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ABSTRACT Evapotranspiration can be used to estimate the amount of water required by agriculture
projects and green spaces, playing a key role in water management policies that combat the hydrological
drought, which assumes a structural character in many countries. In this context, this work presents a study
on reference evapotranspiration (ET,) estimation models, having as input a limited set of meteorological
parameters, namely: temperature, humidity, and wind. Since solar radiation (SR) is an important parameter
in the determination of ET,, SR estimation models are also developed. These ET, and SR estimation models
compare the use of Artificial Neural Networks (ANN), Long Short Term Memory (LSTM), Gated Recurrent
Unit (GRU), Recurrent Neural Network (RNN), and hybrid neural network models such as LSTM-ANN,
RNN-ANN, and GRU-ANN. Two main approaches were taken for ET, estimation: (i) directly use those
algorithms to estimate ET,, and (ii) estimate solar radiation first and then use that estimation together
with other meteorological parameters in a method that predicts ET,. For the latter case, two variants were
implemented: the use of the estimated solar radiation as (ii.1) a feature of the neural network regressors, and
(ii.2) the use of the Penman-Monteith method (a.k.a. FAO-56PM method, adopted by the United Nations
Food and Agriculture Organization) to compute ET,,, which has solar radiation as one of the input parameters.
Using experimental data collected from a weather station (WS) located in Vale do Lobo (Portugal), the later
approach achieved the best result with a coefficient of determination (R?) of 0.977. The developed model was
then applied to data from eleven stations located in Colorado (USA), with very distinct climatic conditions,
showing similar results to the ones for which the models were initially designed (R> > 0.95), proving a good
generalization. As a final notice, the reduced-set features were carefully selected so that they are compatible
with free online weather forecast services.

INDEX TERMS Artificial neural networks, evapotranspiration, public garden, smart irrigation, solar
radiation.

I. INTRODUCTION
A known strategy, to make a water efficient irrigation system,
is to rely on soil humidity sensors and keep the humidity
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levels between the field capacity (FC) and the management
allowable depletion (MAD), which is a percentage of
the available soil water holding capacity [1]. Apart from
components, installation, and management costs associated
to the implementation of such systems on public green
space, other problems are common such as vandalism or
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theft, since normally there is no comprehensive security or
surveillance in such locations. Further, the available water
holding capacity changes significantly with soil type [2],
requiring that for each specific soil, in order to determine
the soil humidity values corresponding to the field capacity
and wilting point (WP), samples would need to be sent to a
laboratory for analyses.

Crop evapotranspiration (E7.), also known as crop water
use, is the water that is used by a crop [3]. The Food and
Agriculture Organization of the United Nations (FAO) rec-
ommends using the FAO-56 Penman-Monteith (FAO-56PM)
formula as a reference method for computing reference
evapotranspiration (ET,) [4], being ET, and ET, related by
a crop coefficient (K.). FAO56-PM formula uses four main
meteorological parameters: temperature, humidity, wind, and
solar radiation (SR). In this context, several computational
studies show that SR is the main driver of ET, [5], however,
its measurement requires sensors like pyranometers, which
are typically associated with expensive WSs, that need to be
properly maintained and calibrated [6]. Also, solar radiation
forecast application programming interfaces (APIs) are not
common (at least freely) and present a high system cost
penalty.

As part of a framework for the computation of opti-
mal crop water irrigation scheduling requirements (with
special emphasis to green spaces), this paper presents the
computational models being prepared to estimate the ET,
using machine learning, deep learning, acquired intelligence,
meteorological data from WSs on the field, as well as
meteorological data and forecasts from APIs available on the
internet. This will optimize water and energy expenditure,
improve the well-being of the crop, reduce reaction time
in solving problems, improve anomalies detection methods,
and maintain the quality of green spaces. Concisely, the
framework being developed will be an intelligent irrigation
solution, technologically differentiated from other platforms
on the market. The development of the full framework is
being done under project GSSIC — Green Spaces SMART
Irrigation Control.

In short, this study compares several ET, and SR esti-
mation models that use Artificial Neural Networks (ANN),
Long Short Term Memory (LSTM), Gated Recurrent Unit
(GRU), Recurrent Neural Network (RNN), and hybrid neural
network models such as LSTM-ANN, RNN-ANN and GRU-
ANN. Two approaches were taken for ET,’s estimation:
(i) directly use those machine learning models to estimate it
and (i) first estimate solar radiation, and then use the obtained
value and other meteorological parameters in a method that
predicts ET,. Furthermore, for the latter case, two variants
were addressed, namely: the use of the estimated SR as (ii.1)
a feature of a neural network regressor, and (ii.2) the use of
FAO-56PM method to compute ET,,, which has SR as one of
the input parameters. Figure 1 schematizes what we have just
detailed.

Using experimental data collected from a WS located
in Vale do Lobo, south Portugal, approach (ii.2) achieved
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the best result with a coefficient of determination (R?) of
0.977, improving results previously achieved in [7]. The
quality and generalization of the proposed models was then
tested using 11 weather stations of the Colorado Agricultural
Meteorological Network (CoAgMET), which is composed
of automatic weather stations distributed across the state
of Colorado, USA. The selected weather stations have data
available starting from August 1992, which comprises almost
30 years of data. Also, with temperatures ranging from
—39.06 to 44.26 degrees Celsius (°C), they represent different
climatic conditions than the Mediterranean’s Vale do Lobo
WS. This allows the assessment of model performance
under different climate conditions, and for a longer period
of historical data. The achieved metrics values, when
comparable with the ones from other authors, showed that our
proposal has in general a better performance in the analysed
metrics, besides presenting alternatives to most of the existing
models, namely through the use of recurrent neural networks
and hybrid methods. The latter model is even more unusual
in this category of studies, being by itself another evolution
to the state of the art.

