.

Data-driven methods do not need a physical model. The
information about the system is obtained rather exclusively
from the data provided [18], [20], [21], whereby machine
learning and statistical methods are mostly used. Data-
driven approaches are particularly suitable for automated
diagnostic systems due to pattern recognition and anomaly
detection. In addition, they do not require knowledge of the
underlying degradation process [9], [10], [22]. Therefore,
they can usually be implemented at low costs. In recent years,
data-driven methods for condition diagnosis and prognosis
have become increasingly important in PHM. This is partly
because today’s systems have a large number of sensors,
and thus readings of the current system status are generally
available [23], [24], [25]. In addition, physical models are
becoming increasingly complicated due to the increasing
complexity of engineering systems [1], [26].

However, data-driven methods require extensive training
data. Data collection and processing are generally very
time-consuming and costly. In the case of novel systems,
such as new machine generations, the situation is further
complicated. Usually, there are little or no runtime and run-
to-failure data available at the time of market launch. Due
to the typically long life of engineering systems, during
which operating conditions change several times due to
environmental changes, wear, or the replacement of parts,
it is almost impossible to quickly collect a representative
set of data [27]. In addition, in many cases, machines are
customer designed and only manufactured in small batches,
which makes it difficult to create large datasets [28]. All of
the above challenges limit the use of data-driven condition
diagnosis and prognosis methods for PHM [5], [29], [30].

The aim of this paper is to draw attention to a novel
field of PHM research that can contribute to addressing the
lack of data in data-driven condition diagnosis and prognosis
applications. The basic idea is to use data and knowledge
from related systems, herein referred to as similar systems,
to increase the amount of available training data. Similar
systems may include machines of previous generations
or other dimensions. An investigation of how data from
similar systems can be used for data-driven diagnosis and
prognosis methods of PHM is conducted. The performance
of data-driven methods is based directly on available data,
suggesting the use of data from similar systems when data
are scarce. It should be explicitly noted that the PHM area of
health management, i.e., the use of diagnosis and prognosis
information such as health state or RUL to manage system
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health, is not considered here. This is also not currently the
focus of the literature dealingwith the use of data from similar
systems.

Another point worth mentioning is that, depending on the
data-driven diagnosis and prognosis method, more or less
data are required for model training. This phenomenon is
due to the different ways each data-driven method works.
For example, deep learning usually requires more data than
shallow learning since more model parameters have to be
adjusted, and thus, there is a higher risk of overfitting.
Additionally, some statistical methods and methods for
subspace identification usually manage with relatively little
training data. Discussions of the requirements of statistical
and machine learning methods in relation to the amount
of data can be found, for example, in [31], [32], and [33].
However, the explicit aim of this paper is not the investigation
of which data-driven methods require more data and which
require less data. Instead, approaches are presented for using
similar data from other systems in the case that the data from
the system under study are insufficient. This approach can
be valuable for all data-driven methods, whether they require
more or less data. In addition, there are further possibilities to
reduce the amount of data required by themethods, e.g., boot-
strapping, cross-validation, or ensemble learning. However,
these are also not discussed.

In the further course of this paper, under the key phrase
‘‘similar system problems’’, existing approaches that use data
from similar systems are highlighted. First, an overview of
the procedure conducted for the literature search is provided
in Section II. Subsequently, in Section III, the problem
underlying the newly defined field of research in this paper
is explained in detail. In addition, the concept of similar
system approaches is presented. This is followed by the
presentation of related fields of research in Section IV, whose
approaches are also suitable for similar system problems,
namely transfer learning and fleet learning. In Sections V
to IX, for each research field, a review of existing methods
for condition diagnosis and prognosis of engineering systems
is given. In particular, the existing approaches are clarified,
applications are considered, and an explanation of how these
approaches currently address similar system problems is
presented. Based on this, the applications of the approaches
that specifically make use of similar system data are
discussed in more detail in Section X. In addition to
considering similar systems, there are also approaches that
consider similar processes. Such approaches are presented
in Section XI. In Section XII, negative transfer is outlined
as one of the main problems when using similar system
data. Finally, findings are summarized, current challenges are
listed, and recommendations for future research are given in
Section XIII, and this paper is concluded in Section XIV.

II. LITERATURE SEARCH PROCEDURE
The aim of this paper is to introduce the problem of similar
systems and their great potential for condition diagnosis and
prognosis, as well as to give an overview of approaches

that already consider similar systems or different operating
conditions. For the latter, a literature search is conducted
covering the period through the end of 2021. The chosen
procedure is based on that presented in [34]. Approaches
outside the PHM research area, such as in the field of human
health, are explicitly excluded.

The keywords from which search strings are formed are
listed in Table 1. First, existing relevant research fields in
PHM are identified using the keywords in the first row
after the header line. This is followed by a targeted search
for PHM approaches in the identified research fields of
transfer and fleet learning using the keywords also listed in
Table 1. Forward and backward snowballing [35] are used
to supplement the searches. The searches are performed in
Web of Science, Google Scholar, and Science Research.
Depending on the search engine, only a subset of the
keywords can be used for the search due to character
limitations. In these cases, the keywords for the transfer
learning and fleet learning searches are split into several
subsearches. In the preceding search for related research
fields, however, no partial searches are performed, but the
search is limited to the central terms in case of character
restrictions. The prioritization results from the order in which
the terms are mentioned in Table 1. The searches in Web of
Science are performed by title, abstract, and keywords. The
number of papers to be evaluated is reduced by restricting the
search by specifically excluding categories such as medical
specialties. The first 400 most relevant results are considered
in Google Scholar and Science Research. In Google Scholar,
patents and citations are excluded from the search.

The screening of the relevant literature is based on the
title and abstract. The decisive factor for selection is that the
field of application is in the area of condition diagnosis or
prognosis of engineering systems, and a deviation of these
systems exists due to either different operating conditions or
technical characteristics of the systems themselves.

At this point, references should be made to other related
papers that provide overviews of transfer learning approaches
in industrial applications. Maschler and Weyrich [36]
presented a summary of transfer learning in industrial
automation. The approaches were subdivided into anomaly
detection, time series prediction, computer vision, fault
diagnosis, fault prognosis, and quality management. Some
essential approaches were listed for all the areas. Li et al. [8]
provided a review of deep transfer learning for machinery
fault diagnosis, presenting the most typical deep transfer
learning models. Moradi and Groth [37] reviewed central
transfer learning approaches specifically in the area of PHM.
Yan et al. [38] provided an overview of transfer learning
specifically for rotating machinery fault diagnosis. The
literature review that is included in this paper gives an updated
overview of PHM approaches for condition diagnosis and
prognosis in transfer learning, which in principle are also
suitable for application areas of similar systems. In contrast
to the listed existing reviews, an explicit distinction is made
between approaches that ‘‘only’’ consider different operating
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TABLE 1. Keywords for literature search (* = right-hand truncation, $ = a wildcard character).

conditions and those that already consider similar systems.
The former means that there are different environmental,
operational, or usage conditions.

Contrary to transfer learning, no comprehensive review
of fleet learning approaches has been found in the PHM
literature. It can therefore be considered that the review
given in this paper represents the first review for condition
diagnosis and prognosis in fleet learning. One relevant
contribution to mention is that by Fink et al. [25], who
covered deep learning directions for PHM approaches. In the
course of this paper, some transfer and fleet learning PHM
approaches were listed.

III. THE SIMILAR SYSTEM APPROACH
Data-driven PHMmethods for condition diagnosis and prog-
nosis of engineering systems offer strong potential because
detailed system knowledge is not needed. Nevertheless, the
lack of sufficient training data is a major drawback to the
use of these methods in industrial settings. However, (new)
engineering systems are often based on existing systems. For
example, new product generations usually have similarities
with their predecessors. Even systems with different dimen-
sions are usually closely related. Furthermore, the ongoing
standardization of equipment in the course of cost reduction
means that machines are becoming increasingly alike through
the use of similar components and configurations [39]. Thus,
the structure and components as well as the properties, areas
of application, and operating conditions (e.g., operating time,
mileage, temperature, load, and pressure) of such similar
systems are often comparable. As a result, degradation data
from similar systems can be extended as training data for
data-driven condition diagnosis and prognosis approaches.

Similar systems are defined in this paper as engineering
systems that have similar technical characteristics. This
includes systems with common components and similar
functional principles. Depending on the level of observation,

entire machines, devices, or plants can be seen as similar
systems but also individual subsystems or components such
as installed bearings or gears.

More formally, based on [40], a system can be described
as a finite set of technical characteristics. Given two systems
with the sets A and B, the level of similarity can be defined
by the intersection U = A ∩ B. The greater the cardinality
|U | = |{u1, . . . , un}| = n is, the more similar the systems
are. A threshold for the number of elements ui in U can
be set, above which one can speak of similar systems.
Possible types of technical characteristics used to describe
and compare systems depend on the type of system under
consideration as well as its use. For instance, the components
or component types that make up a system can be used for
comparison. When considering components, all components
of the systems to be compared are grouped into the respective
sets A and B. Then, it is checked whether elements from
the sets are identical, i.e., identical components are installed
(e.g., identical gears in two gearboxes). These identical
elements then form the set U . Alternatively, the sets can be
formed from the installed component types (e.g., bearings
and gears). For example, in this case, if bearings of any
type are installed in both systems, the component bearing
is an element of the set U . In addition to components, the
functions or tasks the systems perform can also be considered
to determine similarity. For example, both axles and shafts
have the common function of carrying rotating components.
Therefore, this function forms an element from the set U .
However, a function that is not included in U is the torque
transmission, which is only a function of the shaft.

When considering component types or function types, it is
possible to specify the similarity more precisely by means of
a similarity measure. Given A, B, andU defined as above, the
similarity can be evaluated as

Q = f(|A|, |B|, |U |, sim(ui)), (1)
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where sim is a similarity measure that evaluates the similarity
of the elements in U . For example, bearings as a component
type can differ in terms of dimensioning, the number of
rolling elements, or the rolling element type. Similarity
measures can then be defined to evaluate the similarity
between different bearings. These measures must be defined
individually depending on the application. A weighting of
the individual deviations according to the significance for the
deviation of the overall systems can also be included.

As shown in this paper, for the similarity evaluation of
systems, instead of comparing technical characteristics, it is
also possible to assess the similarity of systems purely on
the basis of available measurement data. This possibility
offers the potential to automate the similarity assessment
without the need for a human expert to evaluate the technical
characteristics.

Examples of technical characteristics based on deviations
in the structure of a system include the following:
• Dimensioning/shape: Changes in dimensioning and
shape have many effects, e.g., other forces, moments,
and stresses can occur and dynamic properties and
heat distribution can differ. Furthermore, characteristic
vibration patterns are affected. In electronic systems,
voltages, currents, resistors, capacitances, and induc-
tances can vary.

• Material: The choice of material has a decisive influence
on the properties of a system. The material characterizes
mechanical properties such as hardness, elasticity,
density, strength, and brittleness and other physical
properties such as thermal behavior (e.g., thermal
conductivity, melting temperature, and heat capacity),
electrical conductivity, and optical properties. In addi-
tion, chemical properties such as corrosion/oxidation
resistance change with the material [41].

• Characteristics depending on manufacturing processes:
The technical characteristics of a product can also
vary due to different manufacturing processes, e.g., the
cohesion, hardness, and surface quality of a material can
be affected.

• Characteristics depending on mounting: If several indi-
vidual parts are assembled, different joining techniques
can be used. Therefore, varying characteristics also
result. For example, gluing results in a more uniform
force transmission than the use of screws.

• Data acquisition: Deviations in data acquisition can
also lead to differences. For example, installed sensor
types or sensor locations may vary. Since measurements
are taken at other locations, differences in data arise.
Different sensors may have different sampling rates or
different accuracies, for example. Additionally, different
quantities can be measured.

Usually, deviations in the functions also lead to deviations
in the structure since other requirements are placed on the
system. It should be noted that instead of deviations in
the technical characteristics of systems, deviations in the
operating conditions can also occur. Operating conditions

refer to environmental, operational, or usage conditions.
In this paper, the sole presence of different operating
conditions is not referred to as a similar system but is
considered a second case of similar data. This is because
different operating conditions can also lead to deviations in
the data. For example, the load can have a strong influence
on the quantities to be measured [42] and the degradation
rate. Different lubricants, contaminants, or environmental
conditions, such as ambient temperature or humidity, also
lead to different behaviors. Furthermore, it should be noted
that structurally identical systems can differ in terms of their
system behavior due to manufacturing tolerances. Causes
for manufacturing tolerances include dimensional tolerances,
manufacturing condition deviations (e.g., temperature and
humidity), material tolerances, or assembly tolerances. How-
ever, systems that differ by such tolerances are also not
considered similar systems in this paper.

Due to the deviations between similar systems, the models
and datasets of these systems cannot be readily adopted
for the considered system. This problem, which is referred
to as the similar system problem in this paper, prevents
the promising use of knowledge from similar systems. For
example, products of a new generation often have a different
design and a wider range of functions [29]. Therefore,
quantities that reflect the system health state (e.g., vibrations,
sounds, power consumption, and oil condition) depend on
the system design and are thus not necessarily comparable.
Due to this similar system problem, approaches are needed
that enable the utilization of knowledge from similar systems,
despite the differences between them. These approaches are
summarized in this paper as similar system approaches. The
crucial question in the area of similar systems is therefore
‘‘When, for what purpose, and how can existing data from
similar systems be used?’’ The scope of this paper is PHM
applications for condition diagnosis and prognosis; however,
other application areas are also conceivable if the use of data
from similar systems could be advantageous.

IV. RELATED RESEARCH FIELDS
Methods for data-driven degradation estimation can be
divided into component- and population-based approaches
[26]. Component-based methods use a separate prediction
model for each system, trained only with the existing data
of the system itself. Since each model is trained only with the
data of one specific system, the application of these models
to other systems is limited. This is because most data-driven
methods only yield good results if the test data, i.e., the data
during the application of themodel, are from the same domain
as the training data, meaning that these data have the same
characteristics (features, labels, distributions, etc.). If this is
not the case, which is usually true for different systems,
training typically has to be repeated with new data [43], [44].
This becomes clear, for example, in fault detection based on
anomalies. In this type of approach, a model is trained using
only operational data recorded in a healthy state. Then, if a
deviation from the training examples occurs in an application,
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it is detected as a potential fault. However, when the trained
model is applied to similar systems, the new operating data
in a healthy state may differ from that of the original system.
As a result, a fault may also be detected [45], [46].

Population-based approaches use the available data of
multiple comparable systems that have some similarity to
each other. In this way, the model is made universally valid
so that it can be applied to any of the systems, whereby
some additional adjustments to the unit under consideration
may be necessary. The similar system problem studied in
this paper falls under these population-based approaches.
According to the conducted literature review, two research
areas deal with the use of data from related systems for
condition diagnosis and prognosis: transfer learning and fleet
learning. As the name suggests, fleet learning essentially
pursues the idea of collecting as much data as possible from
all occurring domains and using it for training. In this way, the
risk that the test data originate from a new, unknown domain
is reduced. This is achieved by collecting knowledge from a
large number of individuals. As a result, the model should
be able to represent the current unit under consideration.
Whereas fleet learning pursues the idea of creating a model
that can be used across the whole fleet, i.e., all domains or
at least a significant part of them, transfer learning focuses
on a specific domain. Knowledge from other domains is
used in such a way that performance in the considered
domain is maximized. Accordingly, the knowledge of other
individuals is transferred to the domain of the unit under
consideration. The aim is to improve the performance of the
model specifically on this considered unit and not across all
units.

A. TRANSFER LEARNING
Transfer learning provides approaches to transfer previous
knowledge to different application fields. Although transfer
learning is a relatively new machine learning approach,
researchers are currently focusing on this topic [23]. The
majority of applications are in the fields of computer
vision, natural language processing, and health care, where
transfer learning is already being used successfully [47], [48].
In contrast, a relatively small number of publications have
focused on PHM, as confirmed in the literature. According
to Mao et al. [19], transfer learning is not yet widely used in
the PHM of mechanical components. The lack of application
in fault diagnosis has been confirmed by Pan et al. [49] and
that in fault prognosis has been confirmed by Maschler and
Weyrich [36].

However, as in other fields, transfer learning can be used
in PHM to transfer between different application fields.
In PHM, such a transfer may be necessary due to minor or
major deviations caused by different operating conditions or
similar systems. Even if the datasets only slightly differ, e.g.,
when a trained condition diagnosis or prognosis model is
applied to an identical machine operating only under slightly
different operating conditions, the prediction performance
can be significantly increased by transfer learning [25], [30],

[50]. Through transfer learning, existing knowledge can be
used for new, similar tasks. Therefore, it is not necessary
to start from scratch, as is usually the case in practice [16].
Transfer learning can reduce the amount of required new
data and the time needed for training data-driven condition
diagnosis and prognosis models. Furthermore, it can improve
the quality of the models obtained [51], [52]. Thus, transfer
learning is very suitable for data-driven condition diagnosis
and prognosis PHMapplications considering similar systems.

1) FORMAL DEFINITION OF TRANSFER LEARNING
There are several core areas and transfer approaches to
transfer learning. To clarify the differences, it is necessary
to first formally define transfer learning. Transfer learning
aims to make the learning of a prediction function for a target
domain more efficient and successful by using knowledge
from another (related) source domain. One or more source
domains may exist and can be used. However, for the
definition below, only one source domain is assumed. The
definition is based on [48], [51], and [53].

A domain is formed from the set D = {X,P(X )} with
the feature space X and the marginal distribution P(X ). X =
{x1, . . . , xm} ∈ X corresponds to a sample of size m, and
xi is the i-th feature vector. Typically, in a domain, there
is a learning task defined as the set T = {Y,P(Y |X )},
comprising the label space Y and the prediction function
P(Y |X ), which can be seen as a conditional distribution.
Y = {y1, . . . , ym} ∈ Y is the set of labels belonging to
the m feature vectors of sample X . P(Y |X ) must be learned
using the tuples {xi, yi}. Transfer learning is used when either
the source domain Ds and target domain Dt or the learning
task of the source Ts and target Tt differ. The notation is
shown in Fig. 2. Ds 6= Dt means that the domains differ
in either the feature space, i.e., Xs 6= Xt or the marginal
distribution, i.e., P(Xs) 6= P(Xt ). Ts 6= Tt occurs when
the label spaces in the tasks are different, i.e., Ys 6= Yt
or the prediction functions differ, i.e., P(Ys|Xs) 6= P(Yt |Xt ).
Ds = Dt and Ts = Tt is a problem that can be solved using
traditional machine learningmethods. However, if at least one
of the abovementioned deviations is present, transfer learning
should be used to transfer knowledge from the source domain
to the target domain and thus make source data usable for the
target task.

