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ABSTRACT Emerging cloud-native technologies, such as container runtime and container orchestrator,
offer unprecedented agility in developing and running applications, especially when combined with
microservice-style architecture. Several commercial Samsung Network products such as Samsung Element
Management System (S-EMS), 5G Radio Access Network (RAN) & Core network elements are being
redesigned to fit the microservice paradigm. The cloud environment allows enterprises to scale their
applications on-demandwithminimum cost; however, it is often difficult to use containers without sacrificing
the many benefits offered by container technology. S-EMS manages 5G RAN & Core network elements
(NEs) deployed nationwide, and systematically stores a huge volume of stateful data per second. Containers
are characterized to have an ephemeral state, hence ‘stateful-ness’ aspect of S-EMS makes management
more complex. The existing system in a container-based application does not support geo-redundancy where
services/data are stateful/state dependent. In this paper, different challenges around geo-redundancy between
different independent Kubernetes set up with active and standby modes between the sites where state-
dependent data is stored in each site are described. To overcome these challenges, we propose the High
Availability Control Method (HACM) - which enables the Kubernetes cluster to be active and standby, where
state-dependent data and context-based operations are intrinsically supported by the underlying S-EMS
container application. Our approach has been designed to maintain the geo-redundancy philosophy of cloud-
native by associating the status of each site using high availability (HA), switching over services based on
the health of applications, deciding state when there are conflicts in site state, and the option to auto fallback
based on user preference and services are transferred between sites without user intervention with optimized
storage that ensures consistency, persistence, reliability, and availability. Through evaluation, we show that
HACM with S-EMS can facilitate geo-redundancy HA, while not posing a significant burden on the Cloud.

INDEX TERMS 5G networks, microservices, containers, cloud, communication networks, geo-redundancy,
and high availability.

I. INTRODUCTION
Container-based microservice architecture has gained sub-
stantial attention among several 5G Telco vendors and oper-
ators. Many challenges of traditional monolithic architecture
applications are tackled by the microservices paradigm [1].
However, to leverage the benefits of the microservices style,
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one needs to use technologies aligned with the characteristics
of microservices [1]. The container runtime and container-
orchestrator have become a popular deployment formats
for microservice applications. In Kubernetes or container-
based environments, applications are deployed as the smallest
deployable computing units called pods, an abstract way
to expose an application running on a set of the pod as
services. The container-based environment is considered an
independent cluster where data is independent and stateless.
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However, Element management System (EMS) should man-
age Network Elements Fault, Configuration, Accounting,
Performance and Security (FCAPS) management data into
Data Base(DB) and storage so the nature of EMS is stateful,
it is a lot different, unlike stateless container application,
in such context [3], there is no effective solution provided by
the container-based application to keep effective active-active
as operation complexity such as Network elements should be
distributed among sites, it is error-prone to the operator, data
conflict as two sites are running and data should be updated
on two sites, but there can be a delay in synchronization
which does not guarantee services will work correctly. Thus,
maintaining the active-standby mode is preferred by most
top-tier network operators. Today, organizations face several
challenges that threaten business continuity. While disasters
are inevitable, unplanned downtimes disrupt normal business
processes, services, operations, and customer dissatisfaction.
Delivering good performance and excellent user quality of
experience (QoE) are also crucial. All of these reasons are
why geo-redundancy between data centers is mission-critical
for many businesses.

Several commercial Samsung 5G network products includ-
ing Samsung Element Management System (S-EMS), radio
access Central Unit (CU), radio access DistributedUnit (DU),
and 5G Core Network Functions are being redesigned to
fit the microservice paradigm as containers. Specifically,
S-EMS is characterized to manage FCAPS data on 5G Net-
work Elements (5GNEs) such as Radio Access Network
(RAN) and Core elements deployed nationwide. The S-EMS
systematically handles and stores a very large amount of
stateful data per second. S-EMS handling such a scale of
stateful data, and aligning it to fit with the microservice
paradigm with geo-redundancy has called-for new research
issues and architectural design changes. Aimed at opera-
tor manual work of moving network elements where two
container-based independent clusters are running with active-
standby mode with state-dependent data and service. In exist-
ing Kubernetes-based microservice cluster does not support
high availability(HA) between sites or clusters and does not
provide active or standby modes. It does not have a method
to make which site is active and standby and if there are any
conflicts in state and option to user to choose preference to
make a site active or standby. The active and standby sites
do not have the option to synchronize state-dependent data
directly so backup is done with an external backup location
and data is restored to the standby site when a site is coming
up which leads to having extra storage location and time to
start services are delayed when state-dependent data size is
very large.