The paper is structured as follows. The next section
presents the problem’s background and the methodologies
used by others to tackle the problem in study. Section III
starts by detailing the computational setup and exploring
the dataset, followed by section III-B where the proposed
neural network architectures, hyperparameters, and overall
training approach is presented. Then, on section III-C the
proposed models and associated performance analysis is
weighed. Section IV presents the results for the 11 CoAgMET
agricultural weather stations. Finally, the last section presents
the conclusion and establishes some future work.

Il. REFERENCE EVAPOTRANSPIRATION PROBLEMATIC
AND KNOWN SOLUTIONS
Reference evapotranspiration, ET,, is the evapotranspiration
of a reference surface, defined as hypothetical grass with
a uniform height of 0.12 m, a fixed surface resistance
of 70 sm~!, and an albedo (reflection coefficient) of
0.23 [4]. Besides, crop evapotranspiration, ET,, represents
the crop’s water requirements and is proportional to reference
evapotranspiration by means of the crop coefficient, K. [4].
Therefore, ET, prediction plays an important role, making
it one of the fundamental parameters for smart irrigation
scheduling, since it is proportional to the amount of water
that needs to be restored during the irrigation period [8].
Some of the main characteristics that distinguish E7, from
ET, are (i) the crop cover density and total leaf area, (ii)
the resistance of foliage epidermis and soil surface to the
flow of water vapor, (iii) the aerodynamic roughness of the
crop canopy, and (iv) the reflectance of the crop and soil
surface to short wave radiation [9]. In this context, known the
value of K., the ET, value for a specific time period can be
estimated by

ET, = K.ET,. (1)
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FIGURE 1. Workflow for the developed approaches: ET, estimation models without SR and limited set of features, solar
radiation estimation models with a limited set of features, and ET, computation based on estimated solar radiation as an
input to another neural network model or to FAO56-PM formula.

The crop coefficient can be simple or have two components,
one representing the basal crop coefficient (K.5) and another
representing the soil surface evaporation component (K,),
being computed by

K. = K;Kep + Ko, (2)

where K € [0, 1] is used to introduce a K, reduction in cases
of environmental stresses, such as lack of soil water or soil
salinity [9].

So, it becomes clear that in order to make crop water
requirement predictions, accurate estimation of ET, is
required. Historically, several deterministic methods have
been developed to estimate reference evapotranspiration
using single or limited weather parameters and being gen-
erally categorized as: temperature, radiation, or combination
based. For example, temperature based methods include
Thorntwait [10], Blaney-Criddle [11], and Hargreaves and
Samani [12] formulas; radiation methods include Priestley-
Taylor [13] and Makkink [14] formulas; and combination
methods, requiring both temperature and radiation, include
Penman [15], modified Penman [16], and FAO-56 Penman-
Monteith (FAO56-PM) [4] formulas. Shahidian et al. [6]
give an overview of several of these methods and compare
their performance under different climate conditions. The
authors concluded that, when applied to climates different
from those on which the methods were developed and tested,
most of them yield a poor performance and may require the
adjustment of empirical coefficients to accommodate to local
climate conditions, which is not ideal.

FAO recommends the use of the FAO-56PM formula as a
reference method for estimating ET, [4]. To give a deeper
idea of the involved parameters, measured in millimeters per
day [mm/day], the formula to estimate E7,, is given by

oy OA03AR, — G) + Y T a(es — eq) )

o A+ y(1 4 0.34u,) ’
where R, is the net radiation at crop surface [MJm ™ 2day™ '],
G is the soil heat flux density [MJm~2day™'], T is the
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air temperature at 2 m height [°C], uy is the wind speed
at 2 m height [ms™!], e, is the saturation vapor pressure
[kPa], e, is the actual vapor pressure [kPal, e; — e, is
the saturation vapor pressure deficit [kPa], A is the slope
vapor pressure curve [kPa’C~'], and y is the psychrometric
constant [kPa°C~']. Being based on physical principles,
the formula has become widely adopted as a standard for
ET, computation since it performs well under different
climate types [6]. However, to compute ET, using FAO56-
PM the following main meteorological parameters are
required: temperature, solar radiation, relative humidity, and
wind speed. The remaining meteorological parameters are
constants being derived from latitude and elevation above sea
level.

Except for solar radiation, all parameters (real or esti-
mated) required by the FAO56-PM formula for E7,,’s compu-
tation, can be freely obtained from common weather forecast
APIs. Solar radiation forecasting APIs are, currently, not
common and the ones available present a high-cost penalty.
Therefore, a major asset would be to (i) develop alternative
methods for ET, estimation using limited meteorological
parameters, that do not require solar radiation and are
compatible with the weather parameters obtained by freely
available weather forecast and historical weather data APIs,
and/or (ii) to estimate the solar radiation itself and use
it as an approximation on the solar radiation dependent
methods. This is also important since in most situations a
proper functioning, maintained, and calibrated WS, with solar
radiation measurement capability, is not close to the area of
interest.