Returning to the similar system problem, the source
represents one or multiple similar systems, and the target
represents a new system for which a data-driven model
is needed. Based on the above definition, the following
differences may occur in the condition diagnosis or prognosis
of engineering systems [54]:
• Different types of features, e.g., through different
sensors.

• Different marginal distributions, e.g., different probabil-
ity density functions for one feature. For example, the
operating times of systems with different dimensions
can significantly vary from each other.

• Different types of labels, e.g., different fault types.
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FIGURE 2. Source and target subdivisions in transfer learning.

• Different conditional distributions, e.g., different char-
acteristic frequencies. Systems of different dimensions
have different characteristic frequencies. A deflection in
the vibration signal at a given frequency that indicates
damage in one systemmay also occur during the healthy
operation in the other system.

2) CORE AREAS OF TRANSFER LEARNING
Transfer learning can be divided into three core areas:
inductive transfer learning, transductive transfer learning, and
unsupervised transfer learning. In this paper, this division is
also used for the PHM condition diagnosis and prognosis
approaches of transfer learning presented in Sections VI
to VIII. The explanations below are based on the definitions
in [53], [24], [37], and [55]. One way to divide the areas is by
the availability of labeled or unlabeled data in the source and
target domains. In addition, each area has its own goal.

a: INDUCTIVE TRANSFER LEARNING
Available Data: Labeled target data & labeled or unlabeled
source data.
Goal: Improve the approximation of P(Yt |Xt ) using

knowledge in the source domain and knowledge about the
source task, while Ts 6= Tt . Since the tasks are different,
at least some labeled target samples are essential. For the
domain difference, both cases Ds = Dt and Ds 6= Dt are
conceivable.
Main Transfer Approaches: Instance-based transfer,

relation-knowledge-based transfer, parameter-based transfer,
and feature-representation-based transfer.

If there are labeled data in the source domain, inductive
transfer learning is very similar to multitask learning.
However, the latter focuses on learning multiple tasks
simultaneously and with balanced quality, whereas inductive
transfer learning attempts to maximize the performance of the
target task purposefully. If no labeled source data are used,
the type of learning is considered to be self-taught learning.
Therefore, with a large unlabeled source dataset, a feature
representation is learned. This representation is then used
to train a supervised learning task with the labeled target
data. Multitask learning and inductive transfer learning are
not considered in this review.

b: TRANSDUCTIVE TRANSFER LEARNING
Available Data Unlabeled target data & labeled source data.
Goal: Allow the approximation of P(Yt |Xt ) using knowl-

edge in the source domain and knowledge about the source
task given Ds 6= Dt and Ts = Tt . Accordingly, two types of
domain differences could occur: Xs 6= Xt or P(Xs) 6= P(Xt ).
In this paper, the condition Ts = Tt is somewhat softened.
The label spaces have to be the same (Ys = Yt), or the source
label space has to be at least a subset of the target label space
(Ys ⊂ Yt) and vice versa (Yt ⊂ Ys). In addition, in condition
diagnosis or prognosis applications, the prediction functions
will never be identical. Hence, they only have to be similar
(P(Ys|Xs) ≈ P(Yt |Xt )) so that the knowledge of the source
domain can be applied to the target domainwith an acceptable
degree of accuracy loss. This means that it is assumed that the
tasks are so similar that labeled target data are not necessary.
Main Transfer Approaches: Instance-based transfer,

parameter-based transfer, and feature-representation-based
transfer.
This transfer learning area also includes domain adap-

tation. Domain adaptation is often defined as a branch of
transfer learning. The source and target have the same task
Ts = Tt and the same feature space, i.e., Xs = Xt , but
different marginal distributions, i.e., P(Xs) 6= P(Xt ) [53],
[56], [57], [58]. However, this distinction is not consistent
in the literature. For example, da Costa et al. [16] and
Weiss et al. [51] wrote that domain adaptation is used when
domains have different feature spaces. This review also
considers domain adaptation approaches, which are an essen-
tial part of transductive transfer learning. However, domain
adaptation approaches are not explicitly differentiated from
other transductive transfer learning approaches.
At this point, it should be highlighted that even with

the additional restriction Ds = Dt (so Ts = Tt and
Ds = Dt ), sample selection bias or a covariance shift can
still occur. Sample selection bias occurs when the samples of
the source and/or target are drawn from the same distribution,
albeit not independently. This is typically the case with real
datasets [59]. The covariance shift results from the difference
between the sample distribution and the distribution of the
population due to the sampling scheme [60]. Accordingly,
both generally occur in every data-driven PHM application
for condition diagnosis or prognosis.

c: UNSUPERVISED TRANSFER LEARNING
Available Data: Unlabeled target data & unlabeled source
data.
Goal: Find transferable relationships between P(Xs) and

P(Xt ). The main difference from the two previous methods is
that unsupervised transfer learning deals with unsupervised
learning tasks such as dimensionality reduction, clustering,
anomaly detection, and pattern recognition. Neither labeled
source nor labeled target data are available. Unsupervised
transfer learning is also referred to as self-taught learning.
One such approach is to cluster a small target dataset using
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FIGURE 3. Core areas of transfer learning.

a large unlabeled source dataset (self-taught clustering).
Moreover, a feature representation can be learned using a
large unlabeled source dataset. However, the latter alone is
usually not sufficient for condition diagnosis or prognosis
applications and is therefore often embedded in an inductive
or transductive approach.
Main Transfer Approaches: Instance-based transfer and

feature-representation-based transfer.
Fig. 3 shows a graphical representation of the core areas of

transfer learning, differentiated according to the availability
of labeled data in the source and target domains. In addition
to the three mentioned classical areas of transfer learning, Niu
et al. [61] introduced two additional areas, cross-modality
transfer learning and negative transfer learning. To apply
classical transfer learning, theremust be connections between
the source and target feature spaces or the corresponding label
spaces. Thus, source and target data must be of the same
modality, e.g., text, picture, or audio. Cross-modality transfer
learning claims to transfer knowledge between different
modalities. For example, the source domain could comprise
features of images and the target domain could comprise
features of texts. As will be explained in Section XII, there
is a risk associated with transfer learning called negative
transfer. Briefly, negative transfer occurs when too much
uncorrelated information from the source domain is used for
the target domain. Therefore, initial negative transfer learning
approaches focus on the transfer of knowledge between two
widely separated domains and the possibilities to quantify
the impact of a negative transfer. However, these areas do
not currently play a role in PHM applications for condition
diagnosis and prognosis and are therefore not considered
further below.

3) TRANSFER APPROACHES IN TRANSFER LEARNING
Transfer learning is also often divided in the literature
into different transfer approaches, depending on what is
transferred [24], [38], [51], [53].

a: PARAMETER-BASED TRANSFER OR MODEL-BASED
TRANSFER—ADOPTION OF THE SOURCE MODEL
In this process, fully trained data-driven models, including
model parameters, are transferred from the source to the
target. In a weakened form, only the model structure,
hyperparameters, or parts of the model are transferred

[38], [52], [62]. Depending on the similarity of the data, the
transferred model can, for example, be used as initialization
for retraining with target data or utilized directly in the target
domain.

b: INSTANCE-BASED TRANSFER—ADOPTION OF SOURCE
DATA
In these approaches, source data are used directly in the
target domain. This means that for the training of data-driven
algorithms, data from the source are used in addition to data
from the target. By weighting, the impact of the target data
can be increased or a part of the source data can be sorted
out [53]. Likewise, the source data can be used to train a
classifier that assigns pseudo labels to the existing unlabeled
target data [63].

c: FEATURE-REPRESENTATION-BASED
TRANSFER—ADOPTION OF THE SOURCE FEATURE SPACE
In feature-representation-based transfer, feature spaces are
transferred. For example, if a suitable feature space has
been found for the source domain through a dimensionality
reduction procedure, it may also be possible to use this space
in the target domain. The feasibility of this approach depends
on the raw data, e.g., from the sensors installed in the system.
In addition to the pure transfer of a feature space, a feature
space can also be found in which the differences between the
source and target data are minimized [38], [51], [53], [64].

d: RELATION-KNOWLEDGE-BASED TRANSFER OR
RELEVANCE-BASED TRANSFER—ADOPTION OF
RELATIONSHIPS WITHIN THE SOURCE DATA
The idea is that relationships between source data also exist
within the target data. If this is the case, these relationships
can be transferred to the target [51], [53], [65]. An example
from text analysis is sentence structure. Regardless of the
informal content of a text, the sentence structure is always
very similar. Therefore, if the relationship between words in
the source is learned, this knowledge can also be applied to
words in the target. In PHM, such relationships could be, e.g.,
that the RUL essentially always decreases and the degradation
usually increases with increasing operating time.

The decision on which transfer learning approach to
choose depends on the similarity of the domains and the tasks,
the size of the existing datasets, and the specific use case and
must be made individually [66]. It is also possible to combine
several approaches.

B. FLEET LEARNING
Fleet learning attempts to generate knowledge from fleet data
that can be used for each individual unit. In PHM, such a fleet
may consist of several similar systems or identical systems
operating under different operation conditions. In this way,
the amount of available data can be significantly increased,
which can greatly improve the results of condition diagnosis
and prognosis. For example, fleet service life data can be used
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FIGURE 4. Fleet learning under operating condition shift.

to make predictions of the degradation profile or RUL of an
individual unit [67].

In addition to increasing the amount of data, fleet
learning approaches offer a further advantage through the
simultaneous consideration of several systems [68]. If there
is a fleet whose systems behave similarly in a healthy state,
the following approach is possible. It is assumed that most
of the systems in the fleet are in a healthy state. If one
system deviates significantly from the others, it may be an
indication that there is a fault. In contrast to supervised
approaches based on historical data (training data), data on all
possible faults are not needed.Moreover, unlike unsupervised
anomaly detection approaches that rely on historical data
from healthy states, operating conditions can change without
affecting fault detection functionality if the change occurs for
all systems. In contrast, for approaches based on historical
healthy state data, a change in operating conditionsmay cause
the new healthy state data to differ from the historical data.
Thus, the false detection of a fault is likely. This is illustrated
in Fig. 4. In the case of historical data, the change in operating
conditions only affects the new data point, resulting in the
detection of an anomaly. For fleet data, the shift affects the
reference data and the data point to be classified in the same
way. Thus, no anomaly is detected, and no false faults are
reported.

However, a challenge in fleet learning is that a fleet usually
consists of many systems, and even identical systems may
behave differently due to different operating conditions [42],
[69]. Possible deviations in the technical characteristics
further increase the diversity of the fleet.

In the literature, there is no agreement on the name of
the fleet learning research field. Different terms, such as
‘‘fleet PHM’’ [70], ‘‘fleet-level prognostics’’ [69], ‘‘fleet

FIGURE 5. Joined domain set in fleet learning.

monitoring’’ [27], have been used, or the topic is described
with expressions such as ‘‘fleet-based systems’’ [71], ‘‘sub-
fleet knowledge’’ [72], or ‘‘fleet of products’’ [13]. In the
course of this paper, all of these definitions are subsumed
under the term ‘‘fleet learning’’.

1) FORMAL DEFINITION OF FLEET LEARNING
Since no formal PHM-related definition of fleet learning can
be found in the literature, the term fleet learning will be
formally defined here by an analogy with transfer learning to
make the differences between them clear. In addition, Fig. 5
illustrates the idea of fleet learning. Compared with transfer
learning, fleet learning can be seen as an approach that
attempts to create a fleet model that is as general as possible
by using the information from the fleet. The model should be
able to be used across the whole fleet or at least a major part
of it. Thus, the aim is not to create a model that is only tailored
and applied to a specific domain (the target domain), as is the
case with transfer learning. Therefore, in fleet learning, there
are no source and target domains. The domains are seen as
one set Dfleet =

⋃k
i=1Di. However, in this set, the contained

domains Di and their learning tasks Ti may differ from each
other to a greater or lesser extent, as is the case with transfer
learning. Therefore, it may be necessary to first identify units
from the fleet showing similar behavior, e.g., by clustering,
and to train a common model only for this subfleet. This
has been confirmed by Medina-Oliva et al. [73]. According
to the authors, the formation of subfleets is essential,
especially for fleets consisting of significantly different
units.

2) SUBDIVISIONS OF FLEET LEARNING
In contrast to transfer learning, fleet learning is not divided
into core areas or specific approaches. Therefore, a division,
as found in Section IV-A, is not purposeful. Instead, fleet
learning approaches can be differentiated according to which
units (in PHM, this means systems) make up the fleet
under consideration. A distinction is made between fleets
considered from the manufacturer’s perspective and those
considered from the operator’s perspective.
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a: FLEET FROM THE MANUFACTURER’S PERSPECTIVE
The consideration of a fleet from the manufacturer’s per-
spective is currently the perspective that receives the most
attention. Here, a fleet is a set of homogeneous systems
with matching characteristics and properties that operate
under different but mostly similar conditions. Due to identical
systems, it is very likely that the same labels (e.g., faults or
RUL values in PHM) occur across all systems Yi = Yj, and
the same sensors and features derived from their signals are
typically used Xi = Xj. However, due to variations in the
operating conditions, other distributions of features can occur
P(Xi) 6= P(Xj). The prediction function may also deviate
somewhat, e.g., through production tolerances, although
these deviations should be kept within limits P(Yi|Xi) ≈
P(Yj|Xj).

b: FLEET FROM THE OPERATOR’S PERSPECTIVE
However, a fleet can also be defined from the operator’s
perspective as a group of systems that perform the same
function but do not have to be from the same manufacturer.
Thus, their characteristics and properties differ. For example,
the same sensors are typically not installed [25], and the
general structures of the systems differ significantly from
each other. Therefore, in addition, there may also be different
features Xi 6= Xj due to different sensors, and other
labels can occur Yi 6= Yj due to different degradation
behaviors.

In addition to the subdivision based on the manufacturer’s
and operator’s perspectives, there is a further subdivision into
identical, homogeneous, and heterogeneous fleets [21], [74]..
This is based on the similarity of the systems (i.e., technical
characteristics) and the operating conditions (i.e., environ-
mental, operational, and usage conditions) under which they
operate. According to this definition, identical fleets consist
of systems with identical characteristics operating under the
same operating conditions. In contrast, homogeneous and
heterogeneous fleets can have different technical character-
istics. The difference between homogeneous and heteroge-
neous fleets lies in their different environmental, operational,
and usage conditions. However, for the categorization of
fleet learning approaches in this paper, a division into
manufacturer’s and operator’s perspectives is more useful,
as it distinguishes between fleets with identical systems and
fleets with similar systems.

V. REVIEW OF PHM APPROACHES FOR CONDITION
DIAGNOSIS AND PROGNOSIS
In Sections VI to IX, a review of current PHM approaches
for condition diagnosis and prognosis in the areas of
transfer and fleet learning is provided. The aim is to give
a comprehensive overview of approaches that already deal
with similar system data and those that could, in principle,
be extended to these applications. Accordingly, two cases are
considered. The first case is the consideration of identical
systems under different operating conditions, i.e., different

environmental, operational, or usage conditions. Due to these
different conditions, there are differences in the data between
the systems, even though they have the same technical
characteristics. Approaches that account for differences due
to different operating conditions can therefore also be
appropriate for, or adapted to, differences arising from similar
systems. Deviations in the operating conditions can thus
be seen as a preliminary stage to similar systems and are
therefore also included in the review. The second case
considers approaches that actually deal with similar systems.

The approaches of transfer learning are subdivided accord-
ing to the three core areas and presented separately in
Sections VI to VIII. This subdivision is based on the
availability of labeled data in the domains. However, it must
be stated that the subdivision assignments are not always
unambiguous. In some cases, there may be overlaps between
the areas. For example, to further improve performance in the
target domain, some approaches that could proceed without
target labels additionally perform fine-tuning with a few
labeled target data. Therefore, these approaches can no longer
be assigned to transductive transfer learning but must be
allocated to the inductive transfer learning.

In condition prognosis, for subdivision into inductive and
transductive transfer learning, two cases must be distin-
guished: direct and indirect prognosis. In direct prognosis,
the end of life (EOL) or the RUL is directly predicted based
on the previously measured values of the system. This cor-
responds to the application of multivariate pattern mapping.
In contrast, indirect prognosis predicts the development of
the damage-determining variable over time. This variable
is usually called the health index (HI). An example is the
decreasing capacity of batteries. The EOL is defined as the
point in time in which the HI reaches a certain threshold.
The RUL is the time remaining until the EOL [75]. Thus,
in direct prognosis, the RUL (or the EOL) can be seen as the
label; in indirect prognosis, the HI can be seen as the label.
Therefore, direct prognosis is referred to as inductive transfer
learning when target RUL labels are available in addition to
source RUL labels. If only source data have assigned RUL
labels, direct prognosis is referred to as transductive transfer
learning. Note that RUL labels can only be assigned if entire
degradation runs up to the EOL are available. Accordingly,
inductive transfer learning is only possible in direct prognosis
if such runs are available in the target domain. For indirect
prognosis, the HI values are the labels. Thus, if HI data are
available in the target domain, inductive transfer learning
is already possible. It is already sufficient if the target HI
values are only available for the early degradation state and
not until the EOL. This is a clear difference from the direct
prognosis.

After the transfer learning sections, the fleet learning
approaches are considered in Section IX. These approaches
are divided into fleets defined from the manufacturer’s
perspective and fleets from the operator’s perspective. For
each of the Sections VI to IX, the existing approaches and
applications are presented. In Tables 3 and 5, the approaches
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are subdivided depending on whether they ‘‘only’’ consider
different operating conditions or already consider simi-
lar systems. Different noise levels and sensor sampling
rates are also understood as different operating conditions.
In Tables 3 and 5, sources that are marked as * focus
especially on different faults, i.e., different fault severities
or different fault types. In Section X, the applications of
the transfer and fleet learning approaches that specifically
consider similar systems are discussed in more detail. It is
explained how exactly these systems differ. Tables 3 and 5
also indicate which signal types are considered in the
references for condition diagnosis or prognosis and whether
real measurement data or simulation data are used. This
subdivision takes into account the signals from which the
condition diagnosis or prognosis is mainly based. In some
references, other auxiliary signals, such as the rotational
speed of bearings and gears or the ambient temperature
of batteries, are taken into account as additional variables.
However, since these signals do not give any direct indication
of possible faults and to avoid further expansion of the tables,
they are not mentioned in the tables. In addition, it should
be noted that in the tables, the term ‘‘vibration’’ refers to
oscillations of a body, while ‘‘sound’’ describes oscillations in
gas (air in the applications). As described in [76], simulation
data are the numerical outcomes of simulations performed on
a computer. The simulation model approximates the behavior
of a real-world system or process. In contrast, measure-
ment data originate from real measurements on real-world
systems or processes, e.g., on test rigs or in industrial
applications.

