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ABSTRACT Intelligent detection of road cracks is crucial for road maintenance and safety. because of
the interference of illumination and totally different background factors, the road crack extraction results
of existing deep learning ways square measure incomplete, and therefore the extraction accuracy is low.
we tend to designed a brand new network model, referred to as AR-UNet, that introduces a convolutional
block attention module (CBAM) within the encoder and decoder of U-Net to effectively extract global and
local detail information. The input and output CBAM features of the model are connected to increase the
transmission path of features. The BasicBlock is adopted to replace the convolutional layer of the original
network to avoid network degradation caused by gradient disappearance and network layer growth. we tested
our method on DeepCrack, Crack Forest Dataset, and our own tagged road image dataset (RID). The
experimental results show that our method focuses additional on crack feature info and extracts cracks with
higher integrity. The comparison with existing deep learning ways conjointly demonstrates the effectiveness
of our projected technique. The code is out there at: https://github.com/18435398440/ARUnet.

INDEX TERMS Residual structure, shortcut connection, CBAM attention mechanism, deep learning, road
crack detection.

I. INTRODUCTION
Cracks are the foremost common kind of road illness.
If cracks repair isn’t disbursed in time, cracks can seri-
ously endanger traffic safety. Therefore, finding and repairing
cracks in time is an important responsibility of the trans-
portation department. In recent years, with the event of road
crack detection strategies for image and computer vision [1],
deep learning has been wide used for crack detection [2],
[3], [4]. Zhang et al. [5] first used deep learning for road
crack extraction and planned and trained a supervised shallow
neural network to find cracks. CrackForest [6] combined
multi-level complementary features using structural informa-
tion in crack patches to find and extract cracks. Yao et al. [7]
planned a convolutional neural network for crack recogni-
tion, that suppressed the interference of background factors
and considerably improved detection accuracy. Liu et al. [8]
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planned a pixel-level classification network combining
native and global information to get richer multi-scale fea-
ture information and improve crack detection accuracy.
Dorafshan et al. [9] reduced the interference of background
factors on crack extraction by connecting edge detectors and
deep convolutional neural networks. Li et al. [10] increased
and extracted multi-scale crack features using dense con-
nections. Finally, the feature maps at totally scales were
amalgamate to attain crack extraction by complementing the
options at different levels. However, these methods can less
extract fine cracks in pavement images with many interfer-
ing factors.Lin H et al. [11] proposed LEDNet neural net-
work for defect detection of LED chips, and achieved high
detection results. Wu X et al. [12] generate small blocks
centered on a pixel at several different scales and input
the blocks into different convolution operations.The exper-
imental results show that the method can learn more real
fracture characteristics and the detection results are high
precision.
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Olaf et al. [13] proposed a U-Net-based medical image
segmentation method to obtain contextual semantics by con-
tracting the paths and determining the location by sym-
metrically expanding the trails. The encoder and decoder
sub-networks of U-Net++ are connected by nested and dense
jump paths [14] to reduce the semantic gap between the
encoder-decoder sub-network feature mappings and Inter-
section over Union (IOU) is higher than the original U-Net
network. Cheng et al. [15] treated the crack images as a
whole; They also introduced a cost function based on dis-
tance transformation to improve the detection performance
of the network. Fan et al. [16] proposed an encoder-decoder-
based structured neural network U-HDN that integrates crack
context information into a multi-expansion module to obtain
more crack features. Drozdzal et al. [17] studied the impor-
tance of skip connections and introduced short skip connec-
tions in the encoder. ResNet34 residual network [18] was
used, and the original convolution of the residual network
was replaced with an expanded convolution [19] to extract
crack information, and an attention mechanism was intro-
duced to obtain the final crack detection results. these meth-
ods have poor detection accuracy in the presence of many
background disturbing factors. Bang et al. [20] proposed a
pixel-level detection method using an encoder-decoder to
identify road cracks.The encoder consists of a convolution
layer of a residual network for extracting crack features,
and the decoder consists of a deconvolution layer for locat-
ing cracks in the input image.The experimental results are
better than those of VGG-16, ResNet-50, ResNet-101 and
ResNet-200.