Recently, as an alternative, several authors have used
machine and deep learning to estimate ET,, being that,
as stated by Chia et al. [17], machine learning has proved
itself to be a promising solution for ET, estimation with
the common meteorological data. For instance, using data
collected in Central Florida, a humid subtropical climate,
Granata [18] compared three different evapotranspiration
models which differ in the input variables. In their work,
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four variants of machine learning algorithms were applied
to each model, namely: M5P Regression Tree, Bagging,
Random Forest, and Support Vector Machine (SVM). Their
best results are achieved using M5SP Regression Tree and
Bagging with a coefficient of determination of 0.987 and
a mean absolute error of 0.14 mm/day (see the metrics
definition in Sec. III-A). However, among other features, all
models included as input variable the net solar radiation.
The same author also studied three recurrent neural network-
based models for the prediction of short term ahead
evapotranspiration [19]. Two variants of each model were
developed, selecting the employed algorithm between LSTM
and nonlinear autoregressive network with exogenous inputs
(NARX). The prediction models were trained and tested using
data from two sites with different climates: Cypress Swamp,
southern Florida, and Kobeh Valley, central Nevada. With
reference to the subtropical climatic conditions of South
Florida, LSTM models proved to be more accurate than
NARX models, while some exogenous variables such as sen-
sible heat flux and relative humidity did not affect the results
significantly.

Wu and Fan [20] evaluated eight machine learning
algorithms divided in four classes: neuron based (MLP —
Multilayer Perceptron, GRNN — General Regression Neural
Network, and ANFIS - Adaptive Network-based Fuzzy
Inference System), kernel-based (SVM, KNEA - Kernel-
based Non Linear Extension of Arps decline model), tree-
based (M5Tree — M5 model tree, Extreme Gradient Boosting
— XGBoost), and curve based (MARS — Multivariate Adap-
tive Regression Spline). The methods were applied to data
collected from 14 WSs in various climatic regions of China
and used only temperature or temperature and precipitation
as input to the models. Ferreira et al. [8] used six alternative
empirical reduced-set equations, such as Hargreaves and
Samani [12], and compared the estimated values with the
ones from an ANN and a SVM model. Data was collected
from 203 WSs and used for daily ET, estimation for the
entirety of Brazil. Temperature or temperature and humidity
were used as input features. They concluded that, in general,
ANN was the best performing model when including,
as input features, data from up to four previous days. With
the best algorithms reaching an R?> median value around
0.80 considering all stations, results were weighed good given
that only temperature or temperature and humidity were used
as input.

Keshtegar et al. [21] used high-order response surface
method to compute E7,. They included daily weather infor-
mation which include the maximum temperature, maximum
humidity, wind speed, solar radiation, and vapor pressure
deficit, obtained from three observation stations in Burkina
Faso, West Africa. Ten models were evaluated with the
determination coefficient (R2) and root-mean-square error
values ranging between 0.2068 and 0.9966 and between
0.7237 and 0.9948, respectively. However, one of the used
features is solar radiation, which is not always easy to obtain
for most of the locations.
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Muhammad et al. [22] studied the implementation of
evolutionary computing models, namely the gene expression
programming (GEP), for the simulation of daily ET, in
different locations of Peninsular Malaysia. The models
used various input combinations of meteorological variables
including air temperature (mean, maximum, and minimum),
relative humidity, solar radiation, and mean wind speed.
Compared to other black box artificial intelligence algo-
rithms, the authors’ alleged major advantage of GEP is
that it provides a set of equations that can be used by
practitioners for reliable estimation of ET, at the field,
with fewer meteorological variables and, thus, can have
wide applicability in water resources management. As in
the previous case, the model also requires the use of solar
radiation with the already mentioned drawback.

Khosravi et al. [23] studied nine models, including five
data mining algorithms and four adaptive neuro-fuzzy infer-
ence systems, for their ability to predict ET, at meteorological
stations in Baghdad and Mosul, Iraq. As parameters for
the models, they considered wind speed, sunshine hours,
rainfall, maximum and minimum temperature, and relative
humidity. Investigations on the modeling accuracy with
different input parameter combinations showed that no single
input combination showed a consistent modeling outcome.
Moreover, hybrid models showed a higher predictive power
than the individual models. A large part of the result shown
had R? value around 0.9, with the best one achieving 0.951 for
one station and 0.97 for the other.

The geographical robustness of various inter-model ensem-
bles in estimating daily ET, was assessed in [17]. The study
aimed to develop inter-model ensembles that consist of ANN,
support vector regressors, ANFIS via Bayesian modeling
approach, and the non-linear neural ensemble, trained for
different meteorological stations with differential geograph-
ical characteristics in the Peninsular Malaysia. This work
allowed to infer some aspects of the effect of the geographical
characteristics on the performance of inter-model ensembles
and examine the effect of data management strategies
applied to solve the data-hungry issue (both qualitative and
quantitative) of inter-model ensembles. Sanikhani et al. [24]
explore 6 artificial intelligence models for modeling ET,
using minimum and maximum temperatures of the air and
extraterrestrial radiation. The models include MLP, GRNN,
radial basis neural networks (RBNN), integrated adaptive
neuro-fuzzy inference systems with grid partitioning and
subtractive clustering (ANFIS-GP and ANFIS-SC), and GEP.
The Hargreaves—Samani equation and its calibrated version
were used to perform a verification analysis of the established
models. In the best cases, results show R? values around 0.95.

In [25], Chen et al. study the estimation of daily refer-
ence evapotranspiration using three deep learning models
(namely, deep neural network — DNN, temporal convolution
neural network — TCN, and LSTM neural network). The
performance of the three models was compared with the
results of an SVM algorithm, a random forest algorithm,
and empirical equations like Hargreaves and modified
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Hargreaves(temperature-based), Ritchie, Priestley-Talor, and
Makkink (radiation-based), and Romanenko and Schendel
(humidity-based) empirical models. Several other works can
be found in the literature [26], [27], [28], [29], [30], [31], [32],
[33], which vary the number and type of features, estimation
models etc.