Figs. 12 and 13 show the main concepts of the existing
transfer and fleet learning approaches for condition diagnosis
and prognosis, which are discussed in Sections VI to IX. The
corresponding references are shown in Tables 4 and 6, which
are divided according to condition diagnosis and prognosis.
Thus, an overview of the most common concepts is provided.
In Sections VI to IX, when approaches are presented,
references are made in parentheses to the categories of these
two figures and tables. As a supplement to Section X, Table 7
gives a specific overview of all references that actually deal
with similar systems. The applications and areas of the
approaches are named, and a distinction is made between
condition diagnosis and prognosis.

VI. INDUCTIVE TRANSFER LEARNING APPROACHES
In the following, existing inductive transfer learning
approaches in the PHM field of condition diagnosis and
prognosis are presented. As explained in Section IV, these
approaches are characterized by the fact that labeled target
data are available. In inductive transfer learning, parameter-
based and instance-based transfer are most common; there-
fore, this subdivisionwill be used in Sections VI-A and VI-B.
In addition, there are other approaches (Section VI-C) as
well as combinations of multiple approaches (Section VI-D).
The discussion on inductive transfer learning approaches
concludes with an interim summary in Section VI-E.

A. PARAMETER TRANSFER APPROACHES
In inductive transfer learning, one of the main approaches
is parameter-based transfer from the source to the target
model, followed by fine-tuning with labeled target data (A1).
Classically, similar to computer vision, a convolutional neural
network (CNN) is used for this purpose. For image-based
monitoring of systems, this approach can easily be applied,
e.g., in the monitoring of crack growth of buildings [77], the
observation of visible surface damage in engineering systems
such as wind turbine blades [78], or the determination of
tool conditions [79]. Pictures of temperature distributions and
flow velocity fields can also be used as inputs [80].

However, degradation in machine components such as
bearings is not readily visible. Instead of images, for example,
structure-borne sound is typically monitored. Therefore, the
sensor data of the observed systems first have to be converted
into pictures. A wide variety of procedures exist for this
purpose. Time-frequency analysis is a common technique
that generates two-dimensional data similar to a picture
by visualizing the signal over time and frequency. Many
procedures exist to carry out time-frequency analysis, e.g.,
short-time Fourier transform, constant-Q Gabor transform,
and Hilbert–Huang transform [81]. The continuous-time
wavelet transform is also very popular. In addition to
using time and frequency for picture generation, there
are approaches that are limited to one of the two, e.g.,
Gramian angular fields and Markov transition fields [82],
[83]. Another solution is, for example, presented in [84],
where the values of the signal were directly arranged in a two-
dimensional manner, similar to the arrangement of a picture.
A color picture with three color channels can also be created
in a similar manner [85], [86]. There are other approaches
to generate a picture from time series data, e.g., using the
plot of the time signals directly [87] or arranging multiple
sensor signals into a two-dimensionalmatrix [88]. This listing
is therefore only intended to show a few possibilities and is
not considered to be complete.

Thus, essentially, two different source domains can be
used to provide the parameters for the transfer, consisting of
either natural images, e.g., images of animals and buildings,
or artificially generated pictures from the sensor data of
engineering systems. In most cases, using natural images
as source knowledge means that the source domain has no
functional relationship with the target domain. For example,
whereas the source domain can contain images of living
beings, the target domain can comprise artificially generated
pictures from sensor signals of engineering systems. Then,
the only commonality is that both domains contain pictures
that can be used to train a CNN. Nevertheless, low-level
features such as edges, corners, and surfaces exist in both
types of pictures. Accordingly, the low-level layers of a
CNN trained with the source data can also be utilized in
the target domain. This approach is very advantageous since
several pretrained CNN architectures already exist in the
field of computer vision. Some of the best-known archi-
tectures are the VGG architecture introduced by Simonyan
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FIGURE 6. Parameter-based transfer approach for CNN.

and Zisserman [89], the ResNet architecture created by
He et al. [90], and the Inception architecture developed
by Szegedy et al. [91]. Application examples on this
type of inductive transfer learning for condition diagnosis
include [81] and [92] on bearings, [18] on permanent
magnet synchronous motors, [93] on gearboxes, [83] on
railway wheels, and [84] and [86] on pumps. Other condition
diagnosis approaches were described in [9], [85], [87], [94],
[95], and [96] . El-Dalahmeh et al. [97] presented an inductive
transfer learning approach for battery capacity prediction and
Zhang et al. [98] used an inductive transfer learning approach
for bearing and gearbox RUL prognosis.

Fig. 6 shows a principle procedure for parameter transfer
for a CNN network. The parameters of the two convolution
blocks are transferred to the target domain. The first block
is not changed afterward because it mainly extracts low-level
features that are very similar in the source and target domains.
The second convolution block is fine-tuned with target data to
learn problem-specific target features. Unlike the convolution
blocks, the fully connected block is not adopted from the
source model. This allows its structure (hyperparameters) to
be set according to the conditions in the target domain. The
fully connected block is then trained from scratch with the
target data.

In addition to natural images, artificially generated pictures
from the sensor data of similar systems can be used as
the source domain. This approach has the advantage that
deeper layers that generate deeper features can be adopted in
the target domain. The following applications for condition
diagnosis can be found in the literature: bearings [66], [99],
[100], [101], aircraft engines [102], quadrotor drones [103],
batteries [88], [104], [105], gas turbines [106], tanks [107],
and gearboxes and rotors [108]. Xu et al. [23] transferred the

parameters of shallow CNNs trained with source data to a
deeper CNN, which was then fine-tuned with target data. This
approach was applied to condition diagnosis of bearings and
pumps.

It is also possible to use both natural images and artificially
generated pictures for parameter-based transfer. For condition
diagnosis of transformer windings, Duan et al. [109] per-
formed several parameter-based transfers, first from a CNN
trained with natural images and second with artificial pictures
generated from simulation data.

In addition to multidimensional CNNs, there are also
CNNs that can process one-dimensional inputs (1D-CNNs).
They can therefore process sensor measurement series
directly. Kim and Youn [110] used parameter-based transfer
on a 1DCNN. The parameters that are fine-tuned after
transfer are selected via sensitivity analysis, i.e., based on
how much the model output changes when the respective
parameter is changed. This approach was applied to bearing
condition diagnosis. Other 1D-CNN approaches for condition
diagnosis consider transformer rectifier units [111] and
gearboxes [112]. Li et al. [24] applied parameter-based
transfer on 1D-CNNs and multilayer perceptron (MLP)
networks to determine the conditions of bearings and
gearboxes. Wang et al. [113] used multiple concatenated
1D-CNNs applied to bearing condition diagnosis.

CNNs are one of the most common types of neural
networks used in inductive transfer learning via parameter-
based transfer. However, there are other types, such as
recurrent neural networks (RNNs). Wang et al. [43] used a
parameter-based transfer of a combined network comprising
a CNN and a long short-term memory (LSTM) network for
bearing condition diagnosis. LSTMs belong to the RNN class
and can store and access information over long periods of
time [114]. Zhu et al. [115] pretrained an LSTM classification
model with source data and fine-tuned the received network
with target data. This approach was also applied to condition
diagnosis of bearings. Tan and Zhao [116] presented an
LSTM approach to forecast the state of health of lithium-ion
batteries. Additional approaches for the condition prognosis
of batteries using RNNs can be found in [117] and [118].
Although it is not considered a PHM application area in this
paper, reference should be made to Liu et al. [119], who
presented an approach for state of charge estimation.

A parameter-based transfer with an MLP for the con-
dition diagnosis of gearboxes was presented in [120].
Deng et al. [121] used a stacked autoencoder (SAE)
for the condition diagnosis of wind turbine systems and
pump trucks. Li et al. [122] performed rolling bearing
condition diagnosis with a nonnegativity-constrained sparse
autoencoder. Other condition diagnosis approaches using
autoencoders for parameterbased transfer learning include
the works by He et al. [123] and Chen et al. [124] on
gearboxes, Chen et al. [125] on bearings, and Li et al. [126]
on wind turbines. Di et al. [127] presented an ensemble-based
approach using SAEs. Pan et al. [128] designed an ensemble
of random forests to transfer knowledge to the next transistor
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generation. Gribbestad et al. [129] applied transfer learning to
feed forward neural networks, LSTMs, and CNNs to predict
the RUL of marine air compressors.

Other parameter-based transfer learning approaches using
more machine learning methods include [130], [131],
and [132] for condition diagnosis and [133] and [134] for
condition prognosis. Guo et al. [135] trained and transferred
a data-driven model for parameter identification of a physical
model.

B. INSTANCE TRANSFER APPROACHES
For inductive transfer learning, in addition to transferring
trained models, there are also approaches that use the
source data directly to train the target model, i.e., perform
an instance-based transfer (A2). For this purpose, the
TrAdaBoost algorithm is popular in PHM applications.
TrAdaBoost was introduced in [136]. The core idea is to
weigh the source samples during training based on their
similarity to the target domain. The better the match to the
target data is, the higher the weight and the stronger the
influence on training. Source samples that do not match
the target domain are weighted very weakly and therefore
distort the model only slightly. TrAdaBoost is a boosting
algorithm. In each iteration, an iteration model is trained
with the weighted data. Based on the errors of this iteration
model, the weights are adjusted. Then, the next iteration
starts with the adjusted weights. Finally, the iteration models
obtained in this way can be weighted and summed, e.g.,
as shown in [44], to obtain the final model. The iteration
model weights are based on the errors of the respective
iteration model on the target data. Application examples
of TrAdaBoost or similar algorithms include those on
bearings [44], [137], [138], high-voltage circuit breakers [49],
disks in data centers [139], induction motors [140], gas
turbines [141], and self-organizing femtocell networks [142].
All of these approaches considered the condition diagnosis.

In addition to TrAdaBoost, there are additional approaches
to transfer instances. Lee et al. [143] also used weighted
source samples for the training of a condition diagnosis
method for spot-welding machine equipment. Weighting
was realized by using statistical similarity measures. Such
measures are used in particular for feature matching (see
Section VII). Another approach that weights source samples
can be found in [144].

C. OTHER APPROACHES
In addition to the inductive transfer learning approaches
mentioned thus far, there are others, although they are not
as common in PHM applications for condition diagnosis
and prognosis. Feature alignment, also known as domain
alignment, is one such approach (A3). The maximum
mean discrepancy (MMD) is often used to realize feature
alignment. The MMD is a distance metric that can be
used to measure the distribution discrepancy between two
datasets. By minimizing the MMD between the feature
values of the source and target datasets during training, the

FIGURE 7. Class assignment problem in marginal alignment and the
solution through conditional alignment. Adapted from [148, p. 335].

differences between the datasets can be reduced. In principle,
no labels are necessary for the alignment of marginal
distributions. Therefore, their integration into transductive
transfer learning approaches with no labeled target data
available is particularly popular. For this reason, MMD will
be explained in more detail in Section VII, which focuses on
transductive transfer learning. In addition to MMD, there are
additional metrics that can be used for feature alignment that
will be described in Section VII. However, for conditional
distribution alignment, the usage of source and target labels is
helpful (inductive transfer learning). If they are available, the
source and target distributions can be aligned class by class.

Fig. 7 shows a class assignment problem that could occur
when there is only marginal alignment and no conditional
alignment. Thus, in marginal alignment, two classes of the
target are assigned to the wrong classes of the source. From
simply observing the marginal distributions, however, this is
not recognizable, as the domains seem to be well aligned to
each other. PHM approaches for classwise alignment were
presented by Lu et al. [145] and Liu et al. [146] and applied to
condition diagnosis of bearings and gearboxes. In addition to
feature alignment, labeled target data can be further used for
supervised training, as in [147], for the condition diagnosis
of bearings.

Moreover, adversarial approaches can be found in induc-
tive transfer learning (A4). Domain-adversarial neural net-
works (DANNs) are particularly widespread. Although
adversarial approaches are popular for transductive transfer
learning, they can also benefit from available target labels.
As the name suggests, the idea is to train subnetworks
using an adversarial approach. In DANNs, a feature extractor
and a domain discriminator counteract each other. The
discriminator attempts to classify the samples with their
domain labels based on the features delivered by the feature
extractor. The extractor attempts to deceive the discriminator.
A detailed explanation is given in Section VII. In the area
of inductive transfer learning, Cheng et al. [149] used a
small amount of labeled target data to improve the training
results in one of their bearing condition diagnosis approaches.
Xu and Li [150] and Han et al. [151] presented a more
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developed DANN with multiple discriminators, one for each
class. These approaches were applied to condition diagnosis
of bearings and wind turbines. Due to different label spaces,
Li et al. [152] used a separate classifier for each domain
(several sources and one target). However, by means of
adversarial training, they attempted to find a generalized
feature space for the domains that helps the target classifier
achieve better condition diagnosis results. Mao et al. [153]
and Zhang et al. [154] also presented adversarial approaches
for condition diagnosis.

Instead of requiring labeled target data from all or a
majority of the existing classes of states of health, there
are approaches that only require the availability of labeled
target data from one class. These approaches proceed in the
direction of semi-supervised learning. In most cases, labeled
target data from the healthy state must be available. Since
these approaches need the information that the given target
data are from the healthy state for supervised training, these
approaches are assigned to inductive transfer learning. Li and
Zhang [155] used labeled source data and available healthy
target data for the initial supervised training. In addition,
the distributions of the healthy state source and target
data were aligned with MMD. Furthermore, adversarial
training was implemented to achieve prediction consistency
between multiple classifiers on the target data. Thus,
a discriminator attempted to determine from which classifier
a prediction originated. In contrast, the classifiers attempted
to fool the discriminator. This approach was applied to the
condition diagnosis of bearings and a shaft crack test rig.
Cody et al. [54] used labeled healthy target data of actuator
systems for domain alignment but also for supervised training
of a condition diagnosis model. Training was performed with
healthy and faulty source data and healthy target data. Amore
advanced approach was also presented that used only faulty
source data and healthy target data.

In additional approaches, attempts have been made to
generate artificial faulty target data out of the available
healthy data by utilizing the fault knowledge of the source
data (A5). For example, no failure data are typically available
from new systems. However, data from the healthy state can
be collected with relatively little effort. Then, the faulty data
of the source can be used to generate artificial faulty target
data. For this purpose, data from the undamaged target system
must be available. Popular networks to generate artificial data
are called generative adversarial networks (GANs). Similar
to DANNs, the concept of GANs is based on adversarial
training. A data generator generates new artificial samples,
and a discriminator attempts to distinguish these artificial
data from the real data. The generator adjusts the artificial
data to fool the discriminator. In transfer learning, it is also
common to minimize the discrepancy between the source
and target data, e.g., with the MMD. In the PHM literature,
this approach or similar approaches have been used, e.g., for
the condition diagnosis of photovoltaic systems [156] and
hard disks [157]. Xie and Zhang [158] also presented an
approach based on a GAN applied to the condition diagnosis

of bearings. The transfer between different health states is
the focus. The goal is to transfer knowledge from one health
state under several different loads to another health state from
which only data under one load are available. Thus, artificial
target data under further loads are generated.

In transfer learning, there are other approaches that
generate additional artificial data from existing data. For
example, Fan et al. [159] used minority oversampling
approaches to increase the amount of target data. The field
of application was chiller condition diagnosis. In addition
to this approach, classical data augmentation procedures
can be used to increase the amount of data, as shown
in [160]. This approach has been used in both inductive,
e.g., [80], [129], and transductive, e.g., [161], [162], transfer
learning. However, data augmentation is not a concrete
transfer learning approach, which is why it will not be
discussed further.

D. COMBINED APPROACHES
It is also possible to combine several transfer learning
methods. Typically, certain parts can proceed without labeled
target data, while others need them. However, in the
approaches described below, there is always at least one
part that requires labeled target data, which is why these
approaches are listed under inductive transfer learning.
Nevertheless, for the purpose of completeness, the following
text additionally refers to the respective transductive parts
from Fig. 12.

In [163], the MMD was used to align the feature
distributions of the source and target domains. In addition,
parameter transfer was performed (A1, B2.1). The appli-
cation was condition diagnosis of bearings. It should be
noted that, in addition, a completely transductive approach
based on MMD was presented. Zhou et al. [144] presented
a combination of parameter-based transfer, instance-based
transfer, and feature alignment approaches (A1, A2, B2.1) on
gas turbines to improve the accuracy of dynamic simulations
of gas turbines. Wu et al. [164] addressed, among other
things, the transfer of features using parameters (A1). This
approachwas used for the condition diagnosis of bearings and
gearboxes.

Additional combined approaches for condition diagnosis
were presented in [165] for wind turbines (A1, A2), [166]
for ball screws (A1, A2), [143] for industrial robots and spot
welding (A1, A2), [167] for bearings (A3, A4), and [168]
(A1, B2.1) to estimate the health state of cutting tools.
A condition prognosis approach was presented in [169]. The
authors used a typical DANN structure from transductive
transfer learning. In the second step, they fine-tuned the
model with labeled target data to extend it to other fault modes
(A1, B2.2).

At this point, reference should also be made to an approach
for determining the state of charge of batteries. Qin et al. [170]
used canonical variate analysis (CVA) for feature extraction
in the state of charge estimation of lithium-ion batteries
under different ambient temperatures. CVA reduces the

VOLUME 11, 2023 1519



M. Braig, P. Zeiler: Using Data From Similar Systems for Data-Driven Condition Diagnosis and Prognosis of Engineering Systems

dimensionality and maximizes the correlations between the
source and target datasets. With the obtained features,
an LSTM is trained. During online operation, if the distortion
becomes excessive due to temperature fluctuations, a model
update is performed using collected data at new temperatures.