U-Net neural network is a coding and decoding structure
that can be trained end-to-end using fewer images to detect
road cracks quickly. However, there square measure several
distracting factors in road pictures, and also the U-Net net-
work is low to extract the fine crackswithin the pictures. when
the introduction of the CBAM into the U-Net neural network,
the structure of the neural network and also the variety of
network layers increase, but network model shows network
degradation. to solve the above issues, the add this paper
focuses on the subsequent aspects:

1) we design a new network model called AR-UNet
by introducing the convolutional block attention module
(CBAM) in the U-Net neural network. The CBAM performs
global averaging and global maximum hybrid pooling of
channels and spaces of input features to focus on more global
and local detail information. The performance of the neural
network in detecting fine cracks is improved.

2) CBAM’s input and output features are pooled using
shortcut connections to increase the transmission path of
crack features, and the network model can learn more about
crack features.

3) BasicBlock replaces the convolutional layers of the
U-Net network to avoid network degradation due to the
increase in the number of network layers. Further, improve
the accuracy of crack extraction.

II. RELATED WORK
Traditional road pavement crack detection principally has
the subsequent categories: 1) manual detection, 2) thresh-
old method, 3) wavelet transform, 4) morphological image
processing and classification, 5) path method and 6) edge
detection method. Manual detection is thru the pavement
investigator driving on the road to record the situation of
cracks, the degree of harm, and therefore the variety of data.
Such a way is careful and comprehensive, however the quan-
tity of human and assets consumption is giant and inefficient.

Thresholding-based image segmentation methods have an
early origin and are widely used. The thresholding method
detects cracks utilizing the feature that the gray value of
crack image pixels is lower than the background [21].
Kirschke et al. [22] proposed a histogram-based threshold
segmentation method, which can only be used for more
apparent crack identification. Removal algorithms [23] using
binary segmentation, morphological operations, and removal
of isolated points and regions are prone to the presence of
gaps in detected cracks. Segmentation using an improved
adaptive iterative thresholding segmentation algorithm [24]
can also yield crack images. Zhang et al. [25] took advantage
of the significant difference between cracks and background
to mark contours using FAST feature point recognition and
used PYNQ for crack identification. However, the accuracy
of those technique is poor once there’s a great deal of noise
within the background.

Ju et al. [26] use illumination compensation model (ICM)
and k-means clustering algorithm to detect cracks, and use
k-means clustering algorithm to extract crack area from road
background after removing shadow in image.The proposed
method has good performance in terms of average precision,
recall and F-measure.

Algorithms like wavelet pavement crack detection [27],
[28] use wavelet transform to convert cracks and noise into
totally different wavelet coefficients. These strategies need
high instrumentality necessities and are prone to disadvan-
tages like over-segmentation and condition to interference by
external factors.

Histogram statistics and shape analysis algorithms [29],
morphological image processing and logistic regression sta-
tistical classification [30], and free-form path calculation
methods [31], which combine brightness and connectivity
to detect cracks. The detection is not practical under the
influence of complex backgrounds and the presence of more
background-interfering factors, etc. The median filtering
algorithm [32] enhances grayscale pavement images using
four structural element reconstructions and combines the
morphological gradient operator and morphological closure
operator to extract crack edges. However, these method can
identify crack pixels with noticeable contrast changes in the
crack image, and its crack extraction accuracy is poor for
cracks with inconspicuous features.

Shah and Wang et al. [33] [34] studied crack segmen-
tation based on edge detection. Still, the natural properties
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of road diseases were not considered, and the algorithm’s
applicability was less than ideal. The segmentation algorithm
of edge detection is generally based on local grayscale and
gradient information to identify crack edges, which is only
applicable to cracks with complete edge information. It is
easy to judge the background with strong edge information
as crack information points. When there is more noise, the
effect of edge detection is poor.

In traditional methods, the feature extraction is mainly
dependent on the hand-designed extractor, which requires
professional knowledge and complicated parameter adjust-
ment process [35], and each method is specific to specific
applications, with poor generalization ability.Deep learning
is mainly data-driven feature extraction, learning from a large
number of samples can be deep, dataset-specific feature rep-
resentation, the expression of the dataset is more efficient
and accurate, the extracted abstract features are more robust
and have better generalization ability, and can be end-to-end
training without complex parameters. Deep learning detec-
tion of cracks in the road can not only liberate people from the
complicated work, but also achieve the accuracy of manual
detection.Therefore, it is very important to realize automatic
detection of road cracks by deep learning.

III. METHOD
A. OVERALL NETWORK STRUCTURE
The U-Net neural network is split into three parts: encoder,
decoder, and prediction module. The encoder reduces the
image size and extracts the initial image features by convolu-
tion andmaximum pooling. The decoder obtains the deep fea-
tures of the image by convolution (a ReLU perform follows
every convolution). Finally, pixel classification is completed
by 1×1 convolution.