Vaz et al. [7] used data from a Vale do Lobo WS,
in south Portugal, and explored the use of machine learning
for ET, estimation. They concluded that instead of directly
estimating ET,, the best result was obtained by using machine
learning for SR estimation, having as input a limited set
of meteorological features, and then use that result together
with temperature, humidity and wind speed as input to the
FAO56-PM equation, achieving an R? of 0.975, a MAE
of 0.18 mm/day, and a MAPE of 5.51 %. The work here
presented explores and develops deep learning based ET,
prediction models, supported on the same data, improving
the previous results, as it will be detailed in the next sections.
Furthermore, the proposed models are applied to 11 other WS
stations maintaining, without further hyperparameter tuning,
similar performance in terms of attained metrics values. So,
based on a set of features generally available in public WS,
which do not include solar radiation, our solution produces
a stable set of results for different weather environments
presenting a state-of-the-art methodology.

Ill. PROPOSED MODELS

A. EXPERIMENTAL SETUP AND DATASET

As a general introduction to the computational environment,
this work was conducted using Python v3.9.7, Num-
py v1.21.4 [34], Pandas v1.3.4 [35], [36], Tensor Flow
v2.6.0 [37], Keras 2.6.0 [38], Scikit-learn v1.0.1 [39], and
PyET v1.1.0 [40]. The Pandas library was used for data
analysis and manipulation, PyET to compute the reference
evapotranspiration using the FAO56-PM method, Scikit-learn
is a python machine learning framework that includes data
preprocessing, model selection, and model metrics evaluation
tools. Keras runs on top of Tensor Flow, and all neural
network models here presented were developed using it.
Finally, all computation was done on a 2020 MacBook Air
with an Apple M1 SoC chip and 16 GB of RAM, running
MacOS Big Sur v11.6.4.

Data from Vale do Lobo WS, in south Portugal, was
collected starting from February 2019 up to and including
September 2021. The WS is composed of sensors from Davis
Instruments, where the following weather parameters are
measured periodically throughout the day and stored with
a daily resolution: temperature (minimum, maximum, and
average), dew point (minimum, maximum, and average),
relative humidity (minimum, maximum, and average), solar
radiation (maximum and average), wind speed (minimum,
maximum, and average), wind direction, atmospheric pres-
sure (minimum, maximum, and average), rain intensity, and
precipitation. This is the same dataset previously used by
Vaz et al. [7], where the use of machine learning algorithms
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was explored to create ET, and SR estimation models. A ratio
of 75 % to 25 % of train and test data was used, respectively,
resulting in train data starting from February 1st, 2019 up to
February 3rd, 2021, and test data from February 4th, 2021 up
to September 30th, 2021. Being a time series, no shuffling
was made to the train and test data, and the train data was
further divided into 10 folders, used to implement time series
cross validation [41]. Furthermore, a hyperparameter grid
search strategy was used to tune the proposed machine/deep
learning methods, as will be presented in the corresponding
sections.

For model statistical evaluation and performance compar-
ison, the mean absolute error (MAE), the mean absolute
percentage error (MAPE), the mean square error (MSE),
the root-mean-square error (RMSE), and the coefficient of
determination (R2?) were used [42]. Just to recall, considering
y; the actual value and y, the estimated value at instants
t =1,2,...,n, and y the mean value of the actual samples,
the evaluation metrics are defined as

1 n )
MAE = =" |y — ¥l )
n t=1
1 n _ A
MAPE = = 3 |22 1009, 5)
n Vi
1 2
MSE = =3 (v =3i)", ©)
t=1
RMSE = ~/MSE, (7

and

_ ZL](% - };1)2
Yo =9

In this set of metrics, the MAE measures the average of
the absolute residuals in the original unit and the MAPE
measures the average absolute percent error. The MSE
represents the average of the squared difference between the
original and predicted values in the data set, measuring the
variance of the residuals in the squared unit of the original
data, which can be returned to the original unit by computing
the RMSE (the standard deviation of residuals). Finally,
R? represents the proportion of the variance in the dependent
variable, which is explained by the linear regression model,
being a scale-free score. While values should be near to zero
for the MAE, MAPE, MSE, and RMSE, they should be near
to 1 for the R? metric.

Depending on the regression problem in study (ET, vs.
SR), two targets were considered: (i) ET, was computed
using the FAO56-PM formula, as per Eq. (3), and using
as input the data measured by the already referred WS,
namely temperature, humidity, wind speed and solar radiation
(see Sec. III-C1, III-C3, and III-C4); and (ii) the average
solar radiation measured by the WS was used as SR target
(see Sec. III-C2).

R*=1 8)
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B. NEURAL NETWORK MODELS’ ARCHITECTURE

The following neural network types were used for the
conduction of this work: ANN, LSTM [43], GRU [44], and
Artificial RNN [45], as well as hybrid models like LSTM-
ANN, RNN-ANN, and GRU-ANN.

Artificial neural networks typically have an input layer,
one or more hidden layers, and one output layer. The
input layer dimension is defined by the number of inputs
to the model, i.e., the number of features that are used
on a particular model. Hidden layers are internal layers
that can vary in quantity and number of neurons. The
output layer can have one or more neurons, depending
on the number of outputs a model has. Artificial neurons
are activated using activation functions, which have an
important role on the performance of neural networks, since
they provide the non-linearity that is needed to learn a
complex problem [46]. During the conduction of this work,
Rectified Linear Unit (ReLU), Tangent Hyperbolic Func-
tion (Tanh) and Sigmoid activation functions were tested,
however ReLU always yielded better results, being therefore
fixed [47].

LSTM, GRU, and RNN algorithms are deep learning meth-
ods that, unlike feed-forward neural networks, implement
feedback connections. These feedback connections provide
the ability to add memory to the models, making its use
justified through the fact that the dataset (and target) is a time
series, where some patterns might be cyclic or information
from the previous days might play an important role [43],
[44], [45].