There are also other inductive transfer learning approaches
without a specific categorization. In addition to feature
alignment (A3), Wang et al. [171] implemented a prototype
learning approach. The aim was to learn domain invariant
prototypes of the individual classes. For the classification of
new samples, the class of the nearest neighbor was selected.
This approach was applied to the condition diagnosis
of bearings. Zhang and Gao [172] presented supervised
dictionarybased transfer subspace learning. First, the source
and target data were projected into a common subspace,
whereby it was possible to represent all data by a shared
dictionary matrix. This method was applied to the condition
diagnosis of sucker rod pumping systems. Huang et al. [173]
also used a diagnosis approach based on transfer dictionary
learning applied to wind turbine systems.

Condition prognosis approaches were presented in [174]
and [175]. Chehade and Hussein [174] used a collaborative
Gaussian process regression to transfer between different
battery cells, whereby it was possible to extrapolate the
degradation of the capacity of new batteries at their beginning
of life. Ma et al. [175] generated an artificial complete
degradation trajectory of a target fuel cell until EOL. For
this purpose, they used an SAE, which they trained with a
complete degradation trajectory of a similar source fuel cell
and the current trajectory of the target fuel cell that had not
yet reached its EOL.

E. SUMMARY OF THE APPROACHES
As seen from Table 3, bearing and gearbox applications are
most commonly used in the literature to evaluate inductive
transfer learning-based condition diagnosis and prognosis
approaches. Therefore, vibration signals are primarily con-
sidered. In addition to these and other mechanical com-
ponent applications, there are also electrical and electronic
component applications, as well as applications for more
complex systems. For example, current and voltage signals
are often used, and especially in more complex systems,
multiple signal types are considered. As further discussed in
Section X, there are already approaches that look at similar
systems. However, the current focus is on identical systems
under different operating conditions.

The main inductive transfer learning concepts used for
condition diagnosis and prognosis approaches are listed in
Fig. 12, with parameter transfer being the most common.
Although many inductive transfer learning approaches,
such as parameter-based and instance-based transfer, are in
principle suitable for both condition diagnosis and prognosis,
it should be pointed out that condition diagnosis applications
are the most considered applications, as seen from the listing
of the main concepts in Table 4. A major reason for this may
be that the classical application fields of transfer learning,

such as computer vision or natural language processing, are
mostly classification problems. Therefore, it is convenient
to apply these approaches to condition diagnosis, which
is essentially also concerned with classification, while
condition prognosis is mostly a regression approach. This
view is also held by Mao et al. [19].

VII. TRANSDUCTIVE TRANSFER LEARNING APPROACHES
According to Table 3 and confirmed by Moradi and
Groth [37], transductive transfer learning is the most com-
monly used PHM transfer learning approach for condition
diagnosis and prognosis. The challenge is that there are
no labeled target data. This means that although data
are available from the system under consideration, they
are not labeled with fault classes or RUL values. The
supervised learning procedures must therefore proceed with
the labels from the source. In transductive transfer learning,
the feature-representation-based transfer approach is very
common. There are several popular methods, which are
described in Sections VII-A to VII-C. In addition, other
feature-representation-based and transfer approaches exist
(Section VII-D). Combined approaches are presented in
Section VII-E. The discussion on transductive transfer learn-
ing is concluded with an interim summary in Section VII-F.

A. FEATURE ALIGNMENT BY THE MAXIMUM MEAN
DISCREPANCY
One of the main approaches in transductive transfer learning
is feature alignment by means of similarity measures (B1,
B2.1). As already mentioned in Section VI, the MMD
is widely used for this purpose. Therefore, a separate
section is provided for approaches using MMD. In principle,
however, many of the methods presented here can also be
performed with other similarity measures. For orientation,
thus, references are made to the structure used in Fig. 12,
which is subdivided by the concepts of the methods.

Using the MMD, the distance between two probability
distributions of two datasets can be measured. In this context,
the MMD can be defined as the difference between two
feature centers (means) of two samples [176]. Depending on
the class of smooth functions used, different variants ofMMD
are possible. The unit ball in a reproducing kernel Hilbert
space, as explained in [176], [177], and [178], is popular.
Due to the strong importance of MMD in the field of transfer
learning, it will be formally defined here. This definition is
largely adopted from [177] and [178].

Let F be a class of functions f: X → R and p and q
be Borel probability distributions. Let X = {x1, . . . , xm1}

and X̃ = {x̃1, . . . , x̃m2} be samples composed of independent
and identically distributed observations drawn from p and q,
respectively. The MMD and its empirical estimation can be
defined as

MMD[F, p, q] := sup
f∈F

(Ex[f(x)]− Ex̃[f(x̃)]) (2)
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and

MMD[F,X , X̃ ]

:= sup
f∈F

( 1
m1

m1∑
i=1

f(xi)−
1
m2

m2∑
i=1

f(x̃i)
)
. (3)

If F is defined as a unit ball in a universal reproducing
kernel Hilbert space H, which is defined on the compact
metric spaceX, an unbiased empirical estimate of the squared
MMD can be calculated by the equation

MMD2
u[F,X , X̃ ] =

1
m1(m1 − 1)

m1∑
i=1

m1∑
j6=i

k(xi, xj)

+
1

m2(m2 − 1)

m2∑
i=1

m2∑
j6=i

k(x̃i, x̃j)

−
2

m1m2

m1∑
i=1

m2∑
j=1

k(xi, x̃j), (4)

where k is a characteristic kernel (e.g., Gaussian or Lapla-
cian) [179]. The kernel provides a measure of how similar the
sample elements are. If the similarity is high, the kernel value
is high. For example, if the difference between the sample
elements of the samplesX and X̃ is large (subtrahend is small)
and the difference between the elements within X and X̃ is
small (summands are large), the MMD value is large.

A simple way to use MMD is to evaluate the similarity
of degradation datasets. Then, for example, the most similar
datasets can be selected as training data. Such approaches are
presented in [180], [181], and [182]. However, by actively
minimizing theMMD, source and target distributions can also
be aligned. Depending on the specific use of the MMD to
align the distributions, a distinction is made between different
procedures.

1) TRANSFER COMPONENT ANALYSIS AND JOINT
DISTRIBUTION ADAPTATION
One popular MMD-based approach is called transfer
component analysis (TCA), which was introduced by
Pan et al. [183]. It attempts to minimize the distance between
the source and target marginal probability distributions,
which is measured by the MMD. This means that a
transformation must be determined for which f(P(Xs)) ≈
f(P(Xt )). By using the kernel trick, theMMD is expressed by a
kernel and coefficient matrix. On this basis, a transformation
matrix can be found that maps the source and target data
into a feature space in which the distance between the
distributions is minimized. In addition, a second optimization
constraint aims to preserve or maximize the variance of the
source and target data in this new feature space [184]. Fig. 8
illustrates TCA visually. The TCA approaches used in PHM
include those by Chen et al. [185] and Xu et al. [147] on
condition diagnosis of bearings, Xie et al. [186] on gearboxes,
and Xiao et al. [187] on bearings and induction motors.
Mao et al. [19] predicted the RUL of bearings.

FIGURE 8. Visualization of TCA and JDA. Adapted from [44, p. 2].

Joint distribution adaptation (JDA) is another MMD-based
feature extraction approach [188] and is also shown in
Fig. 8. When using JDA, the marginal and conditional
distribution differences of the source and target areminimized
bymapping the data in a latent space, i.e., f(P(Xs)) ≈ f(P(Xt ))
and f(P(Ys|Xs)) ≈ f(P(Yt |Xt )). Unlike the approximation
of the conditional target distribution with available target
labels in inductive transfer learning, no target labels are
necessary in JDA. Instead, a classifier trained on the
source data is used to assign pseudo labels to the target
data. Applications of JDA, similar methods, or further
developed approaches, e.g., balanced distribution adaptation
for condition diagnosis, can be found in [189], [190],
[191], and [192] on bearings, [193] on bearings and
gearboxes, [194] additionally on wind turbines, and [195] on
structures. Approaches for condition prognosis are presented
in [196] on bearings and [197] on gearboxes of wind
turbines.

As shown in [188], TCA is in some ways a special case
of JDA that considers only the marginal distributions and
not labels, i.e., conditional distributions. In addition to JDA,
there are extensions of TCA that also use pseudo labels to
approximate the conditional distributions. Ma et al. [198]
used weighted TCA (WTCA) to align the conditional
distributions of the source and target. Thus, the MMD was
minimized class by class. For this purpose, pseudo labels
were used for the unlabeled target data. These pseudo labels
were assigned by a classifier trained on the transformed
labeled source data. The alignment was performed iteratively.
During each iteration, the transformation matrix and the
classifier were adapted. This approach was validated on
bearing condition diagnosis. van de Sand et al. [199] realized
conditional alignment by adapting the decision boundaries
of the classifier to the target domain. First, a classifier
was trained by the TCA-transformed labeled source data;
then, some of the labeled source data were replaced by
pseudo labeled target data, and the training of the classifier
was continued. This approach was used for the condition
diagnosis of chillers.
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2) DEEP ADAPTATION NETWORKS
TCA and JDA are feature-representation-based approaches
that attempt to align the domains by identifying a common
feature space in which the domain discrepancy is minimized.
In this common space, a classification or regression model
trained with the source data can be applied to the target
data [185], [193]. In both approaches, domain alignment
during feature extraction and the training of the classification
or regression model are completed in a sequential manner;
the generation of pseudo labels (if any) occurs recursively.
In contrast, in a deep adaptation network (DAN), domain
alignment and the training of the classification or regression
model are performed simultaneously [200]. For this purpose,
these networks integrate layerwise MMD terms into the loss
function

L = LCR + λLMMD. (5)

LCR is the loss function of the classification or regression
accuracy, LMMD is the MMD term, and λ is a weighting
parameter.

Thus, in addition to the classification or regression task,
the network learns to find transferable features between the
source and target domains simultaneously during training
by minimizing the MMD. Typically, a CNN with attached
fully connected layers is used as the basic network type.
In contrast to parameter-based transfer in inductive transfer
learning followed by fine-tuning with labeled target data,
the DAN approach does not require labeled target data. The
convolution layers of the DAN are simply taken over during
transfer. The convolution layers, which are located deeper
in the network, extract high-level features that may already
be domain dependent. Therefore, if available, fine-tuning
with possibly existing labeled target data can be beneficial,
but this is omitted in the case of transductive approaches.
The fully connected layers at the back end of the DAN are
highly adapted to the specific domain and therefore not easily
transferable from the source to the target. The approach taken
during training of the DAN is therefore to ensure that the
domain discrepancy in these layers is minimized. The upper
branch in Fig. 9 is adapted with the help of the labeled source
data. If labeled data from the target domain are available, they
can be used to train the lower branch. In addition, the MMD
between the distributions of the layers in the upper and lower
branches is minimized. Accordingly, the layers of the two
domains can be aligned. Thus, the source data indirectly help
to train the target layers [200].

Networks of this functional principle are also used in
PHM, even if the designation is not uniform in the literature.
Examples include Zhu et al. [201], who used condition
diagnosis on bearings or Lin et al. [202], who detected
structural damage. Wu et al. [203] and Yu et al. [204]
presented a slightly altered DAN architecture combining a
CNN with LSTM layers and applied it to RUL prognosis of
aircraft engines.

3) OTHER MMD APPROACHES
Other approaches that include MMD terms in the training or
fine-tuning loss function can be found in [50], [163], [205],
[206], [207], [208], [209], and [210] on condition diagnosis
of bearings and in [211] and [212] on gearbox condition diag-
nosis. Other condition diagnosis approaches are presented
in [213] and [214] on bearings and gearboxes, [215] on
bearings and a crack rotating machinery dataset, and [216]
on induction motors. Yang et al. [179], Yang et al. [217], and
Guo et al. [218] added an MMD term and a pseudo label
term to the loss function. They applied their approaches to the
condition diagnosis of bearings or reciprocating compressor
valves. Tang et al. [219] presented a similar approach for the
condition diagnosis of bearings and gearboxes. An approach
for RUL prognosis of bearings was shown in [220].

B. FEATURE ALIGNMENT BY OTHER SIMILARITY
MEASURES
In addition to the MMD, there are many more similarity
measures in the literature that can be used for feature align-
ment (B1, B2.1). They are discussed in this section. However,
MMD is by far the most frequently used measure in PHM
approaches for condition diagnosis and prognosis. Wang and
Jin [57] utilized the Wasserstein distance to minimize the
domain distribution difference. This approach was applied
to the condition diagnosis of a feedwater heater system of a
coal-fired power generation unit. Liu et al. [221] also used the
Wasserstein distance to calculate the distribution discrepancy
of bearing condition diagnosis datasets. Zhao et al. [222]
used both the MMD and Wasserstein distance for the
condition diagnosis of bearings. Another similarity measure
utilized in transfer learning is Kullback-Leibler divergence.
Qian et al. [223] aligned the source and target distributions
via high-order Kullback-Leibler divergence. This approach
was utilized for the condition diagnosis of bearings and
gearboxes. Qian et al. [224] utilized correlation alignment
(CORAL) to find domain invariant features, whereby the
difference between the covariance matrices of the source and
target domains was minimized. This approach was applied to
condition diagnosis of gearboxes. An et al. [161] also used
a CORAL loss term for the condition diagnosis of bearings.
Central moment discrepancy (CMD) can also be applied to
measure and minimize the domain discrepancy. Li et al. [225]
used CMD for the condition diagnosis of bearings and
Xiong et al. [226] used it for the condition diagnosis of
gearboxes. Wang et al. [227] measured the similarity with
Pearson correlation coefficients to adapt the length of the
source and target time windows. This approach is necessary
to classify faults in an electric power plant due to the different
sampling rates of the source and target domains. Another
metric for similarity measurement is the maximum variance
discrepancy (MVD). It is based on the same principle as
MMD but focuses on second-order statistics instead of
first-order statistics. PHM approaches were presented by
Zhang et al. [228] and Zhang et al. [229] for the condition
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FIGURE 9. Structure of a DAN. Adapted from [200, p. 3].

diagnosis of bearings and gearboxes. Other measures used
in PHM to compare the similarity between datasets are the
cosine distance [137], [144], the log-Euclidean metric of
second-order statistics [230], and the a-distance [192].

In some approaches, multiple similarity measures were
used simultaneously or in combination. As already men-
tioned, Zhao et al. [222] applied the MMD and Wasserstein
distance for condition diagnosis. In addition, Cao et al. [231]
used these two measures for RUL prognosis of bearings.
Ma et al. [232] determined the most similar degradation
trajectory in historical test-to-failure data (source domain).
This approach considers battery degradation and predicts
its RUL. The similarity between historical samples and the
actual degrading battery data from which the RUL has
to be determined is measured by several measures that
compare the capacity degradation trajectories. The idea is
that further degradation of the actual battery will mainly
follow the trend of the most similar batteries. The use
of knowledge from the most similar degrading batteries
is undertaken by parameter- and instancebased transfer.
Liu et al. [233] used the Pearson correlation coefficient for
similarity measures to select the appropriate source samples.
Subsequently, a procedure similar to JDA was used to align
the domains. The process was tested for functionality by
means of condition diagnosis of wind turbine bearings.
In addition to MMD for marginal domain alignment, [234]
used pseudo labels to minimize the difference between the
source and target conditional distributions. Based on an
entropy penalty, the classification boundaries were shifted
to low-density regions, and thus, the performance of the
classifier in the target domain can be improved in an approach
called classifier adaptation. Wang et al. [235] presented a
similar concept. Both approaches were applied to condition

diagnosis of bearings. Other condition diagnosis approaches
using multiple similarity measures were presented in [54],
[236], and [237]. Siahpour et al. [236] aligned the marginal
distributions by MMD and the conditional distributions
by the Manhattan distance between paired source and
target data. Pandhare et al. [237] applied the Euclidean
distance on paired source and target data for conditional
alignment. Cody et al. [54] used the Euclidean distance and
the maximum absolute difference. The first distance was
calculated between the medians of the marginal samples, and
the secondwas calculated between their empirical cumulative
distribution functions.

Dong et al. [238], Dong et al. [239], and Dong et al.
[240] presented joint geometrical and statistical alignment
(JGSA). In this approach, two transformation matrices that
project the source and the target data into a common
feature space are learned. The source matrix is optimized to
maximize the variance between the classes of the source and
minimize the variance within each class. The target matrix
is optimized to minimize the variance in the unlabeled target
data. Furthermore, MMD is used to adapt both matrices to
align themarginal and conditional distributions. For the latter,
pseudo labels are used in the target domain. Additionally, the
difference between the two matrices is penalized. Yu et al.
[241] combined JGSA and sparse coding with an integrated
MMDpenalty term. All approaches were applied to condition
diagnosis of bearings.

Other condition diagnosis approaches include those pro-
posed by Pang et al. [242] and Gardner et al. [243].
Pang et al. [242] used MMD and manifold regularization
to align marginal and conditional domain distributions.
In addition to TCA and JDA, [243] applied adaptation
regularization-based transfer learning (ARTL) [244]. ARTL
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combines MMD-based marginal distribution adaptation,
conditional distribution adaptation by pseudo labels, and
manifold regularization. Zhang et al. [245] presented a mul-
tiple alignment of source and target data for RUL prognosis
of bearings and aircraft engines. First, the difference between
the healthy state data of the source and target is reduced by
minimizing the variance. In the next step, the degradation
data are projected on an identical straight line in a high-level
subspace with several alignment measures, including MMD
minimization. If this succeeds, the degradation information
of the source can also be used in the target.

In addition to the similarity measures listed, there are
others that are used in transfer learning but for which no PHM
applications were found. Table 2 gives a brief overview of
some popular measures.

C. ADVERSARIAL APPROACHES
In addition to the similarity-measure-based methods
presented above, adversarial approaches are alternative
approaches for minimizing the deviation between the source
and target distributions (B2.2). Accordingly, DANNs are one
of the most popular PHM approaches for condition diagnosis
and prognosis. DANNs, which follow the same idea as DANs,
simultaneously determine a common feature space and
train the machine learning model. Both networks combine
these two steps through deep learning, which provides the
possibility to choose the feature space in such a way that it
minimizes the domain discrepancy and is also appropriate
for the actual machine learning task. This may prevent the
actual machine learning task from becoming more difficult
or impossible in the new common feature space [246], [247].
The underlying operating principle of DANNs originates
from Ajakan et al. [248] and Ganin et al. [249]. They showed
that the DANN approach is applicable to any feedforward
architecture that can be trained with backpropagation.