In this paper, we introduce HACM — High Availabil-
ity control method in container-based microservice applica-
tions over multiple clusters which enables high availability
for state-dependent data and services intrinsically supported
by the underlying application running between independent
clusters in different geographical locations. Our approach has
been designed to high availability pod (HA pod) running at

each setup of a cluster which monitors the health of S-EMS
application pods and services, handshake with other cluster
HA pod, and provides switch over functionality when there is
an issue or fault or disaster in site, provides the option to user
to make preference to configure site when a site is recovered
after the crash to decide whether the running site needs to be
in active mode or standby mode. The details of HACM are
explained in sections III.

II. RELATED WORK
Microservice architecture has significant benefits in terms
of flexibility and scalability, compared with the traditional
monolithic architecture. Microservice has been drawing
attention in the literature [10]. The HA over geographical
with context-based data has been studied for some time by the
research community, spanning a wide spectrum such as Con-
tent Distribution Networks (CDNs), Information/Content-
Centric Networking (ICNs/CCNs), and many other areas.
However, our work with HAMC is one of the first attempts
to introduce such an HA control method to microservice
architecture principles in a cloud-native domain. Looking
at other related works, in [11] author investigates microser-
vice coordination among multiple clouds to enable seam-
less and real-time responses to service requests from mobile
users. The objective of this work is to devise the optimal
microservice coordination schemewhich can reduce the over-
all service delay with low costs. However, no focus has been
given to stateful information retrieval and processing using
these microservices. In [12], authors proposed a predictive
auto-scaling orchestration system for cloud-native telecom
microservices. A predictive mechanism with workload fore-
casting was proposed to enable auto-scaling and thereby
improve the performance of the orchestration systems. How-
ever, in this paper, the investigation was performed only for
stateless replicas. The stateful replication management is one
of the key hurdles when aligning with microservice architec-
tures. In [13], the authors reported on state-dependent data
retrieval that can be improved by receiving user interventions
such as user feedback, user preferences, andmachine context-
based data, but this loses its efficiency with millions of users,
and context profiles start being part of the system.

In [3], the framework was introduced for contextual infor-
mation retrieval which enables context-based operations to
be intrinsically supported by the underlying application for
data placement and retrieval functions in single cluster-based
applications. All of the above-mentioned approaches utilize
either user behavior or user preferences or both to construct
a contextual profiles and some forms of user intervention
are required. In addition, none of these approaches discusses
how to effectively perform context-based stateful storage and
retrieval on a large-scale distributed system.With the existing
frameworks, it is not possible to expand the system compo-
nents independently, without downtime. System components
include stateful storage, stateless processing elements, and
support for various types of input (for example, 5G network
element types). All existing research does not address how to
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handle geo-redundancy where data are state-dependent and
underlying applications are running at the container-based
microservice platform in a separate cluster; there are many
research and solutions for stateless applications; however, for
stateful nature applications, they are many limitations. In the
remainder of this paper, we discuss the HACM framework
which enables HA for state-dependent data and services to be
intrinsically supported by an underlying application running
over between two independent clusters in different geograph-
ical locations.

III. HACM FRAMEWORK
Container-based cluster environment is not supported by
default as active and standby between sites where data is
state-dependent and services are stateful. Active site or cluster
will have its network, and network elements to be man-
aged where data from network elements are state-dependent
such as alarm, configuration, security data, and other state-
dependent data. A standby site or cluster is a backup set
up with the same resource configuration as an active site or
cluster which is capable of handling services when there is a
problem in the active site.

A. HACM ARCHITECTURE
The S-EMS with HACM architecture will be able to seam-
lessly handle the site by providing an active-standby mode,
as shown in Fig.1. A cluster is an independent Kubernetes
setup where applications, pods/services are running to man-
age network elements. The network elements can be 4G, 5G
RAN, or core network elements. Here, the communication
between network elements and S-EMS applications is repre-
sented as Pod A1, A2 . . .An, DB pod and HA pod. Persistent
Volume(PV) is a shared storage at the cluster level, where all
applications or pods can store data. Master Node is consisting
of one more control and data plane to support Kubernetes
functionalities at the cluster level. Here, clusters can play the
role of active or standby. Active cluster means all services-
related network elements functions are running in that cluster.
If the cluster is in standby mode means the cluster is waiting
for service to start, however, the application or pod will be
running as part of or in a standby state and will not provide
any services to the end-user when it is in standby mode.