Furthermore, in the work presented by Vaz et al. [7], for
the same problem and dataset here in study (using limited
weather parameters as input features), several machine learn-
ing regression models were compared in their performance,
namely: Ordinary Least Squares, Ridge, Lasso, k-Nearest
Neighbors, Support Vector Machine, Decision Tree, and
Random Forest (RF). Since Random Forest [48], [49] gave
the best results for ET, and SR estimation models, RF will
also be evaluated, so that the proposed neural network based
models can be directly compared with other top performing
methods.

Systematic testing (varying the number of neurons in
powers of 2) allowed us to set the non-hybrid models to have
two hidden layers: the first one consisting of 512 neurons,
followed by a second layer that has 32 neurons, represented
as having [512, 32] neurons. This configuration consistently
gave the best results, being observed that augmenting the
number of layers and/or neurons of the neural network
would not increase model performance, while reducing
would impact on model’s performance. Following the same
arrangement, allowed us to decide the hybrid models’
architecture (namely, LSTM-ANN, RNN-ANN, and GRU-
ANN). In this case, to balance the training computational
requirements and the models’ performance, it was decided to
use four hidden layers. E.g., as depicted in Fig. 2, the LSTM-
ANN model has the first two hidden layers consisting of
[32, 64] neurons of LSTM type, followed by two more layers

968

input: | [(None, 1, 5)]
[(None, 1. 5)]

dropout_input: InputLayer
output:

Y
input: (None, 1, 5)

(None, 1, 32)

Istm: LSTM

output:

Y
input: | (None, 1, 32)

(None, 1, 32)

dropout_1: Dropout
output:

Y
input: | (None, 1, 32)

(None, 64)

Istm_1: LSTM

output:

Y

mput: | (None, 64)
(None, 64)

dropout_2: Dropout
output:

Y
mput: | (None, 64)

(None, 64)

flatten: Flatten
output:

y
input: | (None, 64)

(None, 64)

dense: Dense

output:

Y

mnput: | (None, 64)
(None, 64)

dropout_3: Dropout
output:

Y
input: | (None, 64)

(None, 32)

dense_1: Dense
output:

A J

input: | {(None, 32)

dropout_4: Dropout
(None, 32)

output:

Y
mnput: | (None, 32)

(None, 1)

dense_2: Dense

output:

FIGURE 2. LSTM-ANN neural network architecture.

of [64, 32] neurons of a fully connected ANN. The
RNN-ANN and GRU-ANN models are similar, being all
represented as having [32, 64; 64, 32] neurons. Also, as can
be seen in Fig. 2, between each layer there is the possibility
of using dropout regularization.

Solver, loss function, and hyperparameters like learning
rate, number of epochs, and batch size play an important
role on model training and performance [50]. For all
models, the Adam optimizer [51] was selected as a solver,
mean squared error (MSE) was used as the loss function,
kernel initialization was done using the Glorot normal
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TABLE 1. Comparison of several regression methods for ET, estimation using a limited set of features.

ANN LSTM GRU RNN ‘ RF ‘ LSTM-ANN RNN-ANN GRU-ANN
R? 0.959 0.958 0.962 0960 | 0.936 0.959 0.953 0.955
RMSE (mm/day) 0342 0.347 0.331 0.339 0.429 0.345 0.370 0.362
MSE (mm2/day) 0.117 0.121 0.109  0.115 0.184 0.119 0.137 0.131
MAE (mm/day) 0.25 0.25 0.24 0.25 0.32 0.25 0.27 0.25
MAPE (%) 7.54 7.40 7.25 7.33 9.11 745 7.97 7.81
Reference Evapotranspiration (ETO) - Target vs ANN Estimation
T — €m0 Target Test Data
—— ETO ANN Estimation
— Absolute Error

ETO [mm/day]

EI T NI s TR

t t
1 July 2019 1 January 2020

T
1 July 2020
Date

t t
1 January 2021 1 July 2021

FIGURE 3. Target ET, vs. ANN estimation, where solar radiation was not used as feature.

initialization [52], and the number of epochs was set to a
high value of 1000, however, early stopping was used, with
a patience value set to 150. Dropout regularization [53] was
applied during training and its value was selected using grid
search with values ranging from 0.0 up to 0.6, in 0.1 steps.
During initial model development and training, the batch size
was also selected using a grid search approach, with a range
from 64 up to 256, in multiples of 32. However, a batch size
of 128 always gave a good and consistent result, so later it
was fixed to 128 for all models, reducing models training
time. Input features were normalized to values between
0 and 1. Finally, max norm weight constraint was applied,
and its value was grid searched between 1 and 4, in steps
of one.

It should also be noticed that time lag was introduced on
all models, i.e., data from the previous days was introduced
as an input feature together with current day data. In this
case, time lags from 1 up to 10 days were tested, however
it brought no improvement on models performance. In this
experimental context, attempts of introducing new features
through the use of polynomial features and features inverse
were also made, but did not present any further improvement
in models’ metrics and, as such, it is not presented
here.

In appendix, Tables 5 and 6 summarize the tested and
tuned hyperparameters, respectively, for each of the proposed
models.
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C. ET, ESTIMATION USING ANN METHODS WITH A
LIMITED SET OF FEATURES

Solar radiation is not normally available either as a measure-
ment or as a forecast, therefore the need to develop models to
estimate ET, that do not require it as an input feature. In this
context, ET, estimation models that have as input a limited
set of parameters are explored in Sec. III-C1. Furthermore,
since solar radiation is the main factor for the determination
of ET, [4], in Sec. III-C2 solar radiation estimation models
that use a limited set of features are explored. Finally,
two approaches are taken: (i) use the previously estimated
solar radiation as an input to another neural network model
(Sec. ITI-C3) or (ii) use the FAO56-PM formula to compute
ET,, using as an input feature the estimated solar radiation
(Sec. III-C4). Please refer to Fig. 1 for scheme of the
proposed flow.