Fig. 10 illustrates the structure of a DANN using the
example of a CNN architecture. Similar to classical feedfor-
ward deep networks, DANNs comprise a feature extractor
Gf and a label predictor Gy. Both are adjusted such that
Gy can fulfill the prediction task on the source data as
accurately as possible. DANNs were initially developed as
classifiers, which explainswhy they are currentlymainly used
for classification tasks in the field of PHM. In addition to
Gf and Gy, a domain discriminator Gd is added as a third
component. The features are chosen by Gf in such a way that
Gd cannot distinguish between domains based on the feature
values, whereas Gy can still separate the classes of the source
well. This is achieved by the adversarial training of Gf and
Gd as well as the classic feedforward training of Gf and Gy.
In the former, Gd is adapted to distinguish the domains and
Gf to find a feature space in which Gd cannot distinguish
them. Ideally, multiple iterations result in a Gf under whose
features the domains cannot be separated, even by a very
good Gd . The idea behind this is equivalent to the similarity
measurement approaches; if the source and target domains do
not differ in the chosen feature space, the model trained with

the source data can probably also be applied to the target data.
In summary, the loss of a DANN can be described as [250]

LDANN = Ly(Gy(Gf (Xs)),Ys)
−λLd (Gd (Gf (Xs+t )),Ds+t ), (6)

where Ly quantifies the label prediction loss over all source
data Xs, and Ld quantifies the domain classification loss over
all source and target data Xs+t . Ys are the true source labels
of Xs, and Ds+t are the true domains of Xs+t . The training
process can be formulated as

(θ̂f , θ̂y) = argmin
θf ,θy

LDANN (θf , θy, θ̂d ) (7)

θ̂d = argmax
θd

LDANN (θ̂f , θ̂y, θd ), (8)

where θf , θy and θd are the parameters of the feature
extractor, the label predictor, and the domain discriminator,
respectively.

Although the DANN approach is still relatively new,
there are already several applications in the PHM literature;
however, some of them are referred to by different names or
use slightly different network architectures. Liu et al. [250]
built a DANN with an SAE as a feature extractor applied to
the condition diagnosis of bearings. Wang et al. [50] used
a DANN with a CNN feature extractor for the condition
diagnosis of bearings. Other CNN-based DANNs were used
to diagnose the health of rolling bearings, as presented
in [149] and [251]. In addition to bearings, Wang et al. [252]
applied a DANN based on a CNN architecture for the
condition diagnosis of hard disks. Zhu et al. [253] used a
DANN built on an MLP. This approach was applied to the
condition diagnosis of building chillers. For RUL prognosis,
da Costa et al. [16] presented a DANN that uses an LSTM
as a feature extractor. With this LSTM-DANN, information
from time series data in a source domain with observed RUL
values was used to estimate the RUL values for the unlabeled
target data. This network was applied to engine data. Liu and
Gryllias [254] used a similar approach for the RUL prognosis
of bearings. Another approach for RUL prognosis can be
found in [255]. A DANNwas applied with convolution layers
for the RUL prognosis of bearings.

DANNswith different architectures were described in [12],
[256], and [257]. These DANNs were used for the condition
diagnosis of bearings and wind turbine gearboxes and the
RUL prognosis of aircraft engines. There are also other
adjusted DANNs. Among other optimization approaches,
Yu et al. [258] integrated label predictions into the input of
the domain discriminator. With this adaptation of the DANN
structure, the conditional distribution discrepancy of the
domains can also be minimized. Yu et al. [259] separated the
training process into two stages. In the first stage, a classifier
and a source feature extractor are trained with source data.
In the next step, adversarial training is performed with two
feature extractors, one for the source domain and one for
the target domain. Both approaches are applied to condition
diagnosis. Deng et al. [260] considered a condition diagnosis
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TABLE 2. Similarity measurement methods. Adapted from [232, p. 4].

problem with different source and target label spaces, which
is referred to as partial transfer learning. In this case, only
a few of the source classes exist in the target label space.
Without any adaptation, any transfers would fail because
some source classes have no counterpart in the target label
space. Therefore, several subdomain discriminators are used.
This means that, in contrast to the classic DANN, a separate
subdomain discriminator is used for each source class. Each
discriminator attempts to keep the source and target data
of a class apart from each other. Another difficulty is that,
as is generally the case in transductive transfer learning,
the target data are unlabeled. An additional approach for
partial adversarial transfer learning was presented in [261]
and applied to the condition diagnosis of bearings. To make
the task more difficult, gearbox data were included.

Li et al. [148] used a DANNwith multiple classifiers as the
label predictor. In addition to the adversarial training of the
feature extractor and the label predictor, a second adversarial
training process is thus possible (B2.2). Thus, the discrepancy
between the classifiers is maximized by adjusting their
parameters. However, at the same time, the feature extractor
is adjusted to minimize this discrepancy. Through this
second adversarial training, an additional conditional domain
alignment is achieved. The application area is the condition
diagnosis of bearings and of a crack test rig. Jiao et al. [262]
presented a similar approach using two classifiers to further
refine a common feature space found with a DANN. Different
outputs of the classifiers on a target sample were treated
as an indication that the sample had not yet been adapted
correctly and, for example, was between two source classes.
The approach was applied to condition diagnosis of bearings
and gearboxes.

Other condition diagnosis approaches that integrate mul-
tiple classifiers into the DANN structure but do not perform
adversarial training between them and the feature extractor
were proposed in [263] and [264] (B2.3). Liu et al. [263]
integrated two classifiers in aDANN structure. The classifiers
were trained with different features to obtain two classi-
fication boundaries. In this way, the samples in the target
domain for which the classifiers disagree could be identified.

Zhang et al. [264] used a DANN architecture with multiple
classifiers, one for each of the multiple source domains. This
approach was used to adjust the feature extractor and the
classifiers to minimize the classification difference of the
classifiers.

It is also possible to adversarially train multiple classifiers
with a feature extractor without using a domain discriminator,
as in a DANN (B2.2). Zhao et al. [265] used two classifiers
trained in three training steps, which are iteratively repeated.
First, the classifiers are trained to minimize the classification
error on the source data. In the next step, a discrepancy term
is added to the loss function, which promotes differences
between the classifiers on the target data. Finally, the feature
extractor is adapted such that the classification difference
between the two classifiers on the target data is minimized.
Through the adversarial training processes in steps two and
three, features are extracted for which the outputs of the
two classifiers on the target data are as identical as possible
despite a maximum difference of the classifiers on these
data. This approach was used to determine the condition of
bearings and gearboxes. Yu et al. [266] introduced a similar
adversarial approach based on two classifiers for the con-
dition diagnosis of bearings. First, the feature extractor and
both classifiers are trainedwith source data. Subsequently, the
training is continued in an adversarial manner. The classifiers
are trained such that their disagreement on the target data
increases, and the feature extractor is adapted tominimize this
disagreement.

D. OTHER APPROACHES
As with inductive transfer learning, there are some
parameter-based transfer approaches (B3) to transductive
transfer learning, but in much smaller numbers. One such
approach is adaptive batch normalization (AdaBN) [301].
The benefit of this approach is that a trained source network
can be adapted to a target domain by simply changing
the AdaBN parameters. No retraining is necessary. AdaBN
is based on the same idea as batch normalization (BN),
although it is applied to multiple datasets of different
domains. BN normalizes the output of the activation functions
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FIGURE 10. Structure of a DANN. Adapted from [249, p. 1182].

of neurons in each layer using BN statistics (mean and
variance). Thus, the input of each subsequent layer is
normally distributed. This normalization is also useful
for domain alignment. Typically, there is a distribution
discrepancy between the source and target data on the
intermediate layers. This discrepancy causes a network
trained on the source data to perform worse on the target
data. By normalizing with AdaBN, each layer receives
data from a similar distribution, regardless of whether it
comes from the source or target domain. This minimizes the
distribution discrepancy and improves the performance on
the target data. Specifically, a network is first trained using
the labeled source data and then transferred to the target
domain by adjusting the BN statistics. There are applications
of AdaBN in PHM, e.g., on condition diagnosis of bearings
and gearboxes [50], [268] and on RUL prognosis of aircraft
engines [295].

Other parameter-based transfer approaches exist in trans-
ductive transfer learning. Shen et al. [292] presented a
penalty domain selection machine (PDSM) for gearbox
condition diagnosis. This approach is based on a domain
selection machine [62]. The basic idea is to select the most
relevant source domains from multiple source domains for
the target domain. Each classifier trained with the data
from a selected source domain is then combined, and an
adaptation loss function is added to obtain the target classifier.
PDSM extends the approach by domain penalty and signal
penalty factors. This gives stronger importance to the new
samples and sensors close to the fault location. There are
other parameter-based transfer approaches for the condition
diagnosis of bearings [269], [270].

In addition to parameter-based transfer approaches, there
are also instance-based transfer approaches (B4). In the field
of transductive transfer learning, however, these are usually
combined with other approaches, so references to them are
presented in Section VII-E, i.e., the combined approaches.

Originally presented in [302] and [303], consensus
self-organized modeling (COSMO) can also be used for
transductive transfer learning to find transferable features
(B5). The underlying idea is to compare single individuals
with the set of all units. It is assumed that most units
are healthy. As a result, as in the original approaches and
in [304] and [305], unsupervised anomaly detection for fault
detection can be implemented. However, there is another
possible application of COSMO for feature selection in the
area of transfer learning, as explained by Fan et al. [296].
First, two reference groups are created, one for the source
domain and one for the target domain. In each case, only the
healthy system data of the domains form the reference group.
Instead of using only source data for the source reference
group and only target data for the target reference group,
it is also possible to mix samples from the source and target
domains. After the reference groups are formed, the aim is to
generate new features that represent the difference between
the systems and their corresponding reference group. With
these new features, a machine learning model is trained using
labeled source data. Then, the model can be transferred to the
target data by parameter transfer. This approach was applied
to the RUL prediction of aircraft engines.

There are also approaches using kernels for domain
alignment based on geodesic flow kernels [306], [307] (B6).
In these approaches, the datasets of the source and target
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TABLE 3. Application examples of transfer learning for condition diagnosis and prognosis in PHM. (doc = different operating conditions, sis = similar
systems, * = key focus on faults, — = no literature found).
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TABLE 3. (Continued.) Application examples of transfer learning for condition diagnosis and prognosis in PHM. (doc = different operating conditions,
sis = similar systems, * = key focus on faults, — = no literature found).

domains are embedded into a Grassmann manifold. By con-
structing a geodesic flow between the resulting points,
infinite intermediate subspaces, gradually changing from the
source to the target, are generated. By projecting the source
and target features into each of these subspaces, feature
vectors with infinite dimensions can be obtained. With a
kernel defined by the inner product of these vectors, low-
dimensional domain invariant representations can be learned.
In this feature space, a model with labeled source data is
trained and then applied to the target data. A PHM application
was presented in [267] for the condition diagnosis of bearings
and gearboxes.

Transductive transfer learning based on feature alignment
is also possible with transfer factor analysis (TFA) (B7). TFA
combines two FA models, one for the source domain and
the other for the target domain. The factor loading matrix
is shared, which enables the transfer between the source and
target. In addition, each domain has its own noise covariance
matrix that can cover the differences. With TFA, features
can be found that reduce the difference between the source
and target domains. Wang et al. [290] and Wang et al. [291]
applied TFA for the condition diagnosis of gearboxes.

As previously mentioned with adversarial training using
DANN, there are approaches that use the outputs of multiple
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classifiers for transductive transfer learning (B2.3). Another
approach to this, but without adversarial training, was
presented by Wen et al. [271]. They utilized multiple source
domains for the condition diagnosis of bearings. The network
comprises a common feature extractor for all source domains
and the target domain. The extractor is based on a CNN
pretrained with natural images. A domain-specific feature
extractor and classifier are attached to this common extractor
for each source domain. Each of these specific feature
extractors attempts to find a feature space to align the
respective source domain with the target domain. For this
purpose, the MMD is used. It is expected that, especially
for the target data near the classification boundaries, the
source classifiers will predict different labels. Accordingly,
the discrepancy between these classifiers on the target data
is minimized. The final prediction on the target data is the
averaged output of all classifiers.

E. COMBINED APPROACHES
To increase transfer performance, there are several
approaches that combine multiple transductive transfer
learning methods. The most common is the combination
of adversarial DANN approaches (B2.2) and similarity-
measure-based methods (B1, B2.1). PHM application exam-
ples include the condition diagnosis of bearings [30], [272],
[273], [276], [286], gearboxes [224], [272], and fog radio
access networks [300]. Mao et al. [275] and Mao et al. [274]
presented other approaches for condition diagnosis and health
index construction for bearings. Jia et al. [277] combined the
adversarial training of two classifiers with a feature extractor
using the minimization of a similarity measure to determine
the condition of bearings.

Transfer joint matching (TJM) [308] combines feature
alignment by MMD as in TCA (B1.1) and instance reweight-
ing (B4). In the latter, the source samples are weighted by
their relevance for the target domain. Zhang et al. [228]
enhanced TJM by the additional use of MVD and applied the
approach to bearing condition diagnosis. Zhang et al. [229]
also assigned weights to the source samples to reduce the
influence of irrelevant samples and used MVD as a similarity
measure. In addition, a manifold regularization term was
added. This method was applied to condition diagnosis of
bearings and gearboxes.

Jin et al. [162] combined AdaBN with an MMD approach
(B2.1, B3), and Jin et al. [58] added adversarial learn-
ing (B2.2, B3). Both considered the condition diagnosis
of bearings. Combinations including a model transfer of
networks pretrained with natural images (B3), which is
well known in the field of inductive transfer learning,
were presented in [278], [279], and [284]. The former two
combined it with a similarity measure (B2.1, B3) and the
latter additionally with adversarial training (B2.2, B3). The
field of application is bearing condition diagnosis. A model
transfer from source to target combined with MMD (B2.1,
B3) was presented in [210] for condition diagnosis and with
Kullback-Leibler divergence in [309] for RUL prognosis.

FIGURE 11. Partial transfer learning problem and solution through
conditional alignment with outlier detection.

Other combined approaches that considered adversarial
training (B2.2) include those in [283], [287], [288], [293],
and [297].

Combined approaches for transductive transfer learning
also play a major role in partial transfer learning. As previ-
ously explained, partial transfer learning is used if there are
different label spaces. Specifically, the source label space can
be a subset of the target label space and vice versa. Since
at least some parts of the label spaces match, transductive
transfer learning is applicable. Fig. 11 illustrates the problem.
The goal is to detect the samples whose classes do not occur
in both domains. Then, for example, domain alignment can
be performed with only samples from the common classes.
In PHM, this problem plays a major role, especially for
condition diagnosis. For example, different types of faults
can occur in engineering systems due to different operating
conditions or deviating technical characteristics.

All approaches considered below deal with condition
diagnosis. Combined approaches for partial transfer learning
with a target label space that is a subset of the source label
space are presented in [280] and [281]. In the PHM, this case
occurs, for example, when data of the target system cannot
be generated for all fault types due to limited capabilities.
The applications are on condition diagnoses of bearings
and gearboxes. Jiao et al. [280] trained two classifiers with
source data. The target data are then classified with these
classifiers. Source classes, for which much of the target data
are assigned, probably also occur in the target label space.
However, source classes for which no or very little target data
are assigned probably do not occur in the target label space
(outlier source data). Therefore, only the source samples
whose labels probably also occur in the target data are mainly
considered for the next transfer step. This is realized by
weighting the source samples. It follows a domain alignment
based on the inconsistency of the two classifiers and further
training of the classifiers with the weighted source data (B2.3,
B4). Zhang et al. [281] also assigned weights to the source
samples, and the network structure resembled a DANN.
This approach neglects the outlier classes of the source that
do not exist in the target data during domain alignment.

VOLUME 11, 2023 1529



M. Braig, P. Zeiler: Using Data From Similar Systems for Data-Driven Condition Diagnosis and Prognosis of Engineering Systems

For this purpose, each source sample is assigned a weight
that indicates how similar the sample is to the target data.
To determine the size of the weight, the output of the domain
discriminator is considered. Because there will quite likely
be a discrepancy between the outlier samples of the source
and the target samples after alignment, the discriminator can
distinguish the outlier source data well (B2.2, B4).

The other case of partial transfer learning is if the source
label space is a subset of the target label space. This could
occur if additional fault types occur at the target system
that do not exist at the source system. Yang et al. [289]
and Zhang et al. [282] considered this case and attempted
to address it using combined transfer learning approaches.
To achieve this, Yang et al. [289] added an additional output
neuron that indicates the probability that a target sample does
not belong to any source class. The alignment of the source
and target domains takes place via the domain discriminator
and MMD (B2.1, B2.2, B4). In addition, multisource fusion,
which handles multiple source domains, is presented. Similar
to Li et al. [281], Zhang et al. [282] assigned weights based
on the output of a domain discriminator (B2.2, B4). The
difference is that the weights are not assigned to the source
data but are assigned to the target data. In addition, an outlier
classifier is added that is trained to identify the target samples
that have classes that are not known in the source.

F. SUMMARY OF THE APPROACHES
Table 3 shows that in condition diagnosis and prognosis,
bearings and gearboxes are the main applications in transduc-
tive transfer learning, similar to inductive transfer learning.
Here, too, mainly vibration signals are used. In addition, there
are again further applications to mechanical, electrical, and
electronic components as well as more complex systems.
These include approaches that consider similar systems;
however, the current research is focused on identical systems
under different operating conditions (see Section X).

The main transductive transfer learning concepts are listed
in Fig. 12. Feature alignment is the most popular. Although
there are some approaches to condition prognosis in the
field of transductive transfer learning, it must be emphasized
that, similar to inductive transfer learning, the focus is on
approaches to condition diagnosis, as seen from Table 4.
Again, however, most approaches, such as feature alignment
or adversarial training, can also be applied to condition
prognosis.