The established network structure is shown in Figure 1.
The network structure chiefly consists of a feature extrac-
tion network, residual module, and CBAM module. The
BasicBlock module replaces the convolutional layer of the
U-Net network. BasicBlock module will effectively solve the
matter of network model degradation and gradient disappear-
ance once the quantity of network layers will increase. The
network introduces CBAM and sums the input and output
of CBAM; the module is termed Res-CBAM. Res-CBAM
makes the network pay a lot of attention to the channel
and spatial dimensions crack information and assign a lot of
weights to the network coefficients.

B. CONVOLUTIONAL BLOCK ATTENTION MODULE (CBAM)
CBAM is a light-weightmodule that contains spatial attention
and channel attention. The module derives attention weights
consecutive on two freelance dimensions, channel and space,
so multiplies the output attention map with the input feature
map for adaptative feature refinement. Since CBAM is a
light-weight, general module, it is seamlessly integrated into
any CNN design. It is trained end-to-end with the underlying
CNN. Compared to attention modules specializing in only

one facet, CBAM will beware of each side and extract addi-
tional information concerning the target.

As shown in Figure 2, assuming F = C × H × W
as the input feature map, the CBAM module computes the
one-dimensional channel attention feature map Mc ∈ C ×
1 × 1 and the two-dimensional spatial attention feature map
Ms ∈ 1 × H × W in turn, and finally outputs the weighted
features with channel and space. The overall attention is
calculated as follows:

F ′ = Mc (F)× F (1)

F ′′ = Ms
(
F ′
)
× F ′ (2)

whereF ′ denotes the input features after the channel attention
operation, F ′′ is the final refined output.

C. CHANNEL ATTENTION MODULE (CAM)
The structure of the Channel Attention Module is shown in
Figure 3; The twoMc = 1×1×C feature maps are obtained
by feeding the input features into global max pooling and
global average pooling, respectively. Then after two layers
of the fully connected neural network, the number of neurons

in the first layer is
C
r
(r is the compression rate). ReLu is the

activation function, and the number of neurons in the second
layer is C. Then, the fully connected neural network’s output
features are summed and passed through the sigmoid activa-
tion function to generate the channel attention features (Mc).
The channel attention is calculated as follows:

Mc(F) = σ (W1(W0(Fcavg))+W1(W0(Fcmax))) (3)

where σ denotes the sigmoid function,W0 =
C
r
× C , W1 =

C ×
C
r
.

D. SPATIAL ATTENTION MODULE (SAM)
The structure of the spatial attention module is shown in
Figure 4. The spatial attention input features F ′ = C × H ×
W are averaged and max pooling to obtain F ′avg and F ′max.
Then, the two feature maps are channel spliced. After a 7×7
convolution operation, it is compressed into H × W × 1.
It generates Ms by the sigmoid activation function. Finally,
the output feature map of this module is multiplied by the
input feature map to get the final generated feature map. The
spatial attention module is calculated as follows:

Ms(F ′) = σ
{
f 7×7[(F ′avg + F

′
max)]

}
(4)

where σ denotes the sigmoid function and f 7×7 denotes the
convolution operation with a filter size of 7 × 7.

E. STRUCTURE DETAILS OF THE ENCODER
As shown in Figure 5, the input features enter the chan-
nel attention of CBAM after two convolution operations of
size 3 × 3 to get the channel attention weight Mc. Mc is
multiplied by the input feature map to get the input features
required by the spatial attention module. Next, the spatial
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FIGURE 1. The overall structure of the neural network.

FIGURE 2. Convolutional block attention module.

attention weight Ms is obtained by the spatial attention oper-
ation, and the original input and Ms enter the 2×2 max
pooling together after the shortcut connection to obtain the

final feature map of size C ×
H
2
×
W
2
.

F. STRUCTURE DETAILS OF THE DECODER
The residual-connected Res-CBAM is also introduced in the
structure of the decoder, as shown in Figure 6. The feature
map of sizeC×H×W is deconvolved, and the corresponding
CBAM input feature map of the encoder is copied and cut,
and stitched with the deconvolved feature map to obtain the
feature map of size C × 2H × 2W ; The stitched feature map
is input to the attention mechanism as the input feature map.
The output feature map is connected with the input feature

map and then convolved with a 3 × 3 convolution kernel to

obtain the final feature map of size
C
2
× 2H × 2W .

G. RESIDUAL NETWORK
The residual network comes from the literature [36]. Typi-
cally, because the number of layers will increase, the training
loss step by step decreases and then saturates, however the
fact tells us that the training loss will increase when the
network depth is increased again. this is often not over-
fitting because, in overfitting, the training loss endlessly
decreases.

The deeper the network is, the harder it is to train. There-
fore, it is essential to integrate shortcut connections in U-Net
networks to cut back network degradation. Since the original
convolutional layer is computationally long and unsuitable
for pixel-level prediction. the original convolutional neural
network layer is replaced by BasicBlock, whose structure is
shown in Figure 7.

After the input feature map is passed through two convo-
lutional layers and the ReLu function, it is summed with the
original input features to obtain the final output feature map.
A residual block can be expressed as:

xl+1 = xl + f (xl,wl) (5)
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FIGURE 3. Channel attention module.

FIGURE 4. Spatial attention module.

FIGURE 5. Partial structure of the encoder.

FIGURE 6. Partial structure of the decoder.

FIGURE 7. The structure of BasicBlock.

The residual block is divided into two parts: the direct map-
ping part and the residual part. h (xl) is the direct mapping,
and the response is the curve on the right in Figure 7; f (xl,wl)
is the residual part, which consists of two convolution oper-
ations, and the part containing the convolution on the left
in Figure 7.

The shortcut connections between the input and output
feature maps will transfer the crack info extracted by the
previous layer of the network to consequent layer. the infor-
mation loss is avoided to a greater extent, and the network

degradation caused by increasing the number of neural net-
work layers is effectively prevented.

IV. EXPERIMENTS AND RESULTS
A. ROAD IMAGE DATA SET
The datasets used for the experiments are DeepCrack [37],
Crack Forest Dataset [38], and our annotated onboard road
image dataset, which we named RID. DeepCrack is a dataset
containing 537 concrete pavement images of 544 × 384 pix-
els with multi-scene and multi-scale pavement cracks. The
Crack Forest dataset is a dataset of asphalt pavement images,
which contains 118 images of size 480 × 320 pixels with
background noise such as white markers and shadows.
These two datasets have fewer images and are enhanced
using rotate, flip, and mirror operations. After enhancement,
2148 and 708 images were obtained from the DeepCrack and
Crack Forest datasets, respectively. Then, we made a dataset
with 548 images from the road images acquired by mobile
LiDAR mapping system. The labeled images in these three
datasets were manually labeled. To validate the established
neural network models, we selected 80% of each dataset as
training data and 20% as test data.

B. EXPERIMENTAL SETTINGS
1) ANALYSIS OF INITIAL LEARNING RATE AND OPTIMIZERS
In the first experiment, In order to obtain a suitable initial
learning rate value and the optimizationmethod, we set differ-
ent learning rates and model optimization methods to analyze
the training loss of the model. Figure 8 (a) indicates that we
employed the Adam optimizer,The figure indicates that there
are large fluctuations in the training loss for the three datasets,
and the training loss values are large. Figure 8 (b) indicates
that we employed the SGD optimizer. The figure shows that
the training loss values of the three datasets are small and sta-
ble, therefore, we choose SGD as the network optimizer. The
learning rates for the training RID and CrackForst datasets
are set to 1e-1 and for the training DeepCrack datasets
to 3e-3, because their corresponding loss values are the
smallest.

2) OTHER EXPERIMENTAL SETTINGS
We implement all tests in Python 3.6, Pytorch 1.10.1, and
CUDA 11.1 framework and use NVIDIA GeForce RTX2080
GPU for training. The model uses the SGD optimisation
methodology to update the parameters by arbitrarily choosing
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FIGURE 8. Statistical results of training loss values with different learning
rates.

little batches of samples with the momentum optimisation
algorithmic rule set to 0.9. The ReLu activation function sup-
presses gradient disappearance during training to accelerate
the convergence rate of the model and maintain stability.

C. EXPERIMENTAL EVALUATION INDEXES
Neural network segmentation accuracy evaluation is per-
formed using commonly used metrics, DICE (D), preci-
sion (P), recall (R), and F1-score are selected for assessment.
Where DICE indicates the ratio of the area where the pre-
dicted and true results intersect with the total area, and the
value of perfect segmentation is 1. The F1-score can better
measure both the precision and the recall. The DICE and F1-
score are calculated as follows:

D =
2× (Rseg ∩ Rgt )
Rseg + Rgt

(6)

F1 =
2× P× R
P+ R

(7)

P =
TP

TP+ FP
(8)

R =
TP

TP+ FN
(9)

The exactitude indicates the proportion of properly
detected crack pixels that were initially correct. wherever TP
indicates the amount of properly classified crack pixels and
FP indicates the amount of incorrectly classified crack pixels.
Recall indicates the proportion of properly detected cracked
pixels to all cracked pixels, wherever FN indicates the amount
of pixels incorrectly classified as background.

D. THE RESULTS OF ABLATION EXPERIMENTS
1) VISUAL ANALYSIS OF EXPERIMENTAL RESULTS
To discuss the result of introducing Res-CBAM and
BasicBlockwithin the neural network on crack feature extrac-
tion, we tend to validate it by ablation experiments. The tests
were done in each of the three datasets. As Figure 9 shows
the visualisation results of the experiments, rows 1-2 show
the detection results of the DeepCrack dataset, that shows
that the original neural network crack extraction is incomplete
and the extraction accuracy is poor. after the introduction of
Res-CBAM and BasicBlock, the network model can focus
more on the crack region, and the crack completeness is
higher. Rows 3-4 show the results of the crack forest dataset,
and the extracted cracks are more realistic. Rows 5-6 show
the results of RID, where the fine cracks are extracted to be
more complete.

E. RESULTS OF ABLATION EXPERIMENTS
1) RESULTS ON DEEPCRACK
We explored the contribution of introducing every part on
DeepCrack’s test set. As shown in Table 1, we found that
introducing Res-CBAM improved DICE from 65.39% to
68.72% and F1-scores from 67.26% to 75.64%. And then,
we integrated BasicBlock into the original network and
found that DICE and F1-scores improved further to 83.91%
and 83.67%. we at the same time additional Res-CBAM
and BasicBlock into the neural network, and therefore the
DICE and F1-scores reached 84.09% and 85.82%, severally.
we improve the structure of the encoder and decoder and yield
higher extraction accuracy compared to U-Net.

2) RESULTS FOR THE CRACK FOREST DATASET
we can see that theDICE and F1-scores improve to 67.2% and
68.85%, respectively, after the introduction of Res-CBAM
and BasicBlock in U-Net. The precision performance of
the neural network is better after introducing Res-CBAM
alone. The neural networks performed better in recall after
introducing BasicBlock alone. But their F1-scores did not
perform as well as the networks introduced simultane-
ously. The experimental results of the crack forest dataset
show that the simultaneous introduction of Res-CBAM and
BasicBlock can effectively improve the crack detection
ability of U-Net.
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FIGURE 9. Experimental visualization results of three data sets.(where ‘‘Res-CBAM’’ means only Res-CBAM is introduced, ‘‘BasicBlock’’
means only BasicBlock is introduced, and ‘‘Res-CBAM+ BasicBlock’’ means all the two structures are introduced).

TABLE 1. Results on different datasets.(where ‘‘+’’ means the structure is introduced and ‘‘−’’ means the structure is not introduced).

3) REGARDING THE RESULTS OF RID
we see that the network achieves the simplest performance
by introducing attention and residual structure. The DICE

and F1-scores reach 50.39% and 55.47%, severally. However,
the obtained performance is under the performance on the
other datasets. because the road image dataset (RID) has
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FIGURE 10. Arrangement of Res-CBAM at different positions in the
decoder.

TABLE 2. Test results for CBAM in RID dataset with or without residual
connections.

TABLE 3. Test results of different position arrangement methods.

uneven illumination and skew shooting angles. additionally,
the ground labels of this dataset are just one or some pixels
wide, that is one amongst the explanations for the low detec-
tion results.

V. DISCUSSION
A. EFFECTIVENESS OF SHORTCUT CONNECTIONS
We additional verified through ablation experiments whether
or not adding shortcut connections in CBAM absolutely
affects the extraction of cracks. The experimental results are
shown in Table 2. we found that by adding shortcut con-
nections, the crack extraction accuracy of the network was
improved as a result of the shortcut connections enhanced the
path of feature information propagation. The neural network

FIGURE 11. Training loss values in different data sets(Where ‘‘U-Net’’
indicates the original network, ‘‘Res-CBAM’’ indicates that the original
network introduces Res-CBAM, and ‘‘Res-CBAM+Bas’’ indicates that all
two structures are introduced).

learned more global and local crack information, proving our
method’s feasibleness.

Since Res-CBAM plays a vital role within the network
structure, the position of Res-CBAM could have an effect on
the neural network performance. we compare two position
ways in which of Res-CBAM placement within the decoder,
as shown in Figure 10 (a) and (b). the consequences of
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TABLE 4. Results of comparison with other deep learning algorithms.

introducing Res-CBAM in convolution and deconvolution on
the neural network are discussed. within the same experimen-
tal surroundings, the neural networks with the two arrange-
ment methods are tested individually. Table 3 summarizes
the test results of different location arrangement methods.
The results show that the neural network with the introduc-
tion of Res-CBAM in convolution performs higher because
the input features of Res-CBAM embrace features from the
encoder, that makes the input information richer. Introducing
Res-CBAM into the position shown in Fig. 10(b), the DICE
and F1-scores are lower because some feature information is
lost after the input features are subjected to two convolution
operations, leading to a degradation of the network detection
performance.

B. NETWORK DEGRADATION IN TRAINING PROCESS
In addition, we also verified the network degradation dur-
ing the training process by ablation experiments. And we
recorded the changes in the training loss values during train-
ing of the three datasets. As shown in Figure 11 (a); (b) and
(c), the U-Net with the introduction of Res-CBAM shows
network degradation due to increased network layers. The
figure shows that the loss values of the original U-Net are
unstable, fluctuate greatly during the training process, and
the neural network converges slowly. After the introduction
of Res-CBAM, the neural network pays more attention to
the crack features, converging faster. However, due to the
increase in network layers, the neural network performance
was slightly worse than the original network, and network
degradation occurred. So we connected the input and output
features of CBAM and replaced the convolutional layer of
the original network with BasicBlock. The improved neural
network converged faster and with higher accuracy.

C. COMPARISON WITH TRADITIONAL DEEP LEARNING
ALGORITHMS
The comparison results with other commonly used methods
are shown in Table 4. And our method has higher accuracy
compared to SegNet [39], RCF [40], DeepCrack [37] and Lit-
eratures [41], [42]. The F1-scores in DeepCrack Dataset are
10.2% higher than SegNet, and also the preciseness and recall
square measure 15.7% and 4.5% better, severally. In Crack
Forest Dataset, the F1-score is improved by 18.1% compared
to DeepCrack, and the precision and recall are improved by
16.5% and 19.7%, severally. In the RID dataset, our network
outperforms other networks, with a 10.7% improvement in
F1-score compared to RCF, 18.3%, and 2.5% improvement
in preciseness and recall, severally. The experimental results
show that integration CBAM and residual structure within the
U-Net network will improve its crack detection performance
and increase detection accuracy.

D. COMPARISON WITH TRANSFORMER ALGORITHM
To further demonstrate the advantages of the method pro-
posed in this study, we also compare the method with the
recently published Vision Transformer (VIT) [43], Swin-
UNet [44], and TransUNet [45] algorithms. Our method also
has some advantages. The comparison results are shown in
Table 4; for the DeepCrack dataset, our method’s overall
accuracy is 87.2%, and the precision and recall are 88.9% and
85.7%, respectively. For Crack Forest Dataset, the precision
of our method is lower than TransUNet by 0.6%, but our
overall accuracy is 0.2% higher than TransUNet. And for
the RID dataset, our method also outperforms other algo-
rithms with an overall precision of 55.4%. Compared with
Transformer, our method integrates the channel and spatial
location information of cracks in the feature extraction stage,
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and the attention weight is tilted toward cracks. Transformer
focuses more on global information and ignores local infor-
mation. The proportion of crack pixels in the image is smaller,
so ignoring local information will lead to lower detection
accuracy.

VI. CONCLUSION
We introduced Res-CBAM and BasicBlock into the U-Net
to ascertain a neural network model for crack detection. The
experimental results show that the introduction of CBAM
enhances the attention of the neural network to the crack
region, improves the extraction ability of the neural network
for fine cracks, and suppresses the interference of background
factors. Meanwhile, The shortcut connections of Res-CBAM
and the replacement of the convolutional layer within the
network structure by BasicBlock make sure the transmission
of crucial information as with efficiency as potential and
effectively suppress the matter of network degradation. The
created neural network learns a lot of features about cracks
and improves the ability of the model to discover fine cracks.
Compared with many other neural network methods, the
neural network built in this study encompasses a considerably
increased ability to extract cracks. the excellent accuracy
and robustness of the neural network were verified through
extensive experiments on completely different data sets.
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