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ABSTRACT Decentralized optimization problems consist of multiple agents connected by a network. The
agents have each local cost function, and the goal is to minimize the sum of the functions cooperatively.
It requires the agents to communicate with each other, and reducing the cost for communication is desired
for a communication-limited environment. Recently, the decentralized gradient descent algorithms involving
event-triggered communication have been proposed when the network of the agents is an undirected graph.
On the other hand, the network of agents is often directed graph for realistic scenarios whose communication
resources are limited. In this work, we first propose a gradient-push algorithm involving event-triggered
communication on a directed network. Each agent sends its current states to its neighbors only when the
differences between the latest sent states and the current states are larger than thresholds. The convergence
of the algorithm is established under suitable decays and summability conditions on a stepsize and triggering
thresholds. Numerical experiments are presented to support the effectiveness and the convergence results of
the algorithm. More precisely, the numerical results reveals that the proposed algorithm may reduce the
communication cost significantly compared to the gradient-push algorithm not involving the event-triggered
communication.

INDEX TERMS Decentralized optimization, directed graph, event-triggered communication, gradient push
algorithm.

I. INTRODUCTION
In recent years, distributed optimization techniques over a
multi-agent network have attracted considerable attention
since they play an essential role in engineering problems in
distributed control [1], [2], signal processing [3], [4], and
machine learning problems [5], [6], [7]. In distributed opti-
mization, multiple agents have their own local cost function
and try to find a minimizer of the sum of those local cost
functions in a collaborative way that each agent only uses
the information from its neighboring agents where the neigh-
borhood structure is depicted as a graph, often undirected or
directed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su .

There has been a significant interest in the consensus-based
distributed gradient method. One fundamental work is [9],
which developed the distributed gradient descent on an undi-
rected graph. This algorithm consists of a local gradient step
and consensus step based on communication between neigh-
boring agents. The convergence property of the algorithm
has been studied in the works [8], [9], [10], [11]. There are
also various distributed algorithms containing the distributed
dual averaging method [12], consensus-based dual decom-
position [13], [14], and the alternating direction method
of multipliers (ADMM) based algorithms [15], [16]. These
algorithms work with a doubly-stochastic matrix associated
with the undirected graph.

The gradient-push algorithm was introduced in [17] to
solve the distributed optimization for a directed graph, which
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utilizes push-sum algorithms [18], [19]. The communication
of this algorithm is represented by a column stochasticmatrix,
which requires each agent to know its out-degree at each
time, without having the information of the number of agents.
This algorithm has influenced a significant impact on later
works. The work [20] studied the algorithm with gradient
having a noise. The time-varying distributed optimization
was also considered [21] using the gradient-push algorithm.
Recently, stochastic gradient-push algorithm was designed
for large scale deep learning problem [22]. This workwas also
extended in [23] further to quantized communication settings.
We also refer to [24] and [25] where the authors studied
the asynchronous version of the gradient-push algorithm.
An important issue for the gradient-push algorithm in practi-
cal applications is the resistance to resilient attacks in the net-
work. Recently, the work [26] applied the push-sum method
to the distributed estimation problem under sensor attacks.
The work [27] designed a decentralized robust subgradient
push algorithm for detection and isolation of malicious nodes
in the network for optimization.

Regardless of the types of graphs, these distributed algo-
rithms require each agent to communicate with their neigh-
bors at every iteration, which leads to overhead in restricted
environments. Power consumption by communication may
become more significant than that by computation of con-
trol inputs or optimization algorithms [28]. Recently, the
event-triggering approach has appeared as a promising
paradigm to reduce the communication load in distributed
systems. In the distributed detection problem over sensor
network [29], [30], each sensor censors its local data and
sends the updated data to the fusion center only when the data
is informative. For distributed control problems, agents send
their coordinate information only when a triggering condition
is satisfied [31], [32].

For the distributed optimization problems, recent
works [33], [34], [35], [36], [37] developed distributed opti-
mization algorithms with event-triggered communication
to overcome the communication overhead of distributed
systems. Lu and Li [34] designed the distributed gradi-
ent descent with event-triggered communication for the
distributed optimization on the whole space, and it was
further studied in Li and Mu [38] to establish a conver-
gence rate. For the distributed optimization on a bounded
domain, Kajiyama et al. [33] designed the projected dis-
tributed gradient descent with event-triggered communi-
cation. Liu et al. [39] extended the work to the case with
constant step-size. Cao and Basar [40] studied the online
distributed problem using the distributed event-triggered
gradient method. Xiong et al. [41] considered the distribted
strochastic mirror descent with event-triggered communi-
cation. The distributed estimation problem was studied by
He et al. [42] utilizing the event-triggered communication.
In these algorithms, each agent sends its state only when
the difference between the current state and the latest sent
state is larger than a threshold, therefore reducing possible
unnecessary network utilization.

The consensus-based distributed optimization algorithms
with event-triggering communication mentioned above have
been proposed for the undirected graph. However these meth-
ods cannot be applied to the situation where the network
of the agents is a directed graph. We remark that when the
agents have different ranges of communication, the network
of agents is usually given as a directed graph. A realistic
example is the multi-robot localization problem whose com-
munication resource is limited.

In this work, we are interested in developing a distributed
optimization on a directed graph involving the even-triggered
communication. Precisely we propose the gradient-push
algorithm incorporating the event-triggered communication.
In the proposed algorithm, each agent sends its current states
only when the difference between the latest sent states and the
current states is larger than a triggering threshold. We prove
that the algorithm solves the distributed optimization under
suitable decays and summability conditions on the stepsize
and the triggering thresholds. The numerical experiments are
given for the proposed algorithm, supporting the theoretical
results.

The proposed algorithm can be seen as a perturbed version
of the gradient-push algorithm [17]. We remark that each
agent j in the gradient-push algorithm communicates two
variables xj(t) and yj(t), and the proposed algorithm considers
the event-triggered communications both for xj(t) and yj(t).
Therefore, extending the convergence result of [17] to the
proposed algorithm is non-trivial. For the convergence anal-
ysis, we carefully investigate the impact of the perturbations
due to the event-triggered communications, and successfully
obtain the convergence results of the proposed algorithm.
The numerical result shows that the proposed algorithm may
reduce the communication cost significantly compared to the
gradient-push algorithm.

The rest of the paper is organized as follows. In Section 2,
we state the problem and introduce the algorithm with its
convergence results. Section 3 is devoted to providing a
consensus estimate, which is essentially used in Section 4 to
prove the convergence results. In section 5, we present the
numerical results of the proposed algorithm.

Before ending this section, we state several notations used
in this paper. For a matrix A ∈ Rn×m, aij or [A]ij denotes
the (i, j)th entry of A. For a vector x ∈ Rd , ‖x‖ =

√
xT x

denotes the standard Euclidean norm. In addition, for X ∈
Rm×d given by X = [x1; x2; · · · ; xm]T with row vector xk ∈
Rd , we define the mixed norm ‖X‖1 by ‖X‖1 =

∑m
k=1 ‖xk‖

and the maximum norm ‖X‖∞ = max1≤k≤m ‖xk‖. Also we
use x̄ to denote x̄ = 1

m

∑m
k=1 xk . For a function f : Rd

→ R,
we denote by ∇f (x) the gradient (∂1f (x), · · · , ∂d f (x)) ∈ Rd .

II. PROBLEM, ALGORITHM, AND MAIN RESULTS
A. PROBLEM STATEMENT
Weconsider the distributed optimization problem,which con-
sists of m agents connected by a network that collaboratively
minimize a global cost function given by the sum of local
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private cost functions. Formally, the problem is described by

min
x∈Rd

f (x) =
m∑
i=1

fi(x), (1)

where fi : Rd
→ R is a local convex cost function only known

to agent i ∈ V = {1, 2, · · ·m}. We let f ∗ be the optimal value
of problem (1) and denote by X∗ the set of optimal solutions,
i.e.,

X∗ = {x ∈ Rd
: f (x) = f ∗},

which is assumed to be nonempty. We make the following
standard assumption on the local cost functions.

Assumption II.1. For each i ∈ {1, · · · ,m}, there exists
Di > 0 such that

‖∇fi(x)‖ ≤ Di ∀x ∈ Rd . (2)

We set D = max1≤i≤mDi.

This assumption is commonly used in the literatures [17],
[20], [23], [43] for the convergence analysis of gradient
push type algorithms. Removing this assumption is an open
issue even for the original version of the gradient push algo-
rithm [17]. We hope to address this issue in the future.

The communication pattern among agents in (1) at each
time t ∈ N ∪ {0} is characterized by a directed graph
G(t) = (V, E(t)), where each node inV represents each agent,
and each directed edge (i, j) ∈ E(t) means that i can send
messages to j. In this work, we consider a sequence of graphs
{G(t)}t∈N satisfying the following assumption.