VIII. UNSUPERVISED TRANSFER LEARNING
APPROACHES
As noted by Moradi and Groth [37], in unsupervised transfer
learning, there are only a few PHM approaches. Not much
has changed since this publication, as seen from Table 3.
Unsupervised learning tasks include anomaly detection,
density estimation, clustering, and appropriate feature space
generation. In this respect, domain alignment procedures
for finding a common feature space that do not use label
values to approximate the conditional distributions could

FIGURE 12. Main transfer learning concepts for condition diagnosis and
prognosis in PHM.

be described as unsupervised. However, finding a common
feature space alone is not a complete transfer learning
approach that can be used to diagnose faults or predict the
RUL. A diagnosis or prognosis procedure must also be added.
This usually requires at least labeled source data (transductive
transfer learning) and optionally additional labeled target
data (inductive transfer learning). Nevertheless, there are few
approaches that have proceeded without labels. Unsupervised
anomaly-based approaches have the advantage that faults
that did not occur during training can also be detected.
In industrial systems, many potential causes for failure can
occur, and in most cases, data are not available for every
cause of failure (even when using data from similar systems).
Therefore, supervised models can rarely cover all possible
fault causes. Anomaly detectors have the advantage that they
only need to be trained with healthy operational data. Then,
if a case occurs in the application that deviates from the
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healthy training data, there is an alarm. However, there is
the risk that data from similar systems or other operating
conditions will also be falsely recognized as an anomaly and
thus as a fault. Therefore, transfer learning approaches are
indispensable in these cases.

Michau and Fink [294] was concerned with detecting
anomalies in the early life stage of gas turbines. Before
anomaly detection, the domains are aligned, whereby three
possibilities are presented: autoencoding, homothety loss,
and adversarial domain discrimination (C). For fault detec-
tion, a one-class classifier is trainedwith the healthy state data
of the source and target domains. Mao et al. [285] aligned the
domains with an autoencoder by including an MMD penalty
term in the loss function. Anomaly detection is then carried
out (C). This approach was applied to the fault detection of
bearings. Guo et al. [299] used an unsupervised method for
detecting faults in railway turnouts. The first step is to cluster
the data to determine the fault-free modes. In the next step,
both a global fault detection deep autoencoder model with
data from all modes and local models for each mode are
trained. In addition, in parameter-based transfer, knowledge
is transferred from modes with much data to those with
little data. Michau and Fink [45] and [46] presented anomaly
detection approaches to detect faults of bearings and aircraft
engines. They used adversarial training for domain align-
ment (C). Another unsupervised transfer learning approach
was presented by Mahyari et al. [298], who utilized manifold
alignment to align the domains (C). This approach was
applied to industrial robots. Even though the main focus is on
transductive transfer learning, Wu et al. [300] also presented
a density-based spatial clustering approach for fault detection
in fog radio access networks. This enables fault detection to
be performed because healthy state data usually occur much
more frequently than faulty data. Therefore, samples located
in areas of the feature space with high density are very likely
to be from healthy conditions. However, samples located in
sparse areas are likely to be fault data.

As seen from the references listed in Table 4, all the
approaches found in unsupervised transfer learning deal
with condition diagnosis. Specifically, anomaly detection
and clustering are used, usually combined with feature
alignment (see Fig. 12). According to Table 3, applications
include bearings, components of power plants, industrial
robots, turnouts, and cellular networks. With one exception,
all approaches consider identical systems, i.e., no similar
systems.

In Sections VI to VIII, transfer learning approaches were
considered. An overall summary of the findings is provided
in Section XIII. In Section IX, the condition diagnosis and
prognosis approaches of fleet learning are presented as other
types of approaches that are also promising for similar system
problems.

IX. FLEET LEARNING APPROACHES
Existing fleet learning approaches in the PHM field of
condition diagnosis and prognosis are collated in this section.

TABLE 4. References to the main transfer learning concepts in Fig. 12
(Diagnosis = condition diagnosis, Prognosis = condition prognosis,
— = no literature found).

A division is made between approaches from the manufac-
turer’s and operator’s perspectives, as previously introduced
in Section IV-B. The latter can be seen as approaches that
already consider similar systems. The discussion on fleet
learning approaches concludes with an interim summary in
Section IX-C. Similar to Fig. 12 and Table 4 for transfer
learning, Fig. 13 and Table 6 list the main concepts of the
fleet learning approaches to provide an overview.

A. APPROACHES FROM THE MANUFACTURER’S
PERSPECTIVE
A common approach in fleet learning is to combine the fleet
data into one dataset and then use that dataset for training
without changing the methods themselves (D1). This merged
dataset is intended to ensure that the data-driven method has
already seen data from as many domains as possible during
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training. Thus, it should be unlikely in the application that
data from a new, unknown domain are encountered. In the
case of fleets defined from the manufacturer’s point of view,
domains refer to operating conditions since the systems are
identical. Basora et al. [310] identified faults of cooling
units installed in several aircrafts by anomaly detection with
different variants of autoencoders. Bull et al. [311] detected
faults of wind turbines in a wind farm with Gaussian process
regression. The predicted mean can be seen as the mean
representation of the wind turbine, and the variance tracks the
variations in the population. Simone and Subanatarajan [67]
used aMonte Carlo algorithm to perform a statistical analysis
of fleet degradation data and predict the RUL of individual
voltage breakers and switch gears. In [312], a Monte Carlo
simulation or a neural network was used. Bouzidi et al. [313]
applied different data-driven learning algorithms to a fleet of
aircraft engines. The aim was to predict the RUL.

A model trained with all fleet data might tend to provide
only a rough estimate of degradation without detailing
the component-specific variations. Therefore, another fleet
learning concept is to use a general model that basically
emulates the behavior of the entire fleet but then adapts it
to the specific system under consideration (D2). In [314],
a framework for the condition diagnosis of a fleet of micro
gas turbines with production variances was presented. The
idea is to expand a model that depicts the behavior of an
averaged turbine by tuning parameters that can adapt to
each individual turbine. A prognosis approach to specify
the downtime predictions of a model trained with all fleet
data was presented in [315]. A correction model was trained
with the deviations of the true degradation of each unit
from the general model. This approach was applied to
identical pneumatic valves used under different operating
conditions.

There are also fleet learning approaches that combine
multiple models into an ensemble. Models of the same
type (E1) as well as models of different types (E2) can
be combined. Regardless of the types of models combined,
another approach is to train the models with different
signals (E3). Rigamonti et al. [26] created a diagnosis model
for bipolar transistors that can be used for different operating
conditions. For this purpose, a separate model for each
operating condition is trained, and then all the models are
combined into an ensemble (E1). In [316], an approach for
the condition diagnosis of aircraft engines was presented,
whereby a data-driven and physicalmodel are combined (E2).

Another fleet learning concept is to deal with subfleets
that contain the units of the entire fleet that are most
similar to each other (F1). Using a hierarchical extreme
learning machine, Michau et al. [70] measured similarities
between datasets of gas turbines of the same type installed in
several power plants and operated under different conditions.
If similar sets were found, a neural network was trained
further with the associated data. Ultimately, the network can
then be used to determine the health state of individual units.
In another similar approach applied to the same case study,

feature alignment for multiple units was performed using
an unsupervised feature alignment network. This allows the
features of the units to be combined and a neural network to
be trained [27]. Jin et al. [69] used a clustering algorithm to
monitor the temporal evolution of control valve damage in
the oil and gas industry under different operating conditions.
The idea is to cluster valves based on the feature vectors.
For each cluster, a predictive model can be used to estimate
the health state. If units in a cluster differ too much during
the life cycle, all units are reclustered. Leone et al. [72]
and Leone et al. [13] presented algorithms to estimate
the RUL of industrial circuit breakers. The basic idea is
to select from a fleet exactly those circuit breakers that
show the highest similarity to the degradation pattern of
the unit under consideration. With this subfleet, the RUL
of the circuit breaker under consideration can be estimated.
A number of approaches are used to select the subfleet, such
as the root mean squared distance between the degradation
trajectories or the two-sample Kolmogorov- Smirnov test.
A Monte Carlo simulation serves as a datadriven prognosis
method. Liu [71] attempted, to predict the RUL of aircraft
engines under different failure modes and engine operation
settings. For this purpose, a similarity comparison of the
present trajectory with similar historical trajectories was also
performed (F1).

The last common fleet learning concept addresses the
advantage of fleet learning arising from the simultaneous con-
sideration of multiple systems. As described in Section IV-B,
when considering several units in a fleet, historical data
can be omitted, and instead, a comparison of data between
fleet units can be performed (F2). An unsupervised anomaly
detection approach was presented by Hendrickx et al. [317].
During operation, real-time data from several electric power
trains are compared with each other. Cluster analysis is
used to detect anomalies and thus potential damage. This
method does not require historical data. Only deviating
machine behavior is used as a degradation indicator. Even
if different engines are used for the load simulation, the
approach is assigned to the fleet type defined from the
manufacturer’s perspective, as the same drive engine type
is always used. Only the load differs due to different load
motors. Hendrickx et al. [68] and Hendrickx et al. [318]
presented a similar approach for the same application.
Among other approaches, Liu [71] performed time series
cluster analysis with operational data from an onshore wind
turbine farm comprising 24 turbines to establish an optimal
maintenance schedule (F2).

There are also approaches that combine several of the
concepts in Fig. 13. An ensemble-based anomaly detection
approach was presented in [319] (E1, E3, F1). Wind
turbines that are close to each other were compared.
If the sensor signals of one turbine deviate from the
others, this indicates a fault. To increase the robustness
of the condition diagnosis, multiple models trained with
different sensor signals are combined into an ensemble
and then a vote is taken on the presence of an anomaly.
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FIGURE 13. Main fleet learning concepts for condition diagnosis and
prognosis in PHM.

Al-Dahidi et al. [21] utilized fleet information for the
progress of degradation and the RUL prognosis. Therefore,
a homogeneous discrete-time finite-state semi-Markovmodel
(HDTFSSMM) is used. An unsupervised ensemble clustering
algorithm determines the number of necessary states of
the HDTFSSMM. For this purpose, several clusterings are
performed, each based on different signals (E1, E3). For
example, one clustering can use signals that characterize the
behavior of the system, and another clustering can use signals
that are related to the operating condition. In this way, the
data belonging to the same degradation state (considering
different operating conditions) can be grouped. The approach
is applied to aluminum electrolytic capacitor data under
different temperature profiles as well as aircraft engines.
Al-Dahidi et al. [320] andAl-Dahidi et al. [321] took a similar
approach as in Al-Dahidi et al. [21]. In addition, they used
an ensemble-based approach comprising an HDTFSSMM
and a fuzzy similarity-based model for the RUL prognosis
of aluminum electrolytic capacitors under different operating
conditions. Each model is assigned a weight and bias depend-
ing on its local performance. Furthermore, the similarity of
the actual degradation trajectory is compared with historical
trajectories to select similar trajectories (E1, E2, E3, F1).

As seen from the references listed, there are already several
condition diagnosis and prognosis approaches that address
fleets from a manufacturer’s perspective. However, these
approaches only consider a preliminary stage of similar
systems, since the systems under consideration are regarded
as identical. The differences arise primarily from different
operating conditions. However, it may well be that some
approaches are applicable to similar systems.

B. APPROACHES FROM THE OPERATOR’S PERSPECTIVE
Fleets defined from the operator’s perspective correspond
to fleets of similar systems. Although the individual units
are similar, they differ in technical characteristics. Examples
include similar electric motors with different powers, similar
manufacturing machines with slightly different structures,
or similar batteries with different capacities or even different
chemical compositions. Although this case has enormous
importance for the industry, according to Fink et al. [25],
this type of fleet has not yet been investigated in PHM.
Jia et al. [323] also viewed fleet-based forecasting using
data from similar machines as an open but very important
question. Nevertheless, there are initial condition diagnosis
and prognosis approaches that proceed in this direction.
However, in most cases, the similarities between the systems
under consideration are still very distinctive, and often
only components and not complex engineering systems are
considered.

An anomaly based fault detection approach for generators
of wind turbines was presented in [322]. The turbines were
from four different manufacturers and were located in several
places in Europe. For anomaly detection, an autoencoder
was used (D1). Electrical circuits usually comprise stan-
dardized components, which are only arranged differently.
Samie et al. [15] therefore pursued the idea of setting up an
algorithm to predict the RUL of DC/DC converters with the
same components but different topologies (D1).

In addition to these references, there are approaches that
consider multiple concepts of Fig. 13. Al-Dahidi et al. [74]
clustered data from similar turbines of different nuclear
power plants. This approach was applied to two different
turbines installed in two different nuclear power plants.
However, the power plants were highly standardized,
so the technical differences are rather small. Similar to
Al-Dahidi et al. [21], [320], [321], who considered fleets
from the manufacturer’s perspective, several clusterings were
performed based on different signals to characterize the
behavior and operating condition of the systems (E1, E3).
In addition to the ensemble approach already discussed in
Section IX-A (E1, E3, F1), Helsen et al. [319] also used
artificially generated data to improve condition diagnosis.
These simulated data can be seen as similar system
data.

Although they did not present a procedure for con-
dition diagnosis or prognosis, the approach of Medina-
Oliva et al. [73] should be mentioned. They used an
ontology-based approach to divide a fleet of distinctly
different diesel engines into subfleets in which the systems
are most similar to each other.

C. SUMMARY OF THE APPROACHES
According to Table 5, common condition diagnosis and
prognosis applications for fleet learning are circuit breakers
or switchgears, electric motors, wind turbines, and aircraft
engines. Unlike transfer learning, the focus is on electrical
or electronic applications as well as more complex systems
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TABLE 5. Application examples of fleet learning for condition diagnosis and prognosis. (— = no literature found).

TABLE 6. References to the main fleet learning concepts in Fig. 13
(Diagnosis = condition diagnosis, Prognosis = condition prognosis,
— = no literature found).

such as aircraft engines rather than individual mechanical
components such as bearings. The most frequently used
signals are current and vibration. However, there are also
some approaches that use several signals simultaneously.

Overall, fleet learning represents a research field whose
approaches can be used to exploit data from similar systems.
In particular, fleets from the operator’s perspective can be
considered as a collection of similar systems. Nevertheless,
there are currently very few approaches dealing with this type
of fleet. These applications are discussed further in Section X.

Fig. 13 lists the main fleet learning concepts used for
condition diagnosis and prognosis. According to Table 6,
the three most popular concepts are to use the fleet data
as one set for training without making specific adjustments
to the data-driven methods, to combine knowledge from
several operating conditions, and to define subfleets to train
several models. In contrast to transfer learning, where the
focus is mainly on condition diagnosis, fleet learning has
approximately the same number of approaches to condition
diagnosis and prognosis, as seen in Table 6).

X. PHM APPLICATIONS FOR CONDITION DIAGNOSIS
AND PROGNOSIS CONSIDERING SIMILAR SYSTEMS
In Sections VI to IX, currently used PHM approaches
for condition diagnosis and prognosis related to a similar
system problem in the field of transfer and fleet learning
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were presented and explained. These include approaches
that consider different operating conditions as well as those
that deal specifically with similar systems. Tables 3 and 5
divide the existing approaches accordingly. In the follow-
ing, the approaches applied to similar systems will be
considered again in more detail. Whereas the previous
sections considered the functionalities and the applications
of the approaches, the focus is now placed on how similar
systems differ in concrete terms. This should illustrate the
current state of research in the field of similar systems.
As Tables 3 and 5 show, approaches that consider similar
systems are currently in the minority. The focus of both
transfer learning and fleet learning is on identical systems
under different operating conditions. However, there are
already similar system applications.

It must be mentioned at the outset that the parameter-based
approaches that use natural images as a source domain are
not listed in Tables 3 and 5. Although natural images form
a very different domain, they are usually not similar engi-
neering systems. Furthermore, these approaches cannot be
assigned to a transfer between different operating conditions.
Approaches to which this applies are those in [9], [81],
[84], [85], [86], [92], [93], [94], [95], [96], and [98] on
bearings, [87], [93], [98] on gearboxes, [168] on tools for
machinery, [83] on railway wheels, [18], [93] on electric
motors, [97] on batteries, [84], [86], [95] on pumps, and [78]
on wind turbines.

Furthermore, it should be mentioned that there are often
different operating conditions between similar systems.
However, in the course of the assignment, deviating operating
conditions are seen as a consequence of the deviations in
the systems. Such approaches are therefore only assigned
in Tables 3 and 5 to the category of similar systems.
An exception are approaches that explicitly examine different
operating conditions and similar systems separately. These
are listed in both categories.

In the following Sections X-A to X-E the similar system
approaches of transfer and fleet learning, subdivided by the
applications, are discussed in more detail. In conclusion, the
key findings are summarized in Section X-F. Additionally,
Table 7 lists the condition diagnosis and prognosis applica-
tions in Sections VI to IX, which consider similar systems.
In contrast to Tables 3 and 5, a distinction is made between
whether condition diagnosis or prognosis is considered.
As previously noted in Sections VI to IX, condition diagnosis
approaches currently predominate, even and especially when
focusing on similar system approaches.

A. SIMILAR BEARINGS
The most common application for similar system approaches
are bearings. These represent the main use case of inductive
and transductive transfer learning approaches on similar
system data. Inductive and transductive approaches exist in
roughly equal numbers. First, the inductive approaches are
listed. Yang et al. [66] used bearing data from Case Western
Reserve University (CWRU). The two domains are formed

by different types of bearings at different positions in the test
rig. The first type is a deep groove ball bearing double-sided
sealed (6205-2RS JEM) with nine rolling elements installed
on the drive end. The second bearing type is also a double-
sided sealed deep groove ball bearing (6203-2RS JEM),
albeit with eight rolling elements and a different size, and is
installed at the fan end. Both bearings are manufactured by
SKF. The operating conditions in the form of the load are kept
constant. Cheng et al. [149] also utilized the CWRU dataset
and transferred knowledge between two sensor locations, at
the drive end and at the fan end. Zheng et al. [99] used
bearing data from two different test rigs. The first rig is the
MFS-MG rig in their laboratory, and the second dataset is
a bearing dataset contributed by the Center for Intelligent
Maintenance Systems (IMS) of the University of Cincinnati.
In addition to the different test rigs, the signals were recorded
under different sampling frequencies and rotation speeds.
In [112], data from two different bearing test rigs were
also used. The first dataset is from the CWRU 6205-2RS
JEM bearing test rig, and the second is from another test
rig. Between these datasets, in addition to the test rigs, the
operation conditions also differed (e.g., different speeds, fault
types, fault diameters). Another approach where knowledge
was transferred between two bearing test rigs was presented
in [113]. Thus, the first domain is formed again by the
CWRU 6205-2RS JEM bearing data. The second domain
includes data from an internal bearing test rig with deep
groove ball bearings of type CBS6209. Again, the operation
conditions varied. Han et al. [151] also used the CWRU
dataset and a bearing dataset from Paderborn University;
thus, two different test rigs with different bearing types were
considered for the transfer. The data originated from different
operating conditions. Two additional approaches in which
data were transferred between different bearing test rigs
include those presented by Zhou et al. [163], who transferred
knowledge between the CWRU dataset, the IMS dataset,
and data from their own test rig, and Wang et al. [171],
who transferred knowledge between the CWRU and the IMS
bearing datasets. Li et al. [122] transferred the knowledge
learned from the CWRU dataset to a real-world railway
locomotive bearing dataset recorded on another test rig.
In addition to the test rigs, the bearings and the operation
conditions differed.