1) ET, ESTIMATION USING ANN METHODS (EXCLUDING
SOLAR RADIATION)
In this section neural network based models are used to
directly estimate ET,, using as inputs limited weather param-
eters. The set of features used are Month € {1,2,...,12},
maximum and minimum temperature (7empMax and
TempMin), average humidity (HumididtyAvg), and average
wind speed (WindAvg).

Table 1 shows the results obtained by the non-hybrid
models and RF (included for comparison purposes), being
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TABLE 2. Comparison of several regression methods for average solar radiation estimation using a limited set of features.

ANN LSTM GRU RNN ‘ RF ‘ LSTM-ANN RNN-ANN GRU-ANN
R? 0.831 0.827 0.825 0.833 0.808 0.825 0.807 0.819
RMSE (W/m2/day) 28.976 29.281 29.531 28.817 30.832 29.462 30.942 29.953
MSE ((VV/mZ)2 /day)  839.607 857.368 872.078  830.413 950.611 868.011 957.43 897.161
MAE (W/mz/day) 18.55 20.55 19.13 18.46 21.51 18.69 20.70 19.44
MARPE (%) 10.22 11.06 10.75 10.30 12.27 10.37 11.72 11.10
Solar Radiation (SR) - Target vs ANN Estimation, input features include Daylight Hours and Sunset Angle
kR - Test Data
1| — SR ANN Estimation
300 7 —— Absolute Error

250 -

200

T

150 -

Solar Radiation [W/m”2/day]

100 -

50 1

t t
1 July 2019 1 January 2020

T
1 July 2020
Date

t t
1 January 2021 1 July 2021

FIGURE 4. Target solar radiation vs ANN estimation, input features include daylight hours and sunset angle as

derived features.

TABLE 3. Comparison of several regression methods for ET, estimation using a limited set of features, and the previously estimated solar radiation.

ANN LSTM  GRU RNN | RF | LSTM-ANN RNN-ANN  GRU-ANN | SR-ANN — FAO56-PM
R? 0.968 0.965 0.967  0.967 | 0.950 0.967 0.965 0.966 0.977
RMSE (mm/day)  0.303 0.318 0.310  0.308 | 0.378 0.307 0.319 0.312 0.256
MSE (mm?/day)  0.092 0.101 0.096  0.095 | 0.143 0.094 0.102 0.098 0.066
MAE (mm/day) 0.22 0.23 0.22 0.22 0.27 0.22 0.22 0.22 0.16
MARPE (%) 6.66 6.91 6.71 6.58 7.68 6.50 6.55 6.73 5.05

clear that neural network based models outperform, in all
metrics, the RF model. ANN, LSTM, GRU and RNN give
similar results, the best one being the GRU based model
with an R? of 0.962, a MAE of 0.24 mm/day, and a
MAPE of 7.25 %. The plot of the target ET, (blue), of the
ET, estimated using the ANN model (orange), and of the
corresponding absolute error (green) in Fig. 3 shows that
the estimator follows relatively well the ET, target value.
In the same figure, the shadowed region corresponds to the
test data, being visible the expectable slight increase of the
absolute error, when comparing to the train region (as stated
earlier, all presented metrics are calculated using only the
test data). Table 3 also presents the results obtained using
the hybrid models, namely, LSTM-ANN, RNN-ANN, GRU-
ANN. The results are slightly worse than the ones obtained
using the GRU, with the LSTM-ANN model attaining an
R? of 0.959 against the 0.962 of GRU (MAE, MAPE, MSE,
and RMSE are also similar).

970

2) SOLAR RADIATION ESTIMATION USING ANN METHODS
WITH A LIMITED SET OF FEATURES

As an alternative to the presented in the previous section,
and since solar radiation is the main driver of evapotranspi-
ration [4], [5], this section studies solar radiation estimation
models that have as input a limited feature set, compatible
with the limited number of features returned by the common
weather forecast APIs. The estimated result will be later
injected as a feature in other machine learning model or used
in the FAO56-PM formula (Eq. 3).

So, in this section, the solar radiation measured by the WS
was used as target. Initially, the features used in the solar
radiation models were the same as the ones proposed by
Vaz et al. [7], namely: Month, Day, maximum and minimum
temperature (TempMax and TempMin), average humidity
(HumididtyAvg), average wind speed (WindAvg), dew point,
and the polynomial feature Month*> x Day. However, it was
found that the model metrics were improved by dropping dew
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d Solar F

Reference Evapotranspiration (ETO) - Target vs ANN Esti

— ETO Target
—— ETO ANN Estimation
— Absolute Error

ETO [mm/day]

using

Test Data

T T
1 July 2019 1 January 2020

T
1 July
Date

T T
2020 1 January 2021 1 July 2021

Reference Evapotranspiration (ETO) - Target vs FAO56-PM

— ETO Target
— ETO FAO56-PM using Solar Radiation Estimation
— Absolute Error

ETO [mm/day]

0

using d Solar F

Test Data

T T
1 July 2019 1 January 2020

T
1 July 2020

Date

T T
1 January 2021 1 July 2021

FIGURE 5. Target ET, vs ANN estimation (top) and Target ET, vs FAO56-PM values using estimated solar radiation

(bottom).

point and the polynomial feature Month*> x Day and, instead,
adding the sunset hour angle (wy) and daylight hours (V). As a
note, the sunset hour angle (w;) was defined as [4]

ws = arccos [— tan(gp) x tan(d)], ©)]
where ¢ is the latitude of the WS (in radians) and
2w
6 =0.409sin | —J — 1.39 10
sin (3 & ) (10)

is the solar declination (also in radians), and J is the number
of the day in the year. Furthermore, the daylight hours (N) is
given by

24
N = —w;.
g

Y

The results obtained are summarized in Table 2, where
it can be seen that RNN and ANN are the best performing
methods, with RNN being slightly better with an R? of 0.833,
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a MAE of 18.46 W /m?/day, a MAPE of 10.30 %, and a
RMSE of 28.817. This result is better than what was obtained
by Vaz et al. [7], using the same dataset, on which Random
Forest gave the best results, with an R? of 0.814, a MAE of
21.31 W/m?/day, and a MAPE of 11.29 %. The inclusion of
daylight hours and sunset angle improved performance for all
neural network based models but, as can be seen on Table 2,
it worsened Random Forest performance.

Fig. 4 depicts the target solar radiation that was measured
by the solar station (blue), the approximated solar radiation
obtained with ANN method (orange), and the absolute error
curve (green). Shadowed is the test set. This solar radiation
estimation will be used next to predict the ET,, values.

As in Sec. III-C1, the recursive hybrid LSTM-ANN,
RNN-ANN and GRU-ANN models’ results, summarized
also in Table 2, give similar performance to the recursive
non-hybrid methods, with the advantage of requiring less
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TABLE 4. Comparison of several regression methods for ET, estimation using a limited set of features. Data with a span of almost 30 years was collected
from 11 WS spread across the Colorado state, and model performance metrics from the 11 WS was averaged for each of the developed models.

Model R? RMSE [mm/day]  MSE [mm2/day] MAE [mm/day] MAPE [%]
ANN 0.977 0.316 0.101 0.22 8.19
ET, without SR LSTM-ANN 0.977 0.319 0.103 0.23 8.09
RF 0.970 0.363 0.132 0.26 9.44
ANN 0.974 0.336 0.114 0.25 10.11
ET, using SR-ANN as a feature LSTM-ANN 0.972 0.350 0.124 0.27 14.24
RF 0.974 0.334 0.112 0.23 8.18
Hybrid FAO56-PM SR-ANN — FAO56-PM___ 0.984 0.261 0.069 0.16 4384
[] ANN w/o SR [] LSTM-ANN w/o SR RF w/o SR
] ANN w/ SR-ANN [] tsTM-ANN w/ SR-ANN  [_] RF w/ SR-ANN

RZ

RMSE [mm/day]

0,993

0,988

0,983

0,978

0,973

0,968

0,963

0,958

0,450

0,400

0,350

0,300

0,250

0,200

D SR-ANN -> FAO56-PM

T ll

] ANN w/o SR [] LSTM-ANN w/o SR RF w/o SR
[] ANN w/ SR-ANN [] LsTM-ANN w/ SR-ANN [ RF w/ SR-ANN

[] srR-ANN - FAO56-PM

FIGURE 6. Boxplot graphs of R2 (top) and RMSE (bottom) obtained using the following ET, estimation models: ANN
without SR, LSTM-ANN without SR, RF without SR, ANN with SR estimated by an ANN (SR-ANN), LSTM-ANN with

SR-ANN, RF with SR-ANN, and the hybrid method where SR-ANN is used as a feature in FAO56-PM formula (SR-ANN
— FAO56-PM). The models were trained using data collected from 11 WS, that are spread across the Colorado state.

computation power, since the number of trainable parameters while the LSTM-ANN model only has 35

is highly reduced due to the smaller network that is used.

E.g., the LSTM model has 1,128,609 trainable parameters, inference time.

972

,841, requiring
approximately 21 % of the training time, and 58 % of the
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FIGURE 7. Boxplot graph of the absolute errors for each of the 11 Colorado state WS, using the hybrid FAO56-PM
method, where SR was estimated using the ANN model and then injected into the FAO56-PM formula (SR-ANN —

FAO56-PM).

3) ET, ESTIMATION USING THE APPROXIMATED SOLAR
RADIATION

This section describes the implementation of the ET,
estimation using as features solar radiation (approximated
using the ANN presented in Sec. III-C2) together with
maximum temperature, average humidity, and average wind
speed. To be more clear, the difference between the present
models and the ones in Sec. III-C1 is the use of the (estimated)
SR, which was not previously used.

The obtained results are summarized in Table 3. The ANN
model was the best one with an R? of 0.968, a MAE of
0.22 mm/day, a MAPE of 6.66 %, and a RMSE of 0.303
(against the R of 0.962, the MAE of 0.24 mm/day, the
MAPE of 7.25%, and the RMSE of 0.331 previously obtained
with GRU model). Similarly, with the advantages previously
stated, the LSTM-ANN model achieved an R? of 0.967, just
one thousandth worse than the ANN model, but improving
the MAPE to 6.5%. Also, the obtained result is better than the
ones presented in Vaz et al. [7], using a similar technique but
based on ML algorithms, where the best performing model
was Random Forest with an R? of 0.951, a MAE of 0.26
mm/day, and a MAPE of 7.44 %. Feature engineering as well
as the use of other weather limited features was attempted, but
no further improvements could be made. Fig. 5 (top) depicts
the target ET, (blue), estimated ET, (orange), and absolute
error (green) curves for the train and test (shadowed) dataset,
allowing to observe the model closely follows the reference
evapotranspiration target.

4) ET, ESTIMATION USING FAO56-PM EQUATION AND THE
APPROXIMATED SOLAR RADIATION

In this section, another type of hybrid approach was tested,
which uses the previously estimated solar radiation as an
input, together with temperature, humidity and wind speed
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to compute ET, using the FAO56-PM formula (SR-ANN —
FAO56-PM). The result obtained is presented in Table 3, with
an R? of 0.977, MAE of 0.16 mm/day and MAPE of 5.05
%. This result is better than the previously obtained ones,
and once again is also better than what was presented by
Vaz et al. [7] which consisted of an R? of 0.975, an MAE
of 0.18 mm/day, and an MAPE of 5.51 %. Fig. 5 (bottom)
plots ET, target, estimated ET,, and absolute error, where in
the bottom plot an improvement of the absolute error can be
seen when compared with the previous plots.

Next section will generalize the current results to 11 WS
ran by the Colorado Agricultural Meteorological Network
(CoAgMET).

IV. CoAgMET AGRICULTURAL WEATHER STATIONS

The Colorado Agricultural Meteorological Network (CoAg-
MET) is a network of automatic weather stations distributed
across the state of Colorado. The collected weather data, such
as temperature, humidity, wind speed and solar radiation,
can be accessed via an API at www.coagmet.com. Data
from 11 weather stations was collected, namely the stations
having the following code names: altO1, avn01, ctz01, hyk02,
idl01, ksyOl, 1en0O1, othOl, pkhO1, rfdO1, yjkOl. These
weather stations were chosen because they are spread across
the Colorado state and have data available starting from
August 1992, up to and including July 2021 (when the test
were run), which comprises almost 30 years of data. Also,
with temperatures ranging from —39.06 to 44.26 degrees
Celsius (°C), and having desert zones, the Colorado state
poses different climatic conditions than the Mediterranean
based Vale do Lobo. This allows the assessment of model
performance under different climate conditions than Vale do
Lobo, and for a longer period of historical data. For each
WS, the ANN, the LSTM-ANN and the RF models were
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trained using the same hyperparameters found for the Vale
do Lobo Dataset (see Table 6). As previously, a ratio of
75 % to 25 % of train and test data was used, meaning that
the developed models are making predictions for more than
7 years. The results obtained for the 11 WS were averaged
and are presented in Table 4. In short, the best results were
attained by the hybrid method where SR is estimated by an
ANN and then injected in the FAO56-PM formula (SR-ANN
— FAO56-PM), achieving an R? 0f 0.984, a RMSE of 0.261
mm/day, a MSE of 0.069 mm? /day, a MAE of 0.16 mm/day,
and a MAPE of 4.84 %.

Furthermore, RZ and RMSE variation across all stations is
small, as can be observed in the boxplots of Fig. 6. Also, for
all models, R? is always above 0.958 and RMSE is below
0.45 mm/day, which can be considered a good result. MAE
metric variation across all WS is also small, as it can be
observed in Table 4 and inferred from the boxplots on Fig. 7
which shows that, for the 7 years of test data, the maximum
absolute error is below 1 mm/day, apart outliers. As a note,
values are regarded as outliers if they are more than 1.5 times
the interquartile range (/QR) below the first quartile (Q1) or
more than 1.5 x IQR above the third quartile (Q3), i.e., values
outside the interval [Q1 — 1.5 X IQR, O3 + 1.5 x IQR].

V. CONCLUSION AND FUTURE WORK

Evapotranspiration can be used to estimate the amount of
water required by agriculture projects and green spaces,
playing a key role in water management policies that
combat the hydrological drought. Some equipment can be
used to measure ET,, but they are expensive to buy and
maintain. As an alternative, many use meteorological data to
estimate the ET, values, but again, in the most well accepted
formula (FAO56-PM), solar radiation is required, which is not
common to have in general meteorological APIs.

In this work, several neural network based regression
models (namely, ANN, LST, GRU, and RNN) and hybrid
approaches (namely, LSTM-ANN, RNN-ANN, GRU-ANN)
for ET, estimation were developed with different degrees of
success. Since solar radiation is the main ET, driver, as stated
by several authors, models were also developed for estimating
solar radiation using input features that are readily available
in common weather forecast APIs. This allowed both the
use of the previously estimated solar radiation in neural
network regressors, to estimate ET,, but also the possibility
to use the hybrid approach where solar radiation is previously
estimated, and then the FAO56-PM method is used to finally
compute ET,. For the Vale do Lobo WS, the latter yielded the
best results, with an R? of 0.977, a RMSE of 0.256 mm/day,
a MSE of 0.066 mm?/day, a MAE of 0.16 mm/day, and a
MAPE of 5.05 %. The attained results were also compared
against the ones in a previous work from the authors, were
several other machine learning methods were used (namely,
Ordinary Least Squares, Ridge, Lasso, k-Nearest Neighbors,
Support Vector Machine, Decision Tree, and Random Forest),
demonstrating the overall good result, considering the limited
weather parameter features that were used. Being the
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TABLE 5. Sets of hyperparameters used in the grid search procedure.

Model

Hyperparameters

Range explored

ANN, LSTM, GRU,
RNN, LSTM-ANN,

activation
weight_constraint

{ReLU; Tanh; Sigmoid}

RNN-ANN, dropout_rate {0.0,0.1,0.2,0.3,0.4, 0.5, 0.6}
GRU-ANN use_bias {False; True}
n_estimators {10, 100, 250, 500, 750, 1000}
min_samples_leaf {1,2,3,5, 10}
RF max_depth {3, 5, 10}

criterion
max_features

{squared_error}
{None; sqrt; log2}

TABLE 6. Tuned hyperparameters.

Model Hyperparameter Table 1 Table2  Table 3
activation ReLU ReLU ReLU
weight_constraint 2 2 2
ANN dropout_rate 0.0 0.3 0.4
use_bias True True True
activation ReLU ReLU ReLU
weight_constraint 3 3 3
LSTM dropout_rate 0.0 0.3 0.3
use_bias True True True