Therefore, when a disaster occurs in a running or active
cluster, applications or services should be moved to a standby
cluster where data or services are state-dependent. The
HACM concept presented in this paper will be covered as
an HA pod in a diagram where each cluster is running in a
different geographical location. The main concept, function-
ality, and logic of an HA pod are described in detail in the
following sections.

B. HANDSHAKE
The HA pod in each cluster handshake with other HA pods
in other clusters. The handshake confirms the health state of
the cluster and the HA pod can decide when to switch over
to be executed based on the current state of the cluster. The

FIGURE 1. HACM architecture.

FIGURE 2. Handshake between HA pod.

handshake between HA pods is shown in Fig.2. Handshake
between HA pod occurrence using the REST API interface.
A REST API (also known as RESTful API) is an application
programming interface (API or web API) that conforms to
the constraints of the REST architectural style and allows
interaction with RESTful web services. REST represents
representational state transfer. Here, the REST API interface
is used to communicate securely over the network Hypertext
Transfer Protocol Secure (HTTPS) after authentication and
authorization with system-defined accounts. Here, a hand-
shake is performed between the active site HA pod and the
standby site HA pod. Both pods independently handshakes.
When a handshake between an active and standby HA pod
is successful, it is considered normal, and it is not required
to take any action. In case the active site HA pod detects
handshake failure with standby HA, there is no action taken
as the site is in an active state, and the problem is with the
standby site.

Here, failure means the destination site is not reachable
due to network issues between HA pod clusters or site or
application or dependent services are having errors or unable
to provide service due to various reasons. As shown in Fig.2,
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FIGURE 3. HA mode conflict resolve between clusters.

when there is no handshake issue with the active site from
the standby site, no action is taken. When the standby site
HA pod handshake fails with the active site HA pod, the
HA pod needs to change from the standby site to the active
site. The switchover is explained in detail in Section III.E.
Before switching is determined, the system attempts for the
configured number of the interval using configured time. If all
retry attempts are failed, then considered a handshake is a
failure, otherwise, a handshake is considered a success, and
the system will be continuing the functionalities. When a
handshake is failed, an event is generated to inform the user
that the handshake functionalities are affected and used for
auditing purposes.

C. HA MODE CONFLICT RESOLVE
When S-EMS comes to each site, there is a chance that both
sides can be in active-active or standby-standby mode. Here,
the S-EMS provides a method to handle HA mode conflicts
when the system comes up and decides which site needs to
be active or on standby based on criteria. Therefore, the HA
pod verifies the HAmode when the HA pod is coming up at a
respective site. Communication between HA pods running in
different clusters occurred through the REST API interface.
For example, HA pod 1 in cluster #1 is coming up and HA
pod 1 will synchronize HA mode with other HA pod running
in cluster #2.

When the modes of both sites are the same, they are called
conflicts. In this, the system should have the intelligence
to decide which site is active or which site is on standby.
Here, HAMC provides a method to solve HA mode conflicts
in detail, and how the communication occurs between HA
pods is shown in Fig.3. Here all communication between HA
pod will happen through the REST API interface. HA pod
1 communicates with HA pod 2 in the other clusters through
the REST API.

HA pod 1 requests an HA mode synchronization
request(HAModeSyncReq) to HA pod 2 and HA pod 2

TABLE 1. Possible HA mode status between cluster.

returns the current clustermode. There can be 4 possible cases
as shown in Table 1.

Here, Cases 1 and 2 are the problems, and Cases 3 and 4
are normal. Cases 1 and 2 are required to resolve conflicts.
HAmode resolve request(ModeConflictsResolveReq) is sent
to the HA2 pod by the HA1 pod. The HA2 pod will resolve
HA mode as shown in Algorithm 1. Here cases 1 and 2 are
the problem and cases 3 and 4 are normal. Cases 1 & 2
are required to resolve conflicts. The HA mode resolve
request(ModeConflictsResolveReq) is sent to the HA2 pod
by the HA1 pod. HA2 pod resolves HA mode as shown in
Algorithm 1.