There are also approaches that transfer knowledge
between bearings and distinctly different similar systems.
Li et al. [152] presented an approach using four different
datasets. Three of these datasets were bearing datasets,
specifically the CWRU bearing dataset, the IMS bearing
dataset, and data from a train bogie test rig. In addition,
another dataset from a significantly different area of appli-
cation was used, which comprises data from a shaft crack
test rig. Transfers were carried out between these four
datasets. In [24], an approach that uses completely different
components was presented. Knowledge was transferred from
bearings to gearboxes and vice versa. The CWRU dataset and
a gearbox dataset of the 2009 PHM data challenge were used.
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TABLE 7. Application examples for condition diagnosis and prognosis considering similar systems. (— = no literature found).

In addition to using data from real applications, simulation
data can also be used. These usually do not exactly match
the real-world system, so simulations also represent a similar
system problem. Yu et al. [167] used a simulation model of a
rotor-bearing system as the source domain. The knowledge
was transferred to the data of two different bearing test
rigs. One of the datasets was provided by Xi’an Jiaotong
University (XJTU).

The transductive approaches applied to bearings deal
with mostly identical similar system datasets as those in
inductive approaches. A transfer between the degradation
data of bearings from different test rigs has often been
considered. Thus, the test rig architectures, the bearings,
the sensors, the sensor positions, and the fault modes, often
differ from one another. Deng et al. [260] utilized the CWRU
dataset, the Paderborn University dataset, and the XJTU

dataset. Wang et al. [287] conducted examinations with
the CWRU and IMS data and a bearing test rig dataset
provided by Jiangnan University. Xiang et al. [288] used the
CWRU, XJTU, and Paderborn University bearing datasets,
and Jin et al. [58] used the CWRU data and data from an
internal test rig. Feng et al. [283] also transferred knowledge
between datasets from three bearing test rigs. Furthermore,
the CWRUdataset was used to transfer data between different
sensor positions in [149], [198], [278], and [286] and between
the drive end and fan end bearings in [284]. The knowledge
gained from test rigs has also been used for bearings in real
operation, especially locomotive bearings. Yang et al. [179]
utilized the knowledge of laboratory bearing data (CWRU)
to determine the health state of locomotive bearings operated
in the real world. Yang et al. [217] transferred knowledge
from two laboratory bearing datasets, one of which was the
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CWRU dataset, to locomotive bearings. In [30], the CWRU,
IMS, and a railway locomotive bearing dataset were used as
the domains. Yang et al. [289] transferred knowledge from
the XJTU dataset and a dataset provided by the Society for
Machinery Failure Prevention Technology to data from a test
rig for locomotive bearings. Liu et al. [261] utilized CWRU
data and the 2009 PHM gearbox dataset. The gearbox dataset
served as a strongly deviating domain to achieve negative
transfer (see Section XII). The algorithm should detect this
ill-fitting domain and prevent its negative effect.

B. SIMILAR GEARBOXES AND OTHER ROTATING
COMPONENTS
Although bearings are currently the most commonly used
similar system applications, other similar systems are
also being considered. Gearboxes are one such example.
Kumar et al. [108] utilized a bevel gearbox dataset as
similar system data for spur gearboxes from the IEEE
PHM Challenge Competition 2009. The transfer between
bearings and gearboxes already listed in the course of the
bearing applications should also be mentioned [24]. Both
of the previously referenced papers considered inductive
transfer learning. A transductive approach to bearings and
gearboxes, which is also referred to in bearing applications,
was presented in [261]. Shen et al. [292] also addressed
transductive transfer learning and the transfer between
different sensor positions in a test rig simulating a drivetrain
with gear faults.

Approaches using other rotating component systems also
exist. As already mentioned, Li et al. [152] utilized a
shaft crack dataset in addition to the bearing datasets.
Kumar et al. [108] also applied their approach to rotor defect
test rig data. The faults in both setups were misalignment,
unbalance, and rotor rub. Both approaches can be assigned to
inductive transfer learning. Pandhare et al. [237] transferred
knowledge between different sensor positions on ball screws.

C. SIMILAR ELECTRICAL AND ELECTRONIC
COMPONENTS
Batteries are also a similar system application field that has
already been explored. Li et al. [104] transferred knowledge
between the same type of batteries (LiFePO4), albeit with dif-
ferent specifications, specifically different nominal capacities
and nominal voltages. Kim et al. [118] considered different
types of batteries with different capacities, packaging styles,
chemistry, and numbers of cells. In addition to these
approaches using inductive transfer, transductive approaches
have also been used. In [232], batteries with the same cathode
and separator material, albeit different anode materials,
electrolyte solutions, and a varying number of contained
cells, were considered. Furthermore, it is worth mentioning
that Liu et al. [119] transferred knowledge between different
battery types, namely, nickel cobalt manganese and lithium
cobalt oxide batteries. However, they performed state of
charge estimation, which is not seen as a PHM application
area in the course of this paper. It should be noted

that in applications, the operating conditions of batteries
usually differ greatly, which can lead to strong deviations
in the degradation behavior. Therefore, transfer learning
approaches can already be significantly beneficial in these
cases.

There are inductive transfer learning approaches on similar
transformers. Duan et al. [80] generated artificial fault pat-
terns (temperature and velocity field) through simulation and
used them as the source domain. Duan et al. [109] also used
a simulation dataset. Chen et al. [111] considered different
similar transformer rectifier unit structures. Samie et al. [15]
presented a fleet learning approach considering DC-to- DC
converters. Converters are considered to have the same
components but different topologies.

In [49], knowledge was transferred from circuit
breaker simulations to a real-world experimental domain.
Pan et al. [128] transferred knowledge between different
transistor generations. In detail, the source domain comprises
data from fin field-effect transistors and the target domain
from gate-allaround field-effect transistors.

D. SIMILAR COMPONENTS FOR POWER GENERATION
Similar system applications can also be found on the
components of power plants. Two inductive transfer learning
approaches have been found. Yang et al. [106] transferred
knowledge between simulation data of GE9FA and Siemens
V64.3 gas turbines. Both are single-shaft turbines compris-
ing a compressor, a combustion chamber, and a turbine.
Zhou et al. [144] used gas turbine data based on a physical
model as the source domain to transfer the knowledge to
a real-world application. Al-Dahidi et al. [74] utilized fleet
learning on two different turbines installed in two different
power plants. A transductive transfer learning approach was
presented in [227]. Knowledge was transferred between two
different components of a power plant, a boiler dataset, and
an electricity generator dataset.

Lu et al. [156] considered a photovoltaic emulator and a
photovoltaic system on a rooftop comprising four JINKO
JKM350M-72 monocrystalline panels. A fleet learning
approach was presented in [322] on wind turbine generators.
The wind turbines were from different manufacturers and
were located at different sites. Overall, they considered
four turbine brands from seven wind farms scattered across
Europe. Pan et al. [197] transferred knowledge between
different sensor positions of a wind turbine gearbox,
and Helsen et al. [319] used not only measured data but also
additionally generated simulation data.

E. OTHER SIMILAR SYSTEMS
There are also other applications considering similar systems.
Similar structures with geometric and material differences
were considered in [195] and [243]. In addition, physical
models were used as source domains. Lin et al. [202]
also transferred knowledge from simulations to real-world
structures. All of these approaches are based on transductive
transfer learning. Similar aircraft engines are another field of
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application. Liu et al. [133] used turbofan engine data from
the 2008 PHM conference competition as the source domain.
These data were based on a simulator called CMAPSS
and are part of the C-MAPSS dataset. The target domain
comprises real measurement data of aircraft gas turbine
engines. Gribbestad et al. [129] also utilized the 2008 PHM
dataset as the source domain. However, the target domain
comprises marine air compressors. Both approaches are part
of inductive transfer learning.

Transfer learning approaches on chillers also exist.
In [253], building chillers with different cooling capac-
ities, powers, and structures were considered. van de
Sand et al. [199], Fan et al. [159], and Li et al. [293]
also transferred knowledge between two different chiller
types. However, the latter focuses on energy optimization
rather than condition diagnosis or prognosis. Further pos-
sible differences between chillers are different refrigerants,
compressors, or heat exchangers. In addition to the energy
optimization of chillers, in [293], the transfer between
different boilers for condition diagnosis was considered.
Wu et al. [300] presented an unsupervised approach to
fault detection and a transductive approach to condition
diagnosis in fog radio access networks between similar nodes.
Wang et al. [142] also addressed radio networks, specifically
with configurations of femtocells. However, neither approach
clarified how similar the nodes were.

Zhang et al. [139] used inductive transfer learning to utilize
knowledge from similar disk systems in data centers. The
types studied are HDDs, SATA SSDs, and NVMe SSDs from
different manufacturers. Another approach was presented
in [157], in which knowledge was transferred between
hard disks of different manufacturers. Reference [236]
transferred knowledge between different sensor positions
on electromechanical actuators. As previously mentioned,
Gribbestad et al. [129] used knowledge from aircraft engines
on marine air compressors, and Guo et al. [218] transferred
knowledge between two valves installed in two different
reciprocating compressor models (IODM-115-5-3-16 and
IODM 70-5-4R). Propeller damage of similar quadrotor
drones that differ, e.g., in the drone architecture, propeller
size, or propeller rotation speed, was considered in [103].
Data from similar sucker rod pumping systems were utilized
in [172].

F. SUMMARY OF THE APPLICATIONS
As seen from the applications listed in Table 7 and explained
in this section, there are already some similar system
approaches for condition diagnosis and prognosis in PHM,
with the diagnosis being considered significantly more often.
Existing applications range from mechanical components
such as bearings and gearboxes to electromechanical com-
ponents and electrochemical components such as batteries
or photovoltaic systems. There is also a wide range in
the complexity of the systems considered, ranging from
individual components such as bearings to more complex
systems such as aircraft engines or wind turbines. The already

existing and potentially possible scope of applications is
therefore very large. This reinforces the assumption that
transfer and fleet learning can play a significant role in the
use of data from similar systems in the future. Table 7 clearly
shows that most of the existing similar system approaches
belong to inductive and transductive transfer learning. There
are few approaches to unsupervised transfer learning and
fleet learning in the field of similar systems. This can be
explained in part by the fact that unsupervised transfer
learning and fleet learning are generally not as widely used
in PHM for condition diagnosis and prognosis as inductive
and transductive transfer learning. Therefore, the current state
of the literature suggests that transfer learning approaches
are likely to be more relevant than fleet learning for similar
system problems in the future.

XI. SIMILAR PROCESSES
Although this literature review focuses on engineering
systems, the presented approaches can generally be applied
whenever similar datasets are available. In the industrial
environment, the application of these approaches to similar
processes is therefore also very promising. The focus here
is not primarily on the degradation of the systems that are
underlying the process. Instead, the central challenges are the
diagnosis of process errors that occur, the determination of
production quality, or the prediction of production progress.
Here, a distinction can also be made between different levels
of similarity. For example, different process parameters can
be set, different products can be produced, or processes with
different substeps can be considered. There are already a few
transfer learning approaches dealing with such challenges,
which are briefly listed below.

Huang et al. [173] used transfer dictionary learning
for process monitoring of a stirred tank heater under
different process parameters. Xu et al. [324] presented an
MMDbased approach for condition diagnosis in a car body-
side production line. Simulation data were used as source
data. A process condition diagnosis method based on MMD
was presented in [210]. Wang et al. [325] applied TCA to
minimize the distribution discrepancy between domains. This
method was applied to condition diagnosis of a simulation of
the Tennessee-Eastman process and an ore-grinding process.

A transfer learning approach for production progress
prediction can be found in [326]. The aim was to predict
the degree of fulfillment of a production plan in the future.
Accordingly, the models were pretrained with historical
data and subsequently fine-tuned. A similar approach was
used in [327] for modeling lithography simulation processes
with different configurations. Lin et al. [328] presented a
further development of this approach. Tercan et al. [52]
predicted the production quality of injection molding based
on machine settings, whereby pretraining with production
data from previous parts was also used. A feature extraction
network pretrained with natural images was used in [329]
and finetuned to diagnose the condition of a cylindrical
metal shell. Yang et al. [330] and Kim et al. [331] also
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used such pretrained networks to detect the water-binder
ratio of concrete and to monitor the quality in laser-assisted
micromilling of glass, respectively. Similar approaches were
also presented in [332] for the quality assessment of flat
glass using images of the glass produced and in [333], [334],
and [335] for detecting defects in welded joints.

Gong et al. [336] combined a DANN and a similaritymea-
sure method based on the Euclidean distance. The aim was
to improve the defect detection of composite materials in
X-ray images by using X-ray images of welding defects
as the source domain. Li et al. [337] combined a DANN
and the MMD as a similarity measure for the condition
diagnosis of a stirred tank reactor and a pulp mill plant.
There are also initial approaches using transfer learning in
semiconductor manufacturing. For example, Kang [338] and
Azamfar et al. [339] aimed to use machine state data to infer
possible defect types. Accordingly, Kang [338] implemented
a parameterbased transfer, and Azamfar et al. [339] added
an MMD term to the loss function. Other transfer learning
approaches were presented in [340] to create a regression
model for time series from industrial manufacturing, [341]
for process monitoring of an ore grinding and grading
process, [342] to monitor the Tennessee-Eastman process,
and [343] on amanufacturing process inwhich several similar
products are produced.

In summary, the following application scenarios of similar
system and process approaches are conceivable:
• Classical PHM, i.e., condition diagnosis and prognosis
of engineering systems by using sensor and control data

• Determination of production quality using measurement
data from an end-of-line test

• Determination of production quality using sensor and
control data from production

• Condition diagnosis and prognosis of manufacturing
machines using sensor and control data from production

• Condition diagnosis and prognosis of manufacturing
machines using measurement data from an end-of-line
test

• Optimization of process parameters using measurement
data from an end-of-line test

XII. AVOIDING NEGATIVE TRANSFER
As the literature listed in the previous sections shows,
using data from similar systems can add significant value
to data-driven learning methods. In particular, if only a
small amount of data from the system under consideration
are available, the performance of the algorithms can be
strongly increased. Moreover, if data from similar systems
already exist, they are usually available without much further
effort. However, the similarity of the datasets has a decisive
influence on the added value that arises from their usage.
The greater the deviations in the domains and tasks, the
less promising the use. If the differences are excessive, there
can even be a deterioration in performance. In the case of
transfer learning, this is referred to as the negative transfer.
If a negative transfer occurs, the transferred information from

FIGURE 14. Example of a negative transfer situation.

the source domain(s) negatively influences the learning of the
target prediction function, meaning that the training without
the usage of the source data would be more successful [51],
[54], [55], [344]. An example of a negative transfer situation
is shown in Fig. 14. When using additional samples from
the source domain for training, misclassifications occur on
the target test data that do not occur when using only the
target data. That is, the performance on the target test data
deteriorates when the samples from the source domain are
used for training. A negative transfer can also occur in fleet
learning if the system under consideration strongly deviates
from the other fleet units. Then, the usage of the knowledge
about the fleet (other domains) deteriorates the prediction
function of the considered system.

The detection and prediction of negative transfers have
since been and currently remain an open problem in
all application areas of transfer learning [53], [55], [62],
[345], [346], [347]. According to Wang et al. [348], open
questions include the following. How can negative transfer
be measured?What should be used as a baseline for assessing
improvement or deterioration? Moreover, it is not clear what
exactly causes a negative transfer. According to them, the
discrepancy between the domains is probably a strong factor.
However, it is not known which discrepancies cause negative
transfers. Additionally, there could be other influencing
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factors that favor negative transfers. The authors saw the
main problem in how to detect a negative transfer by utilizing
unlabeled target data.

The negative transfer problem is fundamental since it can
occur whenever data from other domains are used that do not
exactly match the domain under consideration. Thus, it is also
crucial for the industrial usage of similar system data in PHM.
It lies beyond the scope of this review to give an overview of
all existing approaches for detecting and preventing negative
transfers. However, due to the strong significance, some
basic considerations will be made in the following regarding
similar system data. Transfer learning approaches in PHM
that draw attention to negative transfer include, e.g., [195],
[260], [261], [269], [270], [288]. Furthermore, in principle,
all approaches using system data from different operating
conditions or similar systems (transfer and fleet learning) aim
to avoid negative transfers as best as possible. As examples,
domain alignment or the weighting of the source samples can
be mentioned. Nevertheless, in the current PHM literature
using transfer learning and fleet learning for condition
diagnosis and prognosis, the fundamental suitability of the
data from different domains is usually simply assumed. For
example, domain alignment methods are applied in the hope
that the domains are sufficiently similar to be approximated at
all. However, as in other fields of transfer learning, this is too
optimistic [346]. For reliable statements in the field of PHM,
the basic suitability of the available data of similar systems
should first be verified. This is particularly necessary because
not only different operating conditions but also different
systems are considered.

One straightforwardmethod for verification could be to see
how the use of similar system data affects the training result
by means of extensive test runs. However, in the industrial
environment, there is often insufficient time or it is too
costly to carry out extensive training runs to compare the
performance, with and without the use of similar system data.
Another problem with evaluating the suitability of similar
systems based on classification performance is that there
is usually an imbalance between classes in the condition
diagnosis. This is because faults occur much less frequently,
and therefore, fault data are underrepresented. Therefore, the
performance evaluation is mainly determined by the healthy
state data, as they form the largest part of the datasets [346].
However, in the application, it is crucial to classify the faults
correctly. In addition, in practice, there is often not only one
potential similar system but several. Then, another question
arises. Which of these systems should be used? This would
require evaluating the performance of each possible training
data combination. For these reasons, it is necessary to find a
way to identify the most similar systems without having to
train data-driven methods.