Assumption II.2. The sequence of graph {G(t)}t∈N is uni-
formly strongly connected, i.e., there exists a value B ∈ N
such that the graph with edge set ∪(k+1)B−1i=kB E(i) is strongly
connected for any k ≥ 0.

We define in-neighbors and out-neighbors of node i,
respectively, as N in

i (t) = {j|(j, i) ∈ E(t)} ∪ {i} and N out
i (t) =

{j|(i, j) ∈ E(t)} ∪ {i}. Also the out-degree of node i is defined
as douti (t) = |N out

i (t)|. Define the mixing matrix A(t) such
that [A(t)]ij = aij(t), where

aij(t) =

{
1/doutj (t), if i ∈ N out

j (t),

0, otherwise.
(3)

Here aij(t) is a weight that agent i uses when it receives the
state information of agent j. The mixing matrix A(t) ∈ Rm×m

is column stochastic and we recall some useful properties of
this matrix from [17, Corollary 2].

Lemma II.3 ( [17], Corollary 2). Suppose that the graph
sequence {G(t)} is uniformly strongly connected. Then, the
following statements are valid.

1) For each integer s ≥ 0, there is a stochastic vector φ(s)
such that for all i, j and t ≥ s

|[A(t : s)]ij − φi(t)| ≤ C0λ
t−s (4)

for some values C0 ≥ 1 and λ ∈ (0, 1) depending on
the graph sequence.

2) The following inequality holds.

Q := inf
t=0,1,···

min
1≤i≤m

[A(t : 0)1]i ≥ 1/nnB. (5)

Here we denote by A(t : s) the matrix given as

A(t : s) = A(t)A(t − s) · · ·A(s) for all t ≥ s ≥ 0.

In Algorithm 1, each agent i maintains the current states
xi(t) ∈ Rd and yi(t) ∈ R and the latest sent states x̂i(t) ∈ Rd

and ŷi(t) ∈ R at time t . In a non-time-varying graph, the
agents send their current states to neighbors simultaneously
only when the differences between the current states and the
latest sent states are larger than certain thresholds, which are
called trigger times. For each time t , we denote by x̂j(t) ∈ Rd

and ŷj(t) ∈ R the latest sent states that agent j sent to its
neighbors at the latest trigger time κxj (t), κ

y
j (t) up to time t .

Then we have

x̂j(s) = x̂j(κxj (t)) = xj(κxj (t)), for all κxj (t) ≤ s ≤ t

and

ŷj(s) = ŷj(κ
y
j (t)) = yj(κ

y
j (t)), for all κyj (t) ≤ s ≤ t.

We use the latest sent states to update xi(t+1) and yi(t+1) by
(8), (9), (10), (11) in Algorithm 1 with aij(t) = aij(0) for all
t ≥ 0, where the value aij(t) is designed by the agent j as in
(3) depending on the edge information at j. Each agent i sends
the states xi(t + 1) and yi(t + 1) to its neighbors respectively
if

‖xi(t + 1)− x̂i(t)‖ > τ (t) (6)

and

|yi(t + 1)− ŷi(t)| > ζ (t), (7)

where τ (t), ζ (t) > 0 are the thresholds.
However, in a time-varying graph, even though a time t is

not a trigger time in the sense of (6) and (7), the agent j has
to send its current states to new neighbors if the neighbors
N out
j (t) is changed. Furthermore, the value aij(t) should be

transmitted to agent i ∈ N out
j (t) ∪ N out

j (t − 1) by the agent j.
Covering these cases and trying to reduce the communication
as much as possible, we impose the following additional rule
for transmission in the time-varying graph case:
• If the N out

j (t) is not changed at time t , then agent j does
not send aij(t) to its neighbor i ∈ N out

j (t).
• If the N out

j (t) is changed at time t , then we follow the
below rules.
– The agent j sends the updated value aij(t) to its

neighbors k ∈ N out
j (t) and inform the agent k ∈

N out
j (t − 1) \ N out

j (t) of that the weight is updated
as akj(t) = 0.

– The agent j sends its latest sent states x̂j(t) and
ŷj(t) to new neighbors i ∈ N out

j (t) \ N out
j (t − 1)

which have not received the states since the latest
triggering time.
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Algorithm 1 Distributed Event-Triggered Gradient-Push
Algorithm on Directed Graph
Require: Initialize xi(0) arbitraily and yi(0) = ŷi(0) = 1 for

all i ∈ {1, · · · ,m}. Set x̂i(0) = xi(0)
1: for t = 0, 1, · · · , do
2: if t = 0, or κxi (t) is updated then
3: Send x̂i(t) to its negihbors simultaneously.
4: else
5: Send information using the transmission rules
6: end if
7: if t = 0, or κyi (t) is updated then
8: Send ŷi(t) to its negihbors simultaneously.
9: else

10: Send information using the transmission rules
11: end if
12: Compute the new action as

ŵi(t + 1) =
m∑
j=1

aij(t)x̂j(t), (8)

yi(t + 1) =
m∑
j=1

aij(t)ŷj(t), (9)

ẑi(t + 1) =
ŵi(t + 1)
yi(t + 1)

, (10)

xi(t + 1) = ŵi(t + 1)− α(t + 1)∇fi (̂zi(t + 1)).

(11)

13: if ‖xi(t + 1)− x̂i(t)‖ ≥ τ (t + 1) then
14: Set x̂i(t + 1) = xi(t + 1) and update κxi (t + 1).
15: else
16: Set x̂i(t + 1) = x̂i(t) and do not send
17: end if
18: if |yi(t + 1)− ŷi(t)| ≥ ζ (t + 1) then
19: Set ŷi(t + 1) = yi(t + 1) and update κyi (t + 1)
20: else
21: Set ŷi(t + 1) = ŷi(t) and do noet send
22: end if
23: end for

For the convergene analysis of Algorithm 1, we consider
the following assumptions on the stepsize and the thresholds
for the trigger conditions.

Assumption II.4. The sequence of stepsize {α(t)}t∈N is
monotonically non-increasing and satisfies

∞∑
t=1

α(t) = ∞,
∞∑
t=1

α(t)2 <∞.

Assumption II.5. The sequence of event-triggering thresh-
olds {τ (t)}t∈N is monotonically non-increasing for t ≥ 1 and
we set τ (0) = 0. In addition, the sequence satisfies

∞∑
t=0

τ (t) <∞.

Assumption II.6. The sequence of event-triggering thresh-
olds {ζ (t)}t∈N is monotonically non-increasing for t ≥ 0 and
we set ζ (t) = 0. In addition, the sequence satisfies

∞∑
t=0

t3/2ζ (t) <∞,
∞∑
t=0

ζ (t) < 1.

This assumption on the triggering thresholds include the
case that thresholds have exponential decays. This exponen-
tial decay assumption is commonly used in the literature [31],
[34], [35]. However, we mention that the above assumptions
imposed for the convergence analysis may not be optimal and
it will be interesting to weaken these assumptions.
Note that

∑
∞

t=0 t
3/2ζ (t) < ∞ implies that there exists

a finite M such that
∑
∞

t=0 ζ (t) = M . If we set a new
sequence {ζ̃ (t)}t∈N by ζ̃ (t) = ζ (t)/(M + 1), then it satisfy∑
∞

t=0 ζ̃ (t) < 1. Hence if we have a sequence {ζ (t)}t∈N
satisfying

∑
∞

t=0 t
3/2ζ (t) < ∞, then we may divide the

sequence by a positive constant to satisfy Assumption II.6.
One example of the sequence that satisfies Assumption II.6
is ζ (t) = 1

3t3
for t ≥ 1.

B. MAIN RESULTS
Our first result establishes the convergence of ẑi(t) to the
optimal solutions for an arbitrary stepsize α(t) satisfying
Assumption II.4, and event-triggering thresholds τ (t) and
ζ (t) satisfying Assumption II.5 and II.6.

Theorem II.7. Suppose that Assumptions II.1,II.2,II.4. II.5
and II.6 hold. Then the sequence {ẑi(t)}t∈N for 1 ≤ i ≤ n of
the Algorithm 1 satisfies the following property:

lim
t→∞

ẑi(t) = x∗ for all i and for some x∗ ∈ X∗.

Next we consider the Algorithm 1 with specific stepsize
α(t) = 1/

√
t . This stepsize does not satisfy Assumption II.4,

but we may obtain an explicit convergence rate as in the
following result. Before stating the result, we give some
notationswhich are used throughout the paper. First we define
the summations of the event-triggering thresholds τ (t) and
ζ (t) as well as their squares: For T ≥ 0,

Eτ (T ) =
T∑
t=0

τ (t),Eτ,2(T ) =
T∑
t=0

τ (t)2,Eτ =
∞∑
t=0

τ (t)

(12)

and

Fζ (T ) =
T∑
t=0

ζ (t), Fζ =
∞∑
t=0

ζ (t), Fζ3/2 =
∞∑
t=0

t3/2ζ (t).