The algorithm to resolve mode conflict is deciding the
value of each site based on a set of parameters with the
formula below where M(X) is a mode of site or cluster X
as shown in Eq.1. N is the total number of variables used
to decide the mode, for example, N is shown with a value
of 5. It can be dynamically updated if required to add a new
parameter. p1, p2, p3, p4, and p5 are constants, and values are
represented by 10(N−preference value). Here Preference values
mean the priority of the parameter, so the highest priority will
have a value as low to have a higher value.

M (X) = p1 ∗ U (X)+ p2 ∗ C (X)+ p3 ∗ S (X)

+ p4 ∗ T (X)+ p5 ∗ R (X) (1)

where X is the site or cluster referred to, p1 is 105, p2 is
104, p3 is 103, p4 is 102 and p5 is 101. U(X) denotes user
preference for the default mode to be applied for the site when
mode conflict happens and possible values are {0,1}. C(X)
denotes the number of Network elements connected with
S-EMS. S(X) denotes Service health weightage and S(X) are
expressed in Eq.2.

S(X ) =
∑
j

Ssi ∗ Swi (2)

where Ssi denotes ith service status and the possible value
for Ssi is 1 or 0 based on whether the service is running or
stopped; Swi denotes ith service weightage and the weightage
of service can be different based on criticality and importance
of functions.

S(X ) =
∑
j

Ssi = 1 (3)

However, the sum of all service weightage is 1 as shown
in Eq.3. T(X) denotes S-EMS startup time and R(X) denotes
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Algorithm 1 HA Mode Conflict Resolve
Assumptions:
U(X): User preference based on network or infra setup. Possible values
are {0,1}
C(X): Number of NE connected with S-EMS.
S(X): Service health
T(X): S-EMS startup time
R(X): Random number with base value 2. Possible values are {0,1}
N: Number of parameters used to make a decision, where N is 5 for
example.
M(X): Mode of Site or cluster X is calculated below
M (X) = p1∗U (X)+ p2∗C (X)+ p3∗ S (X)+ p4∗T (X)+ p5∗R (X)

Where, p1, p2, p3, p4 are constants and p1 is 10N, p2 is 10N−1, p3 is
10N−2, p4 is 10N−3 and p5 is 10N−4.
S(X) =

∑
j Ssi ∗ Swi where ssi is service status with 1 or 0 value based

on running or stopped and SWi is service weightage.

Output: Site(X) and Site(Y) HA mode status after conflict resolved
Initialisation: Assume there are ‘X’ and ‘Y’ site

1: valueforSiteX = 0;
2: valueforSiteY = 0;
3: calculate valueforSiteX =M(X)
4: calculate valueforSiteY =M(Y)
5: if [valueforSiteX > valueforSiteY] then
6: siteX=ACTIVE

siteY=STANDBY
7: end if
8: if [valueforSiteX < valueforSiteY] then
9: siteX=STANDBY
siteY = ACTIVE

10: end if
11: return

a random number with base value 2 and possible values
are 0,1}.

The HA2 pod returns HA conflict resolved values to
the HA 1 pod. The HA1 pod will be confirmed with the
HA2 pod if the mode value is changed and reconfirmed
with a request, and both pods update mode values based
on resolved conflicts, as shown in Fig.3. When the mode is
changed, the respective sides perform notification requests
for pods/services or applications, whichever is running in
the respective cluster, to perform the necessary operations.
In case cluster mode is changed fromACTIVE to STANDBY
then the application or pod needs to be deleted or stopped.
In case the mode is changed from STANDBY to ACTIVE
then the required pods/services need to be started to provide
the service. Here, the mode decision is based on the highest
priority of the parameter based on the order in which it
is fed to the formula. In case all parameters are the same,
then the last parameter R(X) decides the value randomly.
Therefore, either one of the sites will be selected as ACTIVE
or STANDBY. The process is the same as mentioned above
when the HA2 pod is coming up, here HA pod 2 will syn-
chronize HA mode with other HA pod running in cluster #1,
where the respective role of deciding conflicts will be done
as vice-visa.

D. EMS APPLICATION HEALTH CHECK
The HA pod checks the health of S-EMS application pods,
services, and related components and shares details with other
HA pods through handshake functionality. The handshake
interface is explained in Section III.B.

FIGURE 4. The pod health check is based on pod types.

The health of each pod may be different due to various
processes or components running on each pod; therefore,
checking health cannot be the same for all pods, depending
on the type of pod based on the underlying process running
it. As shown in Fig.4, the health of the pod is checked based
on pod type. Here, the example is shown as just 3 different
types of pod, but it can be more different types and the
health of the pod can be done according to a specific pod
based on underlying processing or services or components
or library or resources being used or consumed. Based on
each pod/service health, the total system health is decided.
Here, the weightage of pod/service will be different from each
pod/service. The total health of all pods/services is mapped
to 1 and evaluated to 100%. So total health of the system is
calculated as per Eq.2. There can be many pods/ services in
the system. The S-EMS decides the health of the cluster based
on the weightage of each pod/service and if the summation
of all pod/service health is below threshold values then the
system is considered abnormal and it will be considered for
the geographical switch over. Switch over is explained in
Section III.E. The pods/services health at the cluster level at
configured intervals will be considered for the switch over.

The S-EMS performs a health check algorithm as shown
in Algorithm 2. Here, S(X) denotes the pod/service health
status in cluster X, D(X) denotes the threshold value to be
considered for abnormality of the health of the cluster, and
K(X) denotes the configured count for failure or retry before
deciding on a health failure. When the health of the system
fails continuously for the configured threshold D(X) for con-
figured times K(X), the system will be considered a failure
and planned to switch over. Switch-over details are shared in
Section III.E.

E. SWITCH OVER
The HA pod provides a switch-over function either auto-
matically or manually. When the Health of S-EMS is
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Algorithm 2 S-EMS Health Check Decision
Assumptions:
S(X): The pod/service health in cluster X
D(X): Threshold value to be considered for abnormality of Health of the
cluster.
K(X): configured count for failure or retry
S(X) =

∑
j Ssi ∗ Swi where ssi is service status with 1 or 0 value based

on running or stopped and SWi is service weightage.

Output: S-EMS Application Health Status

Initialization: Assume there are ‘T’ Services/Pods and the retry count
is a global variable
1: threshold = 0;
2: retryCount=0; // Global variable
3: LOOP Process
4: for [i = 1] to [T] do
5: threshold = threshold + Ss∗i Swi
6: end for
7: if [threshold < D(X )] then
8: retryCount = retryCount +1
9: end if
10: if [threshold >= D(X )] then
11: retryCount=0
12: end if
13: if [retryCount > K (X ) ] then
14: retryCount = 0;
15: return false;
16: end if
17: return true;

FIGURE 5. HA switch over details.

abnormal, the HA pod automatically changes the system
status (ACTIVE to STANDBY). In case the user wants to
change the system status manually, it provides a REST API
interface for the same.

As shown in Fig.5, switch over can be triggered where
the ACTIVE site HA detects an issue in the active site, and
then the ACTIVE site HA pod requests the STANDBY site
HA pod for the switch over request (SwitchOverReadiness-
Req). The health check details are explained in Section III.E.
The HA in the standby site responds to readiness for the
switch over operation. The HA pod in the ACTIVE site
requests switch over request(SwitchOverReq) to HA in the
STANDBY site, the HA pod in the STANDBY site starts
required services in the STANDBY site and the STANDBY
site becomes ACTIVE at the time the previous ACTIVE site
becomes STANDBY site and previously running pod/service
are stopped or deleted by the HA pod. In case HA Switch over

FIGURE 6. NE Management after switch over.

TABLE 2. Possible pod status in S-EMS.

Request is failed, then the system will try for a configured
interval. During the switch over, the event is raised at the
start and end of the switch over to know the status and
progress of the user to track it later or for auditing purposes.
When switching is performed, the system updates required
parameters such as switch over mode, and auto fallback
mode to disable and delete or start required pods/services
based on-site or cluster HA mode (ACTIVE/STANDBY).
Here, auto fails back mode details are explained in detail in
Section III.G.

After switching over, as shown in Fig.6, pods/services
run in cluster#2, Cluster#2 becomes ACTIVE, and Clus-
ter#1 becomes STANDBY. Network elements in Network#1,
Network#2. . . such as 4G, 5G RAN, and Core NE’s in
Cluster#1 is managed by Cluster#2. Fig.6 shows only two
networks for simplicity and understanding; it does not mean
that it will manage only two networks, the system canmanage
N networks based on resource capacity. Here, the pod will
have the below status as shown in Table 2.

The S-EMS pod status is derived from the pod phase status.
The pod phase status is status defined as per container-based
platforms such as Kubernetes.

The default pod phase status is presented in Table 3. Here,
an abnormal S-EMS pod status indicates that the pod is in
Failed/Unknown. Running but no services mean there can
be many containers, some containers related to platforms
are running, but major application-related containers are not
running.
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TABLE 3. Pod phase definition.

TABLE 4. S-EMS pod status at ACTIVE and STANDBY sites.

The pod can have more than one container, so simply rep-
resenting it as running does not have any meaning; thus, the
S-EMS defines new status called ‘Running but no services’.
‘Running with all services’ means that all containers in the
pod are running and working as expected. The pod status at
active and standby sites is listed in Table 4. When switching
over is performed, the S-EMS Pod status is changed based
on the cluster mode (ACTIVE/ STANDBY) by the HA pod.
Thus, system services are restored immediately at either site
by the HA pod.

Whenever a switch-over occurs, it means that the site is
a problem; therefore, an immediate switch-over again is not
recommended until otherwise crashed or the issue site is
recovered. Therefore, this can be avoided by adding a flag
in the system as an auto failback. Details of this flag will be
explained in Section III.G.

F. DATA SYNCHRONIZATION
State-dependent data synchronization between sites at real-
time and scheduled intervals is required to avoid impact
on the business when the switch over occurs. Data

FIGURE 7. Existing ways of state-dependent data backup at ACTIVE SITE.

synchronization between clusters is the main concern; if data
are stored in backup storage and when the STANDBY site
becomes ACTIVE, it is required to copy data and extract data
according to pod/service, which may impact the application
or pod come to service. This problem is a major problem
in container-based architecture where data is state-dependent
and data are required to be maintained for each pod/service-
wise. As shown in Fig.7, cluster #1 data is backed up to exter-
nal storage at a fixed interval or in real time. The required data
in cluster #1 from all pods/services are collected, compressed,
and moved data to an external backup storage location using
the secure file transfer protocol (SFTP) utility. This will be
done frequently or in real time based on the type of data being
used by the respective pods/services.

The backup data are copied to cluster #2 when cluster #2
is changed to a running state, as shown in Fig.8. As shown
in Fig.8, state-dependent data are copied from the external
backup to cluster #2 for each pod/service storage. It may take
a lot of time to incase the size of state-dependent data is huge.
The S-EMS provides a solution for how effectively data can
be synchronized in real-time or scheduled time in such a way
that the pod/service does not affect when it is coming up or
started.

The state-dependent data of the S-EMS pods/services are
synchronized in real-time or scheduled times, as shown in
Fig.9. Each pod/service in cluster #1 is synchronized with the
respective counter pod in cluster #2 in real-time or scheduled
times. Here, cluster #2 will have all pods running but without
services.

The pod in state ‘running but not providing services’ is
explained in Section III.E. As shown in Fig.9, Cluster #2 pod
will be running, but no services are provided, which means
that pod will have more than one container, and some of the
basic containers such as volume, DB, file replications, log
related, and required for the platform are running; however,
containers related to applications or services that provide
response, service or function to the system or users will not
be started by maintaining container status as a pending state.

When the pod is running state but not in service will have a
volume attached, so data between ACTIVE and STANDBY
pods can be done without any issue where pods are running,
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FIGURE 8. Existing ways of state-dependent data restore at cluster when
it becomes ACTIVE.

FIGURE 9. Existing ways of state-dependent data backup at ACTIVE SITE.

so respective storage or volumes are accessible to respec-
tive pods. The pod is running but no services are shown
in Fig.10. As shown in Fig.10, the pod has some set of
basic or initialization containers that will be running, and the
remaining containers related to applications or services are
pending based on the cluster mode. If cluster mode is in an
ACTIVE state, then the pod is running and all services will
be started, if the cluster is in STANDBY mode then only
initialize containers or basic containers are started and other
containers are not started. Using this logic, S-EMS provides
data synchronization between the ACTIVE and STANDBY
sites.When the ACTIVE site is abnormal, the STANDBY site
becomes ACTIVE as explained in the switch over concept in
Section III.E. At that time, state-dependent data are already
synchronized to the standby site, so no further action is
required at the STANDBY site, just the pod can be running
with all services state as shown in Fig.9.

The S-EMS provides state-dependent data synchronization
between clusters by respective pods storage directory where
pods are running in all services in the ACTIVE site and
STANDBY site pods in ‘running but no Service’ status. The
pod status is changed based on the cluster or site mode
(ACTIVE or STANDBY). There is no extra back or storage
location required, and the time required to extract while the
service is coming is not required, so it reduces storage and
improves service availability.

FIGURE 10. S-EMS pod is running, but No service status logic.

TABLE 5. Possible cases after the site failed or abnormal.

G. AUTO FAILBACK
The S-EMS HA pod supports an auto-failback option that
provides control over when a site or cluster is crushed. The
system will switch to another site, and should not be allowed
back to avoid the split-brain issue. When a site or cluster fails
or is in abnormal, the user may be required to recover the
site manually; because the cluster will have many compo-
nents, resources, networks, and configurations. The cluster
not only has an S-EMS application, but can also have many
other applications, services, or utilities running over many
namespaces. Therefore, frequent switching between sites is
not recommended until otherwise required. So auto failback
is controllable in S-EMS to avoid unwanted switch over
irrespective of cases such as crash or disaster or failure is
recovered or not recovered site. The possible cases are listed
in Table 5.

In case of the failed site is recovered, it does not require
to change to the original site or a switch over as services are
running on the backup site. In that case, auto failback is not
required until the otherwise current running site has the issue
of supporting services or failure. As shown in Table 6, the
control auto falls back after the switch over is controlled by
the auto failback flag in the S-EMS. The auto failback flag is
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FIGURE 11. S-EMS auto failback configuration support.

TABLE 6. Possible values for auto failback flag.

reset whenever the switch is over being triggered, so further
failback is not allowed until otherwise the user is confirmed
that crashed site has recovered and made user preference
whether failing back is required immediately or following
failure.

As shown in Fig.11, S-EMS disables the auto rollback flag
every time the switch-over occurs. When a user is recovering
failed site or cluster, the user can change the options that
need to be done according to the user’s choice. The possible
options for auto failback are listed in Table 6. As explained
in Table 6, the DISABLE flag will not allow switching to
other sites. The ENABLE flag will allow switching to another
cluster or site if the other cluster or site is in the normal state
and healthy.

ENABLE_SWITCH_IMMEDIATEmakes a switch over if
the destination site is in normal, healthy condition and the
destination is configured as a primary preferred site by the
user. Thus, different possible options can be used per user
preference, based on their network setup or configurations.

IV. PERFORMANCE EVALUATION
The HACM performance evaluation result is performed with
various criteria such as switch-over time of NE, backup

FIGURE 12. HACM evaluation report.

storage required estimation and service start-up time. Each
category is used to determine a different key performance
indicator (KPI), such as the time required to start service
after the switch over, and the storage required in terms of
memory, network resource assignment, or movement during
switchover or after the switchover. Details of each major
category are described in the following sections.

A. SWITCH OVER PERFORMANCE EVALUATION
The HACM performance is evaluated under various condi-
tions, such as data synchronized but manually moving NE
between clusters, reading NE one by one manually, and re-
adding NE bulk after switching over.

The details of the performance comparison result are
shown in Fig.12. Data synchronized but manually moving NE
after the switch over requires considerable manual effort, and
the time taken to bring service to NE is greater. It increases
promotionally when the number of NE increases. This may be
an issue in the presence of many NE. In the case of ‘Re-add
NE one by one’ option is performing worse than compared
with the case ‘Data synchronized but manually moving NE’.
However, this requires more time and effort. The case ‘Re-
add by NE bulk’ options provides better results compared
with the earlier two options; however, the time taken is quite
high when the number of network elements is greater. The
HACM provides constant results when the number of NE
increases as each NE is synchronized automatically with the
S-EMS in the background without any manual work and
effort. We observed that a constant time was taken or almost
very less time was taken to bring into services. The assump-
tion is that manual movement is dependent on user working
speed, so considered as average users speed is 1 minute for
manually moving the NE and 5 minutes for creating a new
NE, as it has many parameters to configure by considering
the large number of NE.
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FIGURE 13. HACM performance evaluation report.

B. SERVICE START-UP EVALUATION
The HACM storage is evaluated with an external backup
method where state-dependent data decompress is evaluated
with various sizes from 1 gigabyte (GB), 2 GB, 4GB, 8 GB,
16 GB, and larger sizes with various extraction tools such
as gzip 1.5, bzip2 1.06, and XZ utils 5.1.2 version used.
Our simulator was run on 2 bare-metal servers composing
80CPU and 500GBmemory each and a dedicated connection
between servers with a 1gbps Ethernet interface. The observa-
tion is the same for all other methods in that the time taken to
extract data increases when the backup data size is increased.
When the size of the back is 64 GB, it is taking almost
approximately 13 minutes (801 seconds) by gzip to extract
data. The details of this comparison are shown in Fig.13.
The main observation is that a smaller data backup size can
be handled within a limited service downtime. Most Tier
1 network operators allow a maximum of 5 minutes, so less
than 8GB of backup data can be handled with other methods;
when the state-dependent data size is more than 8GB or very
large, it is not possible to handle with the traditional method
to extract data when the site is becoming active, which leads
to loss of functionality or services can’t be started until the
restoration of data is applied when switch over occurs. The
HAMC required a very short time of approximately 6 to
7 seconds. The reason for taking less time is that HAMC
performs incremental restoration continuously; only for the
last interval data may not be extracted or during extraction
there can be a chance to switch over, so the size of backup
data is not more than 1 GB for all cases, so it helps to start
services immediately within 7 seconds.

Here, we assumed that the transfer data between sites is
constant, and it is the same for all approaches. So only the

TABLE 7. Storage Usage Estimation comparisons.

extraction part is considered as transfer data is happening in
the background, so it is not worth considering for evaluation,
so it is not considered for all casesmentioned in the evaluation
report shown in Fig.13. The HACM recommends the user
that even if very large state-dependent data are available,
as service start time is not impacted as data is being updated
in the background, there may be very little or no data required
to extract when the service is being started.

C. BACK-UP STORAGE ESTIMATION EVALUATION
The HACM storage is evaluated with the storage required
to support the above-said functionalities using the traditional
approach. Assumed that N is the required storage size in GB.

As explained in Table 7, existing prior art solutions are
required 3N storage to support the solution; however, HACM
requires only 2N, which is a 33.33% storage reduction, and
there is no extra manual effort required to handle storage. The
extra storage used in the existing solutions or the traditional
approach is shown in Fig.7 and 8. The HACM reduces data
transfer by 50% as transfer between the active site to backup
storage and backup storage to the standby site; thus, network
and bandwidth usage is reduced by 50%.

V. CONCLUSION
In this paper, we discussed the feasibility of applying HACM
which enables HA for state-dependent data and services to be
intrinsically supported by the underlying application running
over between independent clusters in different geographic
locations. HACM provides automatic switch over between
clusters based on the health of application or pod/service by
handshake between HA pods running in independent sites,
provides switch over option to user to make preference to
configure site when a site is recovered after the crash to
decide whether the running site needs to be in active more or
standby mode, state-dependent data synchronization between
clusters without extra storage with less network bandwidth
usage by avoiding data transfer between active to backup site
and backup site to standby site, controlling auto failback flag
to provide more flexibility and user convenience based on
demand or priority, resolve systematic way if there are con-
flicts in cluster mode such as active-active or standby-standby
and having internal handshake to support the above-said
functionalities and having pod with running, but no ser-
vices, pod with running status and provides all services state
between clusters based on the mode of cluster and controls
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pods/services or state of cluster to support the above-said
functionalities.

The HACM performance result is simulated with other
existing approaches for HA switch over possible options
available and used by Tier 1 network operators in network
industries, where state-dependent data need to be maintained
and stored independently to respective services, applications,
or pods. HACM provides more benefits in terms of storage
reduction, and manual intervention of operations.

Towards future work, we will extend HACM and further
improve KPIs by introducing to considering the above-said
functionalities with multiple clusters with N: K redundancy,
where N represents currently active sides or clusters and
K represents backup clusters or sites. The current solution
is focused on 1:1 where N and K are 1 and data is state-
dependent and further research is required when N and K are
configured dynamically.
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