Approaches that are based on the structure of systems seem
to be promising for similar system approaches. For example,
from several types of ball bearings, those with the same
number of rolling elements and similar dimensions could be
selected. In the case of batteries, for example, it would make

sense to use source batteries made of the same (chemical)
materials as the target battery. However, the evaluation is
then very subjective. For example, is the dimensioning or
the number of rolling elements more important for bearings?
What influence does the type of rolling element have on the
similarity? In addition, it is necessary to define individual
evaluation criteria for each system type. The more complex
the system type, the more complex the definition. Above a
certain complexity, such as that of production machines, this
approach quickly reaches its limits.

Therefore, data-driven methods that decide how similar
systems are purely on the basis of the measurement data are
particularly suitable. For example, the similarity measures
presented in Table 2 can be used for the initial similarity
measurement of similar systems. In addition to comparing the
marginal distributions, the conditional distributions should
also be compared. In this way, the most similar systems
considered from the data can be identified. This approach
would be consistent with that of Wang et al. [348], who
observed the core of the negative transfer in the distribution
shift. However, there are challenges with this approach.
To make a statement about the usefulness of similar system
data, a kind of threshold value is necessary that indicates
when the data are sufficiently similar for similar system
approaches. There are already approaches in statistics that
introduce such a threshold, e.g., [177], [349]. This threshold
is used to check whether two samples are drawn from
the same population. However, in the field of similar
systems, this is not yet an indication that the systems
are too different for similar system approaches. Therefore,
approaches must be found to relax this usually too strict
threshold. In addition, there are usually few degradation data
available from the system under consideration that could be
used for similarity analysis. Therefore, it will be crucial for
the industrial utilization of similar system data to identify
suitable similarity metrics that can deal with these difficulties
and define appropriate thresholds. At this point, negative
transfer learning should be mentioned once again as another
area in the transfer learning literature [61]. However, due to
the lack of approaches in the field of PHM, it will not be
discussed further.

XIII. SUMMARY AND OUTLINE OF FURTHER RESEARCH
CHALLENGES
Data-driven PHM methods for condition diagnosis and
prognosis offer strong potential for industrial use. However,
sufficient training data are required. Especially in industrial
applications, data from individual systems are usually not
available in the desired quantity because data generation is
usually associated with large time and monetary expendi-
tures. In addition, especially at the time of market launch,
there are usually only small amounts of runtime and run-to-
failure data available, as the system has not yet been used
in industrial applications. These problems are exacerbated by
the increasing importance of a variant-rich product portfolio.
Therefore, there is no doubt that in PHM, the use of data
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from similar systems can add great value to the data-driven
condition diagnosis and prognosis of engineering systems.

A. PRINCIPLE PROBLEM IN USING SIMILAR SYSTEM
DATA
Nevertheless, data from similar systems cannot simply be
used as is. Similar systems do not behave exactly identically
due to variations in their technical characteristics and show
different degradation behaviors. Additionally, the installed
sensor types or the sensor locations may vary. Different
operating conditions also lead to further differences in the
data. All of this can result in:

• Measurement and feature differences

· Measurement quantities
· Signal properties (sampling rate, accuracy, etc.)
· Interferences (bias and noise)
· Marginal distributions
· Conditional distributions

• Label differences

· Fault types
· Fault severities
· Fault locations
· Health index values (e.g., RUL)

Therefore, the data from similar systems must be treated
‘‘differently’’ than the data from the system under consid-
eration. For this, similar system approaches, with the help
of which knowledge about similar systems can be used
advantageously, are imperative.

B. SUMMARY OF CURRENT APPROACHES
The use of data from systems under different operating con-
ditions or similar systems is very promising for data-driven
condition diagnosis and prognosis approaches in PHM. The
literature listed in Tables 3 and 5 shows that transfer learning
and fleet learning can harness these data.

Although PHM is currently an underrepresented applica-
tion area of transfer learning, there are already approaches
that address knowledge transfer for condition diagnosis
and prognosis between systems under different operating
conditions or similar systems. The majority can be cate-
gorized under the core areas of inductive and transductive
transfer learning. In unsupervised transfer learning, very few
approaches exist. Furthermore, the current focus of transfer
learning approaches in PHM is on condition diagnosis rather
than prognosis. A main reason for this is that the literature on
transfer learning in general deals mainly with classification
tasks and little with regression tasks. However, condition
prognosis, such as RUL prediction, is generally a regression
problem. In addition, most publicly available PHM datasets
suitable for transfer learning applications consider condition
diagnosis problems (primarily fault classification). As seen
from Fig. 12 and Table 4, the most common approach
in inductive transfer learning addresses parameter transfer.
In transductive transfer learning, feature alignment is most

popular. Nevertheless, there are several more approaches in
transfer learning.

Fleet learning is another approach in addition to transfer
learning that can be applied to similar system problems.
According to Table 6, unlike transfer learning, in fleet
learning, the number of condition diagnosis and prognosis
approaches is roughly the same proportion. As seen from
Fig. 13 and Table 6, the three most common fleet learning
concepts are to use the fleet data as one set for training,
to combine several models, and to define subfleets. With
the fleet defined from the operator’s perspective, a concrete
branch of research already exists that addresses similar
systems. However, most approaches consider fleets from
the manufacturer’s perspective, and unlike transfer learning,
fleet learning currently receives less attention in PHM
research. The majority of transfer learning approaches in
PHM have been published in recent years, especially as of
2019. The speed of development is mainly because there are
already many approaches in other application areas that can
be adapted. Unlike transfer learning, fleet learning cannot
be based on the variety of findings from other fields of
application.

Looking at the applications in existing approaches,
mechanical components such as bearings and gearboxes are
mainly considered in transfer learning. In most cases, the
vibration signal is used to obtain the degradation information.
In addition to mechanical components, transfer learning is
already applied to electrical and electronic components such
as circuit breakers, transformers, and batteries. Applications
involving systems with multiple components, such as wind
turbines, aircraft engines, or disk systems, are also con-
sidered. Fleet learning focuses on electrical or electronic
applications such as circuit breakers or capacitors, as well
as more complex systems such as aircraft engines or wind
turbines. However, taking all transfer and fleet learning
approaches into account, in most cases, data are generated
under laboratory conditions on test rigs or by means of
simulations and do not originate from industrial use.

In both transfer and fleet learning, the focus is currently
on the condition diagnosis and prognosis of identical systems
operating under different operating conditions. This can be
seen as a precursor to the consideration of similar systems.
However, that the transfer and fleet learning approaches are
also suitable for similar systems is confirmed by existing
approaches that consider similar system problems (see
Table 7). Fleet learning already has a branch that deals with
data from similar systems, but due to the dynamic in transfer
learning, it is expected that in the next few years, transfer
learning in particular will deal with PHM applications that
use data from similar systems.

C. CHALLENGES IN USING SIMILAR SYSTEM DATA
From the authors’ perspective, the similar systems approach
will be a decisive future research branch within PHM.
Based on the review conducted in this paper, some potential
challenges that arise when data from similar systems are to
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be used can be identified. These are described in more detail
below, along with what further research is needed to use
data from similar systems. The order in which the points
are mentioned represents a sequence of steps, at the end of
which is the successful use of similar system approaches in
industrial applications. Finally, Fig. 15 shows a summary of
the key research questions.

1) AVAILABLE DEGRADATION DATASETS FOR RESEARCH
For the development of new similar system approaches and
the adaptation of existing approaches, datasets are needed
that represent similar system problems. However, there are
currently very few such condition diagnosis and prognosis
datasets publicly available. Even if the datasets that only
consider identical systemswith different operating conditions
are also included, there exist significantly fewer datasets in
the field of PHM than in the field of image processing, for
example [350]. Maschler and Weyrich [36] also noted this as
a key obstacle to the use of transfer learning for condition
diagnosis and prognosis. In addition, the majority of these
PHM datasets only contain data from laboratory setups or
simulations and not from real industrial applications. The first
challenge, therefore, is the lack of suitable, publicly available
degradation datasets considering similar system problems.
It is necessary that, in the future, more such datasets be
generated and made publicly available. These datasets are
essential to enable and promote research on similar system
methods.

For frequent application areas such as bearings or gear-
boxes, it may be useful to use several datasets in themeantime
and to transfer knowledge between these datasets. In doing
so, each dataset does not have to contain data from similar
systems. It is sufficient if the systems differ between the
datasets. An overview of publicly available datasets on PHM
applications can be found in [351].

2) UTILIZATION OF SIMILAR SYSTEM DATA
The second challenge will be the beneficial utilization of
similar system data for condition diagnosis and prognosis.
Approaches from the areas of transfer and fleet learning
are suitable for this purpose. However, since the differences
between similar systems are typically larger than those
between identical systems, which have mostly been consid-
ered thus far, an adaptation of the existing approaches may be
necessary. Moreover, due to the expected major differences
between similar systems, it cannot be assumed that similar
system data can always be used advantageously. In summary,
the challenges of using similar system data can be described
by answering the questions of when, for what purpose, and
how existing data from similar systems can be used. Moradi
and Groth [37] realized that these points are essential for the
use of transfer learning in PHM, but they are also crucial for
using similar system data in PHM in general, whether through
transfer or fleet learning.

To clarify when knowledge of similar systems should be
used, the following questions need to be addressed:

• Are data from similar systems needed in the current
application?

• Are the existing data or trained models of similar
systems suitable for usage?

• If there are several similar systems, which are most
similar and most promising to consider?

These considerations are important to efficiently use
similar system data and avoid negative transfer. However,
most of the current literature on transfer and fleet learning
does not clarify them but simply assumes the necessity and
suitability of available data or models. If identical systems
are considered under different operating conditions, this trial
and error approach may work, but in the area of similar
systems, this is usually not the case. Therefore, it is necessary
to analyze whether the data-driven method needs more data
from similar systems to provide acceptable results for the
current application, and the similarity of existing similar
systems must be evaluated in advance.

To determine whether consideration of similar systems
is even necessary, it is essential to evaluate the quality
of data-driven methods that they can achieve with the
currently available dataset of the system under consideration.
One approach to this would be to examine the prediction
uncertainty, e.g., by analyzing the confidence and prediction
intervals of the trained models. However, to save com-
putational cost, an evaluation without having to train the
models would be more practical. For example, the coverage
of the feature space could be investigated. Another option
could be to use approaches that address the explainability
or interpretability of data-driven methods. This research area
is concerned with understanding the decisions of methods
and thus being able to explain, for example, why a model
makes incorrect predictions for certain inputs. Based on these
findings, similar system data can be targeted to improve
the performance of the model. A survey on explainable
or interpretable machine learning is presented in [352]
and [353].

Assessing the similarity of similar systems is essential
to make conclusions about the suitability of similar system
data and to prevent negative transfers. One approach to
such similarity assessment is statistical similarity measures
such as those listed in Table 2. These measures can be
used to evaluate the similarity based on the data of the
systems. There are statistical tests in the literature that
use such similarity measures. These tests originate from
statistics and check whether two samples were drawn from
the same population [177], [349]. However, the thresholds
used for this purpose are typically very strict and may not
be suitable for similar system problems. This is because
methods from the area of transfer and fleet learning are
developed to deal with datasets that were not drawn from
the same population. Research regarding suitable threshold
values is therefore essential for a data-driven assessment
of the similarity of similar systems and to infer similar
system data usability from similarity. One drawback of
data-driven similarity assessments is that sufficient data must
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FIGURE 15. Timeline of key tasks and research questions.

be available from all the systems to be compared, i.e., also
from the system under consideration itself. If this is not the
case, the methods do not provide reliable results. Therefore,
in addition to data-driven similarity evaluations, another
approach is to evaluate the similarity of similar systems based
on their technical characteristics. This has the advantage
that no operating data of the systems are necessary. For
example, the number of cylinders in a combustion engine
is an essential characteristic that determines similarity. For
structuring, concepts of ontology can be used, as shown, for
example, in [73]. However, this type of similarity assessment
requires expert knowledge to identify the key characteristics
that determine similarity. Moreover, this approach quickly
reaches its limits, especially in the case of complex technical
systems. In addition to similarity checking as a means of
preventing negative transfer, the research field of negative
transfer learning should also be highlighted to monitor and
ensure that data from similar systems do not adversely affect
the training results [61]. Since these approaches are not yet
widely used in the field of PHM, they have not been discussed
in detail in this review.

Once it has been determined that there is promise in
using data from similar systems, consideration should be
given to the purpose of using the data from similar systems.
The transfer approaches in transfer learning summarize the
possibilities well. Pure data can be used as another data
source, or knowledge already gained from the processed
data can be used, i.e., relation knowledge, trained models,
or feature representations. If knowledge already gained from

the data is used, the training effort can also be reduced.
However, there are currently no rules to decide what is most
suitable under which constraints. One point to consider is
the type of data available. If, for example, only unlabeled
similar system data are available, it makes sense to use these
data to find a suitable feature space. In addition, it can also
be advantageous to combine several possibilities. There is
already a trend in this direction in the literature. Nevertheless,
existing approaches are also based on trial and error, without
investigating why a combination of methods is promising
for the problem under consideration. However, this question
needs to be investigated further. Only then can an informed
decision be made as to whether it makes sense to combine
several possibilities.

In addition to deciding for what purpose the data from
similar systems should be used, the exact procedure for
doing so must also be selected. In this paper, it has been
shown that approaches from transfer and fleet learning are
suitable for similar system problems. However, the fact that
the question of how to use knowledge from similar systems
is not trivial to answer has already been shown by the large
number of existing approaches to transfer and fleet learning.
One example is deciding whether to perform a domain
alignment using similarity measures or adversarial training,
e.g., by a DANN. Similar to classical data-driven methods,
there will likely be no universal answer. Nevertheless,
whether a statement can be made about which procedures
are most promising for certain boundary conditions should
be investigated.
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3) APPLICATION IN INDUSTRY
The successful application of similar system approaches
in industry is another challenge. Current transfer and fleet
learning methods for condition diagnosis and prognosis are
usually evaluated using artificially generated data from test
rigs or simulations. Thus, the similarity of the operating
conditions is specifically controlled, or the deviations of the
similar systems are limited to a few characteristics. However,
conditions in industry usually differ significantly from these
laboratory conditions. It is to be expected that the deviations
in industrial applications will be significantly larger, and
usually several deviations will occur simultaneously (see
Section XIII-A). For instance, different sensors are typically
installed in machines of different generations. Additionally,
other physical quantities may even be measured, e.g., vibra-
tion data could be measured on one system and acoustic data
on another. In addition, different fault classes or RUL values
of different magnitudes may occur due to design differences.
Although there are already initial approaches that address
such problems in a mitigated form, research in this direction
is still at an early stage. This has also been confirmed by
Li et al. [8] and Fink et al. [25]. Future research directions
include cross-modality transfer learning and partial transfer
learning [61], [280], [281]. However, such approaches are
currently not or are only sporadically used in PHM.

For industrial applications, there may also be few data
available from similar systems. Therefore, it will be necessary
to use data from several similar system types. It must be
clarified how these different domains are to be addressed.
For example, similarity measures could be used to control
the influence of the different types on the training of a
data-driven model. In the literature, approaches that utilize
several source domains are referred to as multisource [56],
[340], [354] and multidomain [355], [356] transfer learning.
In industrial practice, artificially generated data derived from
simulations or other physical models can also be a valuable
source of data. In general, physical models cannot exactly
reproduce the system behavior or the degradation processes
of the real-world system. Therefore, similar to data from
similar systems, they do not exactly fit the system under
consideration. Therefore, similar system approaches are also
promising for the use of simulation data. In this way, data-
driven methods can benefit from existing physical models
that only partially describe the system under consideration
but enable the generation of much source data. Other authors
also see major promise in using simulation data as another
domain. For example, Fink et al. [25] noted that transfer
learning is important to make better use of the data gained
from simulations. In addition to using physical models
to generate artificial data, there are other possibilities for
integrating the knowledge contained in these models into
data-driven methods. In the literature, the combination of
data-driven and physical models is referred to as the hybrid
approach. An overview is provided in [357]. As part of future
research, it is reasonable to combine similar system and
hybrid approaches.

Besides the challenges already mentioned, the typically
limited computing power in industrial applications and the
suitability of the approaches for online condition diagnosis
or prognosis pose further challenges. Therefore, in addition
to developing and training a data-driven model, other
issues include integrating it into the online diagnosis or
prognosis system and designing an embedded system [358].
Another point that was previously mentioned, which is also
essential for industrial use, is the explainability of data-
driven methods. As with all data-driven approaches, one
drawback with current similar system approaches is the
lack of traceability of decisions. However, to ensure that
no wrong decisions are made in industrial applications,
such traceability is essential. This problem is well known
from classical data-driven condition diagnosis and prognosis
approaches and is therefore not discussed in detail here.

Despite the challenges mentioned in this section, two
promising approaches to use data from similar systems for
condition diagnosis and prognosis already exist: transfer
learning and fleet learning. Although the current focus is on
different operating conditions and variations are relatively
small when considering similar systems, they have already
proven their potential. Therefore, it seems very promising to
stick to these approaches and develop them further.

XIV. CONCLUSION
The use of data from similar systems offers the potential for
data-driven condition diagnosis and prognosis in applications
for which there are actually insufficient data from the system
under consideration. However, due to the differences between
similar systems, the data cannot simply be utilized. With
transfer and fleet learning, research fields that are suitable for
harnessing similar system data have been identified. Some of
these approaches have already been applied to similar system
problems. Nevertheless, most approaches currently consider
identical systems under different operating conditions.

Especially in the industrial use of data-driven methods
for condition diagnosis and prognosis, a sufficient database
is often lacking. Similar system approaches can solve this
problem by utilizing existing data from other systems. With
this approach, the widespread industrial usage of data-driven
methods can be made possible.

However, there remain some challenges in utilizing similar
system data. This includes the lack of publicly available
degradation datasets containing similar system data. Such
datasets are necessary to develop and evaluate similar system
approaches. In addition, solutions must be found to clarify
when, for what purpose, and how existing data from similar
systems can be used. At present, most approaches that
can harness similar system knowledge are developed and
evaluated using data recorded under laboratory conditions on
test rigs or generated by simulations. Another challenge will
be to transfer approaches that have proven themselves under
these conditions to industrial application scenarios. It will
be important to address the expected significant variations
between some similar systems.
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While research in the field of similar system approaches is
just beginning, due to its large potential, the use of data from
similar systems is seen as an important future research area
in PHM.
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