(13)

These quantities naturally appear in the convergence analysis
of the algorithm. It is worth mentioning that these quantities
are finite by Assumptions II.5 and II.6. It will turn out that
the asymptotic behaivor of y(t) as t →∞ is related with the
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vector φ in (4) and the constant mζ defined by

mζ = 1Tmy(0)+
∞∑
s=1

1Tmθ (s) = m+
∞∑
s=1

1Tmθ (s), (14)

where θ (s) = ŷ(s) − y(s). For notational simplicity, we also
define the following ratio

Bζ =
mζ
m
. (15)

These constants are well-defined if {ζ (s)}s≥0 is summable
since we have the inequality |1Tmθ (s)| ≤ mζ (s) from the
triggering condition. Related to the asymptotic behavior of
the states yi(t), we also define the values β(t) and K (t) by

β(t) = m
((
Fζ − Fζ (t)

)
+C0λ

t
+ C0λ

t/2Fζ (t)+
ζ ([t/2]+ 1)

1− λ

)
and

K (t) =
β(t)
mζ

,

where [a] denotes the largest integer not larger than a ∈ R.
For the convergence analysis, we also need to define the lower
bound of all yi(t):

δ := min
1≤i≤m

inf
t∈N

yi(t) > 0, (16)

whose positivity is proved in Lemma III.2 under the Assump-
tion II.6.

Theorem II.8. Suppose that Assumption II.1, II.2, II.5
and II.6 hold. Letα(t) = 1

√
t
for t ≥ 1. DefineH (−1) = 1 and

H (t) :=
∏t

k=0(1 + τ (k)). Moreover, suppose that every
node i maintains the variable z̃i(t) ∈ Rd initialized at time
t = 0 with z̃i(0) ∈ Rd and updated by

z̃i(t + 1) =
α(t+1)
H (t) ẑi(t + 1)+ S(t)z̃i(t)

S(t + 1)
,

where S(0) = 0 and S(t) =
∑t−1

k=0
α(k+1)
H (k) for t ≥ 1. Then

we have for each T ≥ 0 and i = 1, · · · ,m, the following
estimate

f (z̃i(T + 1))− f (x∗)

≤
meEτ

2
√
T + 1

J1(T ) +
3mDeEτ

δ
√
T + 1

J2(T ) +
3mDeEτ

δ
√
T + 1

J3(T ),

where

J1(T ) =
‖x̄(0)− x‖2

Bζ

+

[
2D2

(
1+ ln (T + 1)

)
+ 2Eτ,2(T )+ Eτ (T )

)]
Bζ

J2(T )=
(

C0

(1− λ)

)
‖x(0)‖1

+
4mC0Eτ (T )
(1− λ)

+

(
C0mD
(1− λ)

)
(1+ ln(T ))

J3(T )=
T∑
t=0

K (t)α(t + 1)
[
‖x(0)‖1+

t−1∑
s=0

(α(s+ 1)D+ τ (s))
]
,

and x∗ ∈ X∗.

We mention that J3(t) is proved to be uniformly bounded
for t ≥ 1 in Lemma IV.4 under the assumption of the above
theorem. Hence Theorem II.8 implies that f (z̃i(t)) converges
to f (x∗) at the rate of O(log(t)/

√
t).

III. PROPERTIES OF THE SEQUENCE {yi (t )}t∈N AND
DISAGREEMENT IN AGENT ESTIMATES
A. PROPERTIES OF THE SEQUENCE {yi (t)}t∈N
A convergence property of {yi(t)}t∈N and their positive uni-
form lower bound are key points in proving our main results.
Let us first look at the case without event-triggering (ζ (t) =
0), whichmeans all in-neighbors of agent i share the yi(t) with
this agent for every time step. In this case, since y(t) = ŷ(t)
for all t ∈ N, it holds that

y(t) = A(t − 1 : 0)1m (17)

by (9) in Algorithm 1. Hence we can directly show that y(t)
converges to φ(t) and has a uniform lower bound Q using
Lemma II.3. In the event-triggered case, y(t) can be written
as

y(t) = A(t − 1 : 0)1m +
t−1∑
s=1

A(t − 1 : s)θ (s). (18)

Therefore the convergence and uniform lower boundedness
property may not hold due to the additional term

t−1∑
s=1

A(t − 1 : s)θ (s).

The following lemmas shows that y(t) has a positive uniform
lower bound δ and converges to mζφ(t) instead of φ(t) under
Assumption II.6.

Lemma III.1. Suppose that Assumption II.6 holds. Then we
have

mζ ≥ (1− Fζ )m (19)

and the following estimate holds:∥∥∥y(t + 1)− mζφ(t)
∥∥∥
∞

≤ β(t) ∀ t ∈ N. (20)

In addition, we have

lim
t→∞

t3/2β(t) = 0.

Proof: Observe that |θi(s)| = |ŷi(s) − yi(s)| ≤ ζ (s) for
s ≥ 1 by the event-triggering condition, and so∣∣∣ ∞∑

s=1

1Tmθ (s)
∣∣∣ ≤ m ∞∑

s=1

ζ (s) = mFζ .
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Using this in (14), we get

mζ = m+
∞∑
s=1

1Tmθ(s) ≥ (1− Fζ )m,

which proves (19).
Next we prove (20). For each s ≥ 0, by definition we have

y(s+ 1) = A(s)ŷ(s) = A(s)(y(s)+ θ (s)),

where we have set θ (0) = 0. Using this iteratively gives the
following formula

y(t + 1)

= A(t : 0)y(0)+
t∑

s=1

A(t : s)θ (s)

= φ(t)
[
1Tmy(0)+

t∑
s=1

1Tmθ (s)
]

+(A(t : 0)− φ(t) 1Tm)y(0)+
t∑

s=1

[
(A(t : s)− φ(t) 1Tm)θ (s)

]
.

Since |θj(s)| ≤ ζ (s), we find

∞∑
s=t+1

|θj(s)| ≤
∑
∞

s=t+1 ζ (s) = Fζ − Fζ (t).

Using the above inequality, we obtain∣∣∣mζ − 1Tmy(0)−
t∑

s=0

1Tmθ (s)
∣∣∣

=

∣∣∣ ∞∑
s=t+1

1Tmθ (s)
∣∣∣ ≤ (Fζ − Fζ (t))m. (21)

Hence we have∥∥∥y(t + 1)− mζφ(t)
∥∥∥
∞

≤

(
Fζ − Fζ (t)

)
m+

∥∥∥(A(t : 0)− φ(t) 1Tm)y(0)∥∥∥
∞

+

∥∥∥ t∑
s=1

[
(A(t : s)− φ(t) 1Tm)θ (s)

]∥∥∥
∞

. (22)

Now we estimate the second and third terms in the right hand
side of (22). Using (4) we have∥∥∥(A(t : 0)− φ(t) 1Tm)y(0)∥∥∥

∞

≤ mC0λ
t (23)

and∥∥∥ t∑
s=1

[
(A(t : s)− φ(t) 1Tm)θ (s)

]∥∥∥
∞

≤ mC0

t∑
s=1

λt−sζ (s)

≤ mC0

( [t/2]∑
s=1

λt−sζ (s)+
t∑

s=[t/2]+1

λt−sζ (s)
)

≤ mC0

(
λt/2Fζ (t)+ ζ ([t/2]+ 1)

t∑
s=[t/2]+1

λt−s
)

≤ mC0

(
λt/2Fζ (t)+

ζ ([t/2]+ 1)
1− λ

)
. (24)

Putting the estimates (23) and (24) in (22), we get∥∥∥y(t + 1)− φ(t)mζ
∥∥∥
∞

≤ m
((
Fζ − Fζ (t)

)
+C0λ

t
+ C0λ

t/2Fζ (t)+
ζ ([t/2]+ 1)

1− λ

)
.

This proves the second assertion of the lemma.
Now we shall show that limt→∞ t3/2β(t) = 0. Since λ ∈

(0, 1), it suffices to show that

lim
t→∞

t3/2(Fζ − Fζ (t)+ ζ ([t/2])) = 0.

This fact follows directly from the fact that
∑
∞

t=0 t
3/2ζ (t) <

∞ and the following inequality

t3/2(Fζ − Fζ (t)) = t3/2
∞∑

s=t+1

ζ (s) ≤
∞∑

s=t+1

s3/2ζ (s).

The proof is done. �

Lemma III.2. Suppose that Assumptions II.2 and II.6 hold.
Then the value δ ∈ R defined in (16) is positive.

Proof: Note that from (4) and (5), we have

mφi(t) =
m∑
j=1

[A(t : 0)]ij +
m∑
j=1

(
φi(t) − [A(t : 0)]ij

)
≥ Q− mC0λ

t .

Using the above inequality and Lemma III.1, we deduce for
each 1 ≤ i ≤ m the following estimate

yi(t + 1) ≥ mζφi(t) − β(t)

≥ (mζ /m)Q− mζC0λ
t
− β(t).

Since β(t) converges to zero as t goes to infinity and λ ∈
(0, 1), there exists a time T ∈ N and a constant δ̃ > 0 such
that for any t ≥ T ,

yi(t + 1) ≥ δ̃. (25)

Note that by Assumption II.2, each matrix A(t) has no zero
row. This fact, together with the definition of ŷ and (9), for
any t ∈ N we have

min
1≤i≤m

yi(t) > 0. (26)

Therefore, combining (25) with (26), we conclude that δ
defined in (16) satisfies

δ ≥ min
1≤i≤m

{yi(0), yi(1), · · · , yi(T ), δ̃} > 0.

The proof is done. �
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B. DISAGREEMENT IN AGENT ESTIMATES
In this subsection, we derive a bound of the disagreement
in agent estimates {ẑi(t)}mi=1 that will be used in the proofs
of the main theorems. In the case without event-triggering
(τ (t) = ζ (t) = 0), the paper [17] proved that ‖ẑi(t+1)−x̄(t)‖
converges to zero for the stepsize satisfying Assumption II.4
as t goes to infinity. For the event-triggered case, the fol-
lowing proposition shows that the values {ẑi(t)}mi=1 approach
Bζ x̄(t) instead of x̄(t) as t goes to infinity due to the effect of
the threshold ζ (t) for the triggering condition of {yi(t)}mi=1.

Proposition III.3. Suppose that Assumptions II.1, II.2
and II.6 hold. Then for any t ≥ 1 we have

‖ẑi(t + 1)− Bζ x̄(t)‖

≤
1
δ

(
C0λ

t
+ K (t)

)
‖x(0)‖1

+
m
δ

t−1∑
s=0

[
C0λ

t−s−1
+ K (t)

](
α(s+ 1)D+ τ (s)

)
+
di(t)τ (t)

δ
,

and for t = 0 we have

‖ẑi(1)− x̄(0)‖ ≤
2C0

δ
‖x(0)‖,

where the constant δ > 0 satisfies yi(t) > δ for all t > 0.

To prove Proposition III.3, we consider a variable wi(t +
1) ∈ Rd which is a companion to the variable ŵi(t + 1) ∈ Rn

defined as

wi(t + 1) =
m∑
j=1

aij(t) xj(t), (27)

and their difference

ei(t + 1) = ŵi(t + 1)− wi(t + 1). (28)

Then we may rewrite the gradient step (II-A) as

xi(t + 1) = wi(t + 1)− α(t + 1)∇fi(ẑi(t + 1))+ ei(t + 1).

(29)

Summing up (29) for 1 ≤ i ≤ m and using that A(t) is
column-stochastic, we have

x̄(t + 1) = x̄(t)−
α(t + 1)

m

m∑
i=1

∇fi(ẑi(t + 1))

+
1
m

m∑
i=1

ei(t + 1). (30)

Now we find a bound of ei(t + 1) which is the difference
between wi(t + 1) and ŵi(t + 1) associated to the event-
triggering τ (t).

Lemma III.4. Suppose that Assumption II.2 hold. The quan-
tity ei(t + 1) defined in (28) satisfies

‖ei(t + 1)‖ ≤ di(t) τ (t), (31)

where di(t) =
∑m

j=1 aij(t). In addition, we have

m∑
i=1

‖ei(t + 1)‖ ≤ mτ (t). (32)

Proof: By using the triggering condition, we have

‖ei(t + 1)‖ ≤ ‖ŵi(t + 1)− wi(t + 1)‖

≤

∥∥∥∥ m∑
j=1

aij(t)(x̂j(t)− xj(t))

∥∥∥∥
≤

m∑
j=1

aij(t)‖x̂j(t)− xj(t)‖ ≤ di(t) τ (t),

which proves (31). Summing this over 1 ≤ i ≤ m and using
that A(t) is column stochastic, we find

m∑
i=1

‖ei(t + 1)‖ ≤
m∑
i=1

m∑
j=1

(
aij(t) τ (t)

)
=

m∑
j=1

( m∑
i=1

aij(t)
)
τ (t) = mτ (t).

The proof is finished. �
Now we are ready to prove Proposition III.3.
Proof: [Proof of Proposition III.3] We regard xk (t) as a

row vector in R1×d and define the variables x(t) ∈ Rm×d ,
∇f (ẑ(t)) ∈ Rm×d , and e(t) ∈ Rm×d as

x(t)=

x1(t)...
xm(t)

 , ∇f (ẑ(t))=
∇f1(ẑ1(t))...

∇fm(ẑm(t))

 , e(t) =
e1(t)...
em(t)

 .
Note that by (28) and (10), we have

ẑi(t + 1) =
wi(t + 1)+ ei(t + 1)

yi(t + 1)
.

Also we see from definition (15) that

Bζ x̄(t) =
mx̄(t)
mζ
=

1Tmx(t)
mζ

.

Using these formulas and (27) we have

ẑi(t + 1)− Bζ x̄(t)

=
wi(t + 1)+ ei(t + 1)

yi(t + 1)
−

1Tmx(t)
mζ

=
1

yi(t + 1)

(
[A(t)x(t)]i − yi(t + 1)

1Tmx(t)
mζ

)
+
ei(t + 1)
yi(t + 1)

.

(33)

To estimate the first term on the right hand side of the last
equality, we rewrite (29) as

x(t + 1) = A(t)x(t)− α(t + 1)∇f (ẑ(t + 1))+ e(t + 1).

Using this formula recursively, for t ≥ 1 we have

A(t) x(t) = A(t : 0)x(0)−
t−1∑
s=0

A(t : s+ 1)ε(s), (34)
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where we have let

ε(s) = α(s+ 1)∇f (ẑ(s+ 1))− e(s+ 1).

Using Assumption II.1 and (32) we have the following bound

‖ε(s)‖1 ≤ m
(
α(s+ 1)D+ τ (s)

)
. (35)

Since A(t) is column stochastic we have 1TmA(t) = 1Tm, and
combine this with (34) to have

1Tmx(t) = 1Tmx(0)−
t−1∑
s=0

1Tmε(s). (36)

Combining (34) and (36) yields

A(t)x(t) = φ(t)1Tmx(t)+
(
A(t : 0)− φ(t)1Tm

)
x(0)

−

t−1∑
s=0

(
A(t : s+ 1)− φ(t)1Tm

)
ε(s), (37)

where φ(t) is the stochastic vector satisfying (4).
By Lemma III.1, for y(t) := (y1(t), · · · , ym(t))T ∈ Rm×1

we have

y(t + 1) = mζφ(t)+ r(t),

where r(t) satisfies ‖r(t)‖∞ ≤ β(t). Combining this with
(37), we obtain

[A(t)x(t)]i − yi(t + 1)
1Tmx(t)
mζ

= φi(t) 1Tmx(t)+ [(A(t : 0)− φ(t)1Tm)x(0)]i

−

t−1∑
s=0

[
(A(t : s+ 1)− φ(t) 1Tm)ε(s)

]
i

−[mζφi(t) + ri(t)]
1Tmx(t)
mζ

= [(A(t : 0)− φ(t)1Tm)x(0)]i

−

t−1∑
s=0

[
(A(t : s+ 1)− φ(t) 1Tm)ε(s)

]
i
− ri(t)

1Tmx(t)
mζ

.

By applying (4) here, we deduce∥∥∥∥[A(t)x(t)]i − yi(t + 1)
1Tmx(t)
m

∥∥∥∥
≤ C0λ

t
‖x(0)‖1 +

t−1∑
s=0

C0λ
t−s−1
‖ε(s)‖1 + K (t)‖1Tmx(t)‖,

(38)

where K (t) = β(t)/mζ . From (36) we find the following
estimate

‖1Tmx(t)‖ ≤ ‖x(0)‖1 +
t−1∑
s=0

‖ε(s)‖1.

Combining this with (38) and using (35), we obtain∥∥∥∥[A(t)x(t)]i − yi(t + 1)
1Tmx(t)
m

∥∥∥∥

≤ C0λ
t
‖x(0)‖1 +

t−1∑
s=0

C0λ
t−s−1
‖ε(s)‖1

+K (t)
(
‖x(0)‖1 +

t−1∑
s=0

‖ε(s)‖1
)

≤

(
C0λ

t
+ K (t)

)
‖x(0)‖1

+m
t−1∑
s=0

[
C0λ

t−s−1
+ K (t)

](
α(s+ 1)D+ τ (s)

)
.

(39)

By applying Lemma III.2, (31) and the above inequality to
the norm of (33), we obtain

‖ẑi(t + 1)− Bζ x̄(t)‖

≤
1
δ

(
C0λ

t
+ K (t)

)
‖x(0)‖1

+
m
δ

t−1∑
s=0

[
C0λ

t−s−1
+ K (t)

](
α(s+ 1)D+ τ (s)

)
+
di(t)τ (t)

δ
,

It remains to estimate the case t = 0. By the algorithm,
we have

ẑi(1)− x̄(0) =
ŵi(1)
yi(1)
− x̄(0) =

∑m
j=1 aij(0)xj(0)∑m
j=1 aij(0)

− x̄(0).

Using this we find

‖zi(1)− x̄(0)‖ ≤
1
δ
‖x(0)‖1 +

1
m
‖x(0)‖1

≤ 2‖x(0)‖1 ≤
2C0

δ
‖x(0)‖.

The proof is finished. �
By utilizing Proposition III.3, we analyze the relation

between ẑi(t) and Bζ x̄(t) under the assumptions on {α(t)}t∈N,
{τ (t)}t∈N and {ζ (t)}t∈N of the main theorems. To do this,
we first recall a useful lemma from [8].

Lemma III.5 ( [8], Lemma 3.1). If limk→∞ γk = γ and 0 <
β < 1, then

lim
k→∞

k∑
l=0

βk−lγl =
γ

1− β

Corollary III.6. Suppose that Assumptions II.1, II.2, II.5
and II.6 hold. Also, assume that the stepsize α(t) satisfies
Assumption II.4 or α(t) = 1/

√
t . Then we have

lim
t→∞
‖ẑi(t + 1)− Bζ x̄(t)‖ = 0 for all i.

Proof: We recall from Proposition III.3 the following
inequality

‖ẑi(t + 1)− Bζ x̄(t)‖

≤
1
δ

(
C0λ

t
+ K (t)

)
‖x(0)‖1
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+
m
δ

t−1∑
s=0

[
C0λ

t−s−1
+ K (t)

](
α(s+ 1)D+ τ (s)

)
+
di(t)τ (t)

δ
, (40)

We notice that limt→∞ t3/2K (t) = 0 by Lemma III.1. From
this and the boundedness of α(s) and τ (s), it easily follows
that

lim
t→∞

1
δ
K (t)‖x(0)‖1 + m

t−1∑
s=0

K (t)
(
α(s+ 1)D+ τ (s)

)
= 0.

In addition, by Assumptions II.4, II.5 and II.6, we know that
lims→∞ α(s+ 1) = 0, lims→∞ τ (s) = 0 and lims→∞ ζ (s) =
0. Using this fact with Lemma III.5 in the right hand side of
(40), we deduce

lim
t→∞
‖ẑi(t + 1)− Bζ x̄(t)‖ = 0,

which completes the proof. �

Corollary III.7. Suppose that Assumptions II.1, II.2 II.5
and II.6 hold. Let α(t) = 1

√
t
. Then we have

T∑
t=0

α(t + 1)‖ẑi(t + 1)− Bζ x̄(t)‖

≤
C0

δ(1− λ)
‖x(0)‖1 +

4mC0Eτ (T )
δ(1− λ)

+
C0mD
δ(1− λ)

(1+ ln(T ))

+
1
δ

T∑
t=0

K (t)α(t + 1)
[
‖x(0)‖1+

t−1∑
s=0

(α(s+ 1)D+ τ (s))
]
.

Proof: By Proposition III.3, we have

δ

T∑
t=0

α(t + 1)‖ẑi(t + 1)− Bζ x̄(t)‖ ≤

‖x(0)‖1
T∑
t=0

(C0λ
t
+ K (t))α(t + 1)

+m
T∑
t=0

α(t + 1)
t−1∑
s=0

(C0λ
t−s−1

+ K (t))(α(s+ 1)D+ τ (s))

+

T∑
t=0

α(t + 1)(di(t) τ (t)). (41)

The terms involving K (t) are fit to the inequality of the
corollary. Let us estimate each summation not involving K (t)
in the right hand side. Using that α(t) ≤ 1, the first term is
bounded with

T∑
t=0

α(t + 1)λt ≤
T∑
t=0

λt ≤
1

1− λ
. (42)

The last term is bounded using

T∑
t=0

α(t + 1)(di(t)τ (t)) ≤ m
T∑
t=0

τ (t) = mEτ (T ). (43)

We estimate the second term using

T∑
t=0

α(t + 1)
t−1∑
s=0

λt−s−1α(s+ 1) =
T+1∑
t=1

1
√
t

t∑
s=1

λt−s
1
√
s

≤

T+1∑
t=1

t∑
s=1

λt−s
1
s

=

T+1∑
s=1

1
s

T+1∑
t=s

λt−s

≤
1+ ln (T + 1)

1− λ
. (44)

In order to estimate the third term, we estimate

t−1∑
s=0

λt−s−1τ (s)

=

[(t−1)/2]∑
s=0

λt−s−1τ (s) +
t−1∑

s=[(t−1)/2]+1

λt−s−1τ (s)

≤ λ(t−1)/2
[(t−1)/2]∑
s=0

τ (s) + τ ([t/2])
t−1∑

s=[(t−1)/2]+1

λt−s−1

≤ λ(t−1)/2Eτ (T ) +
τ ([t/2])
1− λ

.

Using this we derive

T∑
t=0

α(t + 1)
[ t−1∑
s=0

λt−s−1τ (s)
]

≤ Eτ (T )
T∑
t=0

λ(t−1)/2
√
t + 1

+
1

1− λ

T∑
t=0

τ ([t/2])
√
t + 1

≤
Eτ (T )

1−
√
λ
+
Eτ (T )
1− λ

<
3Eτ (T )
1− λ

. (45)

Putting the above estimates (42)-(45) in (41), we obtain

T∑
t=0

α(t + 1)‖ẑi(t + 1)− Bζ x̄(t)‖

≤
C0

δ(1− λ)
‖x(0)‖1 +

4mC0Eτ (T )
δ(1− λ)

+
C0mD
δ(1− λ)

(1+ ln(T ))

+
1
δ

T∑
t=0

K (t)α(t + 1)
[
‖x(0)‖1

+

t−1∑
s=0

(α(s+ 1)D+ τ (s))
]
.

which finishes the proof. �

IV. CONVERGENCE ESTIMATES
In this section we prove our main results, namely Theo-
rems II.7 and II.8. In Section 3, we obtained the bound of the
disagreement in agent estimates. Especially, Corollary III.6
and III.7 investigate the difference between the variable ẑi(t)
in the Algorithm 1 and Bζ x̄(t) in (30). Based upon these
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results, Theorem II.7 and II.8 can be proved by comparing
the cost values computed at the points Bζ x̄(t) and x∗.

Lemma IV.1. Suppose Assumptions II.1, II.2 hold. Then for
any t ≥ 0 and x ∈ Rd we have
m∑
i=1

(
fi(Bζ x̄(t))− fi(x)

)
≤

m
2α(t + 1)Bζ

(‖Bζ x̄(t)− x‖2 − ‖Bζ x̄(t + 1)− x‖2)

+
Bζm

2α(t + 1)

(
2α(t + 1)2D2

+ 2τ (t)2
)

+
m

α(t + 1)
‖Bζ x̄(t)− x‖τ (t)

+ 2D
m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖. (46)

Proof: By convexity, we have

fi(ẑi(t + 1))

≤ fi(x)+ (ẑi(t + 1)− x)∇fi(ẑi(t + 1))

= fi(x)+ (Bζ x̄(t)− x)∇fi(ẑi(t + 1))

+(ẑi(t + 1)− Bζ x̄(t))∇fi(ẑi(t + 1))

= fi(x)+
1

α(t + 1)
(Bζ x̄(t)− x)(wi(t + 1)− xi(t + 1)

+ei(t + 1))+ (ẑi(t + 1)− Bζ x̄(t))∇fi(ẑi(t + 1)),

where (27) is used in the last equality. Summing up the above
inequality from i = 1 to i = m, we find that

m∑
i=1

fi(ẑi(t + 1))− fi(x)

≤
m

α(t + 1)
(Bζ x̄(t)− x)(x̄(t)− x̄(t + 1))︸ ︷︷ ︸

I

+
1

α(t + 1)
(Bζ x̄(t)− x)

m∑
i=1

ei(t + 1)︸ ︷︷ ︸
II

+

m∑
i=1

(ẑi(t + 1)− Bζ x̄(t))∇fi(ẑi(t + 1))︸ ︷︷ ︸
III

.

Now we estimate each term in the right hand side. First using
the equality 〈a, b〉 = 1

2 (‖a‖
2
+‖b‖2−‖a−b‖2) for a, b ∈ Rd ,

we have

I =
m

2α(t + 1)Bζ
(‖Bζ x̄(t)− x‖2 − ‖Bζ x̄(t + 1)− x‖2

+‖Bζ x̄(t + 1)− Bζ x̄(t)‖2).

Using (30) alongwith (31) and (2), we estimate the right-most
term as

‖x̄(t + 1)− x̄(t)‖2

≤ 2

∥∥∥∥α(t + 1)
m

m∑
i=1

∇fi(ẑi(t + 1))

∥∥∥∥2 + 2

∥∥∥∥ 1m
m∑
i=1

ei(t + 1)

∥∥∥∥2

≤ 2α(t + 1)2D2
+ 2τ (t)2.

We apply (31) again to estimate

II ≤
m

α(t + 1)
‖Bζ x̄(t)− x‖τ (t),

and use (2) to deduce

III ≤ D
m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖.

Combining the above estimates on I ,II and III , we have
m∑
i=1

(
fi(ẑi(t + 1))− fi(x)

)
≤

m
2α(t + 1)Bζ

(‖Bζ x̄(t)− x‖2 − ‖Bζ x̄(t + 1)− x‖2)

+
mBζ

2α(t + 1)

(
2α(t + 1)2D2

+ 2τ (t)2
)

+
m

α(t + 1)
‖Bζ x̄(t)− x‖τ (t)

+D
m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖.

Finally we observe that (2) gives us the estimate
m∑
i=1

(
fi(Bζ x̄(t))− fi(ẑi(t + 1))

)
≤ D

m∑
i=1

‖Bζ x̄(t)− ẑi(t + 1)‖.

Summing up the above two inequalities, we obtain the desired
estimate. �

A. PROOF OF THEOREM II.7
We recall the following lemma for proving Theorem II.7.

Lemma IV.2. ([17] Lemma 7). Consider a minimization
problem

min
x∈Rd

f (x),

where f : Rd
→ R is a continuous function. Assume that

the solution X∗ of the problem is nonempty. Let {x(t)}t∈N be
a sequence such that for all x ∈ X∗ and for all t ≥ 0,

‖x(t + 1)− x‖2

≤ (1+ b(t))‖x(t)−x‖2 − a(t)(f (x(t))− f (x))+ c(t)

where b(t) ≥ 0, a(t) ≥ 0 and c(t) ≥ 0 for all t ≥ 0 with∑
∞

t=0 b(t) < ∞,
∑
∞

t=0 a(t) = ∞ and
∑
∞

t=0 c(t) < ∞. Then
the sequence {x(t)}t∈N converges to some solution x∗ ∈ X∗

By manipulating the estimate in Lemma IV.1, we obtain
the following estimate which is suitable for applying
Lemma IV.2.

Corollary IV.3. Suppose Assumptions II.1 and II.2 hold.
Then we have

‖Bζ x̄(t + 1)− x‖2 ≤ (1+ τ (t))‖Bζ x̄(t)− x‖2

−
2α(t + 1)Bζ

m
(f (Bζ x̄(t))− f (x))+ c(t)+ d(t),
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where

c(t) =
[
2α(t + 1)2D2

+ 2τ (t)2 + τ (t)
]
Bζ ,

and

d(t) =
4α(t + 1)BζD

m

m∑
i=1

‖ẑi(t + 1)− x̄(t)‖.

Proof: We use Young’s inequality to find

‖Bζ x̄(t)− x‖τ (t) ≤
‖Bζ x̄(t)− x‖2 τ (t)

2Bζ
+
τ (t)Bζ

2
.

Applying this to (46), we get
m∑
i=1

(
fi(Bζ x̄(t))− fi(x)

)
≤

m
2α(t + 1)Bζ

(1+ τ (t))‖Bζ x̄(t)− x‖2

−
m

2α(t + 1)Bζ
‖Bζ x̄(t + 1)− x‖2

+
mBζ

2α(t + 1)

(
2α(t + 1)2D2

+ 2τ (t)2
)
+

Bζmτ (t)
2α(t + 1)

+2D
m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖. (47)

Dividing both sides by m
2α(t+1)Bζ

, it follows that

2α(t + 1)Bζ
m

m∑
i=1

(
fi(Bζ x̄(t))− fi(x)

)
≤ (1+ τ (t))‖Bζ x̄(t)− x‖2 − ‖Bζ x̄(t + 1)− x‖2

+B2ζ
[
2α(t + 1)2D2

+ 2τ (t)2 + τ (t)
]

+
4α(t + 1)DBζ

m

m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖. (48)

Rearranging this we obtain the desired estimate. �
Now we are ready to prove Theorem II.7. Proof: [Proof
of Theorem II.7] By Lemmas IV.2 and Corollary IV.3 it is
enough to prove

∑
∞

t=0(c(t)+ d(t)) <∞, where

c(t) = 2α(t + 1)2D2
+ 2τ (t)2 + τ (t),

and

d(t) =
4α(t + 1)DBζ

m

m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖.

It follows that
∑
∞

t=0 c(t) <∞ by Assumptions II.4 and II.5.
Next we will show that

∑
∞

t=0 d(t) < ∞. By Proposi-
tion III.3, it suffices to show that
∞∑
t=0

α(t + 1)
(
λt + τ (t)+

t−1∑
s=0

λt−s−1α(s+ 1)+
t−1∑
s=0

λt−s−1τ (s)
)
<∞, (49)

and

∞∑
t=0

α(t + 1)
[
K (t)+

t−1∑
s=0

K (t)
(
α(s+ 1)D+ τ (s)

)]
<∞.

The latter one is proved in Lemma IV.4 below. We proceed to
prove (49). Using the Cauchy-Schwarz inequality, we have

∞∑
t=0

α(t + 1)λt ≤
1
2

∞∑
t=0

α(t + 1)2 +
1
2

∞∑
t=0

λ2t <∞.

By rearranging and using the decreasing property of α(t) in
Assumption II.4, we find

∞∑
t=0

α(t + 1)
t−1∑
s=0

λt−s−1α(s+ 1)

=

∞∑
s=0

∞∑
t=s+1

λt−s−1α(t + 1)α(s+ 1)

≤

∞∑
s=0

( ∞∑
t=s+1

λt−s−1
)
α(s+ 1)2

=
1

1− λ

∞∑
s=0

α(s+ 1)2 <∞.

Similarly, due to Assumption II.5, the last term is bounded as

∞∑
t=0

α(t + 1)
t−1∑
s=0

λt−s−1τ (s) =
∞∑
s=0

∑
s<t

λt−s−1α(t + 1)τ (s)

≤

∞∑
s=0

∑
s<t

λt−s−1α(s+ 1)τ (s)

=
1

1− λ

∞∑
s=0

α(s+ 1)τ (s) <∞.

Gathering the above estimates, we find that
∑
∞

t=0(c(t) +
d(t)) < ∞. Hence by Lemma IV.2, the sequence {Bζ x̄(t)}
converges to some solution x∗ ∈ X∗. Finally, we apply
Corollary III.6 to conclude that each sequence {ẑi(t)}, i =
1, · · · , n, converges to the same solution x∗. The proof is
done. �

Lemma IV.4. Suppose that Assumption II.5 and Assump-
tion II.6 hold. Then for the stepsize {α(t)}t≥0 satisfying
Assumption II.4 or α(t) = 1/

√
t , we have

∞∑
t=0

α(t + 1)

[
K (t)+

t−1∑
s=0

K (t) (α(s+ 1)+ τ (s))

]
<∞.

Proof: From Lemma III.1, we know that
limt→∞ t3/2K (t) = 0. Using this fact the summability of
τ (s), it easily follows that

∞∑
t=0

α(t + 1)
[
K (t)+

( t−1∑
s=0

τ (s)
)
K (t)

]
<∞.
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Next, for α(t) satisfying Assumption II.4, we observe that

∞∑
t=0

α(t + 1)K (t)
t−1∑
s=0

α(s+ 1) ≤
∑
∞

t=0 K (t)
∑t−1

s=0 α(s+ 1)2 <∞.

For α(t) = 1/
√
t , by using that

∑t−1
s=0 1/

√
s+ 1 ≤ 2

√
t ,

we deduce

∞∑
t=0

α(t + 1)K (t)
t−1∑
s=0

α(s+ 1) ≤ 2
∑
∞

t=0 K (t) <∞.

The proof is done. �

B. PROOF OF THEOREM II.8
We now turn to the proof of Theorem II.8. we recall that

H (−1) = 1 and H (t) =
t∏

k=0

(1+ τ (k)) for t ≥ 0

and

S(0) = 0 and S(t) =
t−1∑
s=0

α(s+ 1)
H (s)

for t ≥ 1.

First we find the boundedness of H (t) and S(t).

Lemma IV.5. Let α(t) = 1
√
t
and Assumptions II.5 and II.6

hold. Then we have

sup
t≥0

H (t) < eEτ and S(t) ≥ e−Eτ
√
t, (50)

where Eτ =
∑
∞

t=0 τ (t) <∞.

Proof: By applying the inequality 1 + x ≤ ex for x ≥
0 we estimate H (t) as

sup
t≥0

H (t) < exp (
∞∑
t=0

τ (t)) = eEτ .

Using this inequality, we deduce the following estimate

S(t) =
∑t−1

s=0
α(s+1)
H (s) ≥ e

−Eτ
∑t

s=1
1
√
s ≥ e

−Eτ
√
t ∀ t ≥ 1.

The proof is done. �
To prove Theorem II.8, we first modify Lemma IV.1 which
states the boundedness of

∑m
i=1

(
fi(x̄(t))−fi(x)

)
, by replacing

x̄(t) to
(∑T

t=0
α(t+1)
H (t) Bζ x̄(t)

)
/S(T + 1).

Lemma IV.6. Suppose that all the conditions are same as in
Theorem II.8. Then we have

f
(∑T

t=0
α(t+1)
H (t) Bζ x̄(t)

S(T + 1)

)
− f (x)

≤
meEτ

2
√
T + 1

J1(T )+
2mDeEτ

δ
√
T + 1

J2(T ) +
2mDeEτ

δ
√
T + 1

J3(T )

for any T ∈ N, where J1(T ), J2(T ), and J3(T ) are defined in
Theorem II.8

Proof: We recall from (51) the following inequality
m∑
i=1

(
fi(Bζ x̄(t))− fi(x)

)
≤

m
2α(t + 1)Bζ

(1+ τ (t))‖Bζ x̄(t)− x‖2

−
m

2α(t + 1)Bζ
‖Bζ x̄(t + 1)− x‖2

+
mBζ

2α(t + 1)

(
2α(t + 1)2D2

+ 2τ (t)2
)

+
Bζmτ (t)
2α(t + 1)

+ 2D
m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖. (51)

Dividing both sides of (51) by mH (t)
2α(t+1) , we get

2α(t + 1)
mH (t)

m∑
i=1

(
fi(Bζ x̄(t))− fi(x)

)
≤
‖Bζ x̄(t)− x‖2

BζH (t − 1)
−
‖Bζ x̄(t + 1)− x‖2

BζH (t)

+
Bζ
H (t)

(
2α(t + 1)2D2

+ 2τ (t)2 + τ (t)
)

+
4α(t + 1)D
mH (t)

m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖. (52)

Summing this from t = 0 to t = T we obtain

T∑
t=0

[
2α(t + 1)
mH (t)

m∑
i=1

(
fi(Bζ x̄(t))− fi(x)

)]
≤
‖x̄(0)− x‖2

BζH (−1)
−
‖x̄(T + 1)− x‖2

BζH (T )

+

T∑
t=0

Bζ
H (t)

(
2α(t + 1)2D2

+ 2τ (t)2 + τ (t)
)

+

T∑
t=0

4α(t + 1)D
mH (t)

m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖. (53)

This, together with the fact that H (−1) = 1 and H (t) ≥ 1,
gives

T∑
t=0

[
2α(t + 1)
mH (t)

m∑
i=1

(
fi(Bζ x̄(t))− fi(x)

)]

≤
‖x̄(0)− x‖2

Bζ
+

T∑
t=0

(
2α(t + 1)2D2

+ 2τ (t)2 + τ (t)
)
Bζ

+

T∑
t=0

(
4α(t + 1)D

m

m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖
)
. (54)

We find
T∑
t=0

2α(t + 1)2D2
= 2D2

T+1∑
t=1

1
t
≤ 2D2

(
1+ ln (T + 1)

)
,

(55)
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and by definition (13) we have

T∑
t=0

(
2τ (t)2 + τ (t)

)
= 2Eτ,2(T )+ Eτ (T ). (56)

Finally we estimate the last term of the right hand side of (54)
using Corollary III.7 as follows:

T∑
t=0

(
4α(t + 1)D

m

m∑
i=1

‖ẑi(t + 1)− Bζ x̄(t)‖
)

≤ 4D
( C0

δ(1− λ)
‖x(0)‖1 +

4mC0Eτ (T )
δ(1− λ)

+
C0mD
δ(1− λ)

(1+ ln(T ))
)

+
4D
δ

T∑
t=0

K (t)α(t + 1)
[
‖x(0)‖1 +

t−1∑
s=0

(α(s+ 1)D+ τ (s))
]
.

Putting this estimate, (55) and (56) in (54), we achieve the
following estimate

T∑
t=0

[
2α(t + 1)
mH (t)

m∑
i=1

(
fi(Bζ x̄(t))− fi(x)

)]
≤ J1(T )+

4D
δ
J2(T ) +

4D
δ
J3(T ).

Now we set S(T ) =
∑T−1

t=0
α(t+1)
H (t) for T ∈ N and divide

the both sides by 2S(T+1)
m . Then we apply the convexity of

fi in the left hand side and use the lower bound S(T + 1) ≥
e−Eτ
√
T + 1 to the right hand side, which leads to

f
(∑T

t=0
α(t+1)
H (t) Bζ x̄(t)

S(T + 1)

)
− f (x)

≤
meEτ

2
√
T + 1

J1(T )+
2mDeEτ

δ
√
T + 1

J2(T ) +
2mDeEτ

δ
√
T + 1

J3(T ).

The proof is finished. �
Now we are ready to give the proof of Theorem II.8.
Proof: [Proof of Theorem II.8] Using the definition of z̃i and
Assumption 2.1, we find

f (z̃i(T + 1))− f
(∑T

t=0
α(t+1)
H (t) Bζ x̄(t)

S(T + 1)

)
= f

(∑T
t=0

α(t+1)
H (t) ẑi(t + 1)

S(T + 1)

)
− f

(∑T
t=0

α(t+1)
H (t) Bζ x̄(t)

S(T + 1)

)
≤

mD
S(T + 1)

T∑
t=0

α(t + 1)
H (t)

‖ẑi(t + 1)− Bζ x̄(t)‖.

Then by Corollary III.7 with the fact that H (t) ≥ 1 and (50),
we have

f (z̃i(T + 1))− f
(∑T

t=0
α(t+1)
H (t) Bζ x̄(t)

S(T + 1)

)
≤

mDeEτ

δ
√
T + 1

J2(T )+
mDeEτ

δ
√
T + 1

J3(T ).

Combining this inequality with Lemma IV.6, we obtain

f (z̃i(T + 1))− f (x∗)

≤
meEτ

2
√
T + 1

J1(T ) +
3mDeEτ

δ
√
T + 1

J2(T ) +
3mDeEτ

δ
√
T + 1

J3(T ).

which is the desired estimate. Moreover, we see that the
right hand side is bounded by O(log(T + 1)/

√
T + 1) using

Lemma IV.4. �

V. SIMULATIONS
In this section, we present simulation results of the proposed
event-triggered gradient-push method to demonstrate that the
theoretical results can be realized in practice.
Example 1 (Least square solution):We consider the decen-

tralized least squares problem:

min
x∈Rd

m∑
i=1

fi(x) with fi(x) = ‖qi − pTi x‖
2,

where, each agent i in V = {1, · · · ,m} is given the local cost
function fi. The variable pi ∈ Rd×p is the input data and the
variable qi ∈ Rp is the output data. This type of problem
arises in various areas containingmachine learning and signal
processing. The data are generated according to the linear
regression model qi = pTi x̃ + εi where x̃ ∈ Rd is the true
weight vector and εi ∈ Rp is the noise. We generate x̃ and
pi in the way that the value of each component is randomly
chosen in [0, 1] with uniform distribution. In addition, the
component values of the noise εi ∈ Rp are jointly Gaus-
sian with zero mean and variance 1. The initial points xi(0)
are independent random variables, generated by a standard
Gaussian distribution. In this simulation, we set the problem
dimensions and the number of agents as d = 5, p = 1, and
m = 50. We use connected directed graph where every node
has four out-neighbors.
Test 1:Here we fix α(t) = 1/t0.52 which satisfies Assump-

tion II.4 and ζ (t) = 1/(3t3) which satisfies Assumption II.6,
and consider various choices of τ (t). We measure the relative
distance between the variable zi(t) and the optimal point x∗

the value

Rd (t) =

∑m
i=1 ‖zi(t) − x

∗
‖∑m

i=1 ‖zi(0)− x∗‖
, (57)

We set the termination time kf as the first time k ∈ N when
Rd (k) < 10−2. And we let Nx and Ny be the average of total
number of triggers for all agents until the termination time
associated with τ (t) and ζ (t), respectively. Table 1 indicates
the average of those values depending on τ (t) and ζ (t) in
100 trials.

We first look at the effect of ζ (t), the threshold for variables
yi(t). Table 1 shows that an existence of the threshold (ζ 6= 0)
does not bring a big difference in the termination time if we
compare the cases ζ (t) = 0 and ζ (t) = 1/(3t3) with
same τ (t), but there is a big improvement in the number of
triggers for yi(t). Next we discuss the values Nx and kf of
Table 1 in terms of τ (t), the threshold for variables xi(t).
As in Table 1, some cases give us similar or worse results
compared to the cases τ (t) = 0. For τ (t) = 1/t1.1, the
number of triggers is decreased by more than 70%, and the
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TABLE 1. The number of triggers and termination time depending on τ (t) and ζ (t). Here the case τ (t) = 0 and ζ (t) = 0 corresponds to the gradient-push
algorithm [17] not involving the event-triggered communications.

FIGURE 1. (a) The values of Rf (t) for Test 2 with different choices of τ (t) and ζ (t). (b) The values of Rc (t) for Test 2 with different choices of τ (t)
and ζ (t). The choice of τ (t) and ζ (t) for each graph of (b) corresponds to that of (a) with the same color and style.

TABLE 2. The exact values of Rf (t) in Figure 1a with different choices of τ (t) and ζ (t) for every 1250 steps. The numbers in bold are the numbers of steps
t . Here the case τ (t) = 0 and ζ (t) = 0 corresponds to the gradient-push algorithm [17] not involving the event-triggered communications.

termination time increased by more than 530%. For τ (t) =
1/t1.7, both the termination time and the number of triggers
increased by almost 36% when ζ (t) = 0 and remain similar
when ζ (t) = 1/(3t3) compared to the cases τ (t) = 0. For
τ (t) = 1/t1.5, the termination time is almost same, the num-
ber of triggers decreased by more than 20%. These results
show that the proposed gradient-push with event-triggered
communication with proper τ (t) and ζ (t) can diminish the
number of communications to achieve the convergence com-
pared to the gradient-push algorithm without triggering. The
threshold functions τ (t) and ζ (t) should be chosen care-
fully considering the characteristics of the given optimization
problem.

Test 2: Here we fix α(t) = 1/
√
t and take several choices

of τ (t) and ζ (t). We measure the relative cost error and the
consensus error given by

Rf (t) =

∑m
i=1(f (z̃i(t))− f

∗)∑m
i=1(f (z̃i(0))− f ∗)

,

Rc(t) =
maxi,j∈V ‖zi(t) − zj(t)‖
maxi,j∈V ‖zi(0)− zj(t)‖

.

For τ (t), we consider two cases where τ (t) = 1/t1.5 sat-
isfying Assumption II.5 and τ (t) = 1/t0.75 not satisfying
Assumption II.5. And for ζ (t), we consider also consider
two cases where ζ (t) = 1/(3t3) satisfying Assumption II.6
and ζ (t) = 1/t not satisfying Assumption II.6. Additionally,
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TABLE 3. The exact values of Rd (t) in Figure 1b with different choices of τ (t) and ζ (t) for every 1250 steps. The numbers in bold are the numbers of steps
t . The case τ (t) = 0 and ζ (t) = 0 corresponds to the gradient-push algorithm [17] without the event-triggered communications.

we test two constant cases τ (t), ζ (t) = 0 and τ (t), ζ (t) =
0.05. Figure 1a depicts the graph of the values of Rf (t)
versus the iteration time. The result shows that the cost error
decreases to zero when

∑
∞

t=0 τ (t) < ∞ while it does
not converge to zero when

∑
∞

t=0 τ (t) = ∞ regardless of
the choice of ζ (t). This supports the convergence result of
Theorem II.8. Figure 1b illustrates the consensus error Rc(t).
The result shows that the consensus error decreases to zero for
any choices τ (t) and ζ (t) except the case τ (t), ζ (t) = 0.05.
This numerical result supports the theoretical result obtained
in Corollary III.6.
Example 2 (Network localization): We consider the net-

work localization problemwhereN free agents that only have
estimates of their own positions and M anchor agents that
have the information of their own exact positions in a global
coordinate system. The goal of this problem is that each
free agent achieves its own position in the global coordinate
system only by communicating with its nearby neighbors and
using the anchor agent’s information. The communication
pattern among agents is depicted by a directed (N+M)-node
graph G = (V, E), where each node in V represents each
agent, and each edge {i.j} ∈ E means agent i can send its infor-
mation to j depending on its own sensor power. To formulate
this problem, we let xi = (xi1, xi2) ∈ R2 be the position of
the agent i in G. Without loss of generality, the point xi is
free agent i ∈ {1, · · · ,N } and the point xj is anchor agent
for j ∈ {N + 1, · · · ,N + M}. For each i ∈ {1, · · · ,N },
agent i has the set of neighboring agents, denoted by Ni, and
may find the barycentric coodinates pij with respect to the
neighboring agents j ∈ Ni using their relative coordinates
(coordniates with center xi).To determin pij, each agent may
solve the following problem

min
{pij}j∈Ni

∑
j∈Ni

p2ij (58)

subject to ∑
j∈Ni

pijxj = xi∑
j∈Ni

pij = 1. (59)

FIGURE 2. Each dot represents free agents and Each plus sigh represents
known anchor agents.Each circle displays the sensor power of its
corresponding free agent.

We also define pij for j /∈ Ni by

pii = −1 and pij = 0 for j /∈ Ni ∪ {i}. (60)

Then we have the following relation between the free agents
and the anchor agents.

N∑
j=1

pijxj = qi, for all i ∈ {1, · · · ,N }, (61)

where

qi = (qi1, qi2) =
N+M∑
j=N+1

aijxj ∈ R2. (62)

Let P = P ⊗ I2 and x = (x11, x12, x21, · · · , xN1, xN2)T .
Then, x ∈ R2d is the solution of the following decentralized
problem:

min
s∈R2d

N∑
i=1

fi(x) :=
(
|qi1 − P2i−1s|2 + |qi2 − P

T
2is|

2
)
,

where Pi is the ith row of the P. We remark that agent i has
informations of P2i−1, P2i, qi1, qi2.
In our experiment, we set N = 11 and M = 3. We design

the network of agents so that each free agent has a sensor
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FIGURE 3. (a) The values of Rd (t) with different choices of τ (t) for fixed α(t) = 1/t (0.7). (b) The values of the number of triggers with
different choices of τ (t) for fixed α(t) = 1/t (0.7).

FIGURE 4. (a) The values of Rd (t) with different choices of τ (t) for fixed α(t) = 1/
√

t . (b) The values of the number of triggers with
different choices of τ (t) for fixed α(t) = 1/

√
t .

FIGURE 5. We fixed α(t) = 1/t0.7, τ (t) = 1/t1.5 and ζ (t) = 0. (a) The values of Rd (t) with different choices of the number of anchor
agents M. (b) The values of the number of triggers with different choices of the number of anchor agents M.
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power to send its information to at least 4 free agents (See
Figure 2). We choose the stepsize α(t) = 1/t (0.7), which
satisfies Assumption II.4 and α(t) = 1/

√
t . For each step-

size, we consider various choices of τ (t) but fix ζ (t) = 0.
We measure Rd (t) (see Figures 3a, 4a) and the number of
triggers with respect to the choice of τ (t) (see Figures 3b, 4b).
Comparing the cases τ (t) = 0 and τ (t) = 1/t1.3, we find that
the number of triggering times of the case τ (t) = 1/t1.3 is
much smaller than that of the case τ (t) = 0 while they have
similar decay in function errors. From this result, we see that
one may reduces the communication cost for resource aware
scenarios.

Lastly, we look at the effect of the number of anchor agents
on the performance of the algorithm. Precisely, we compare
the graphs of Rd (t) (see (57)) and the number of triggers
for various choices of M with fixing N = 11 (see Fig-
ures 5a, 5b). As in the previous test, we have setα(t) = 1/t0.7,
τ (t) = 1/t1.5 and ζ (t) = 0. We perform the test for M ∈
{3, 5, 7, 9, 11}. In figure 3b, we observe that for the caseM =
3 the number of triggering times is not significantly smaller
than that of the time-triggered case τ (t) = 0. However, if the
numberM is larger of equal to 7, then the number of triggers
becomes notably smaller comparing to the case M = 3.
Also, the error value Rd (t) decreases faster if the number of
anchor agents is larger (see figure 5a). These results imply
that if there are more information of anchors that agents
can access, the event-triggering strategy of gradient-push
algorithm becomes more effective by reducing the power
consumption for communication.

VI. CONCLUSION
In this work, we considered the gradient-push algorithm with
event-triggered communication for distributed optimization
problems whose agents are connected by directed graphs.
We showed that by the algorithm each agent’s state converges
to a common minimizer under a diminishing and summa-
bility condition on the stepsize and the triggering function.
Numerical simulations have been conducted to support the
convergence results. It would be interesting further about how
to choose an optimal triggering function for reducing the
communication burden, reflecting various elements such as
the connectivity of graphs and the number of agents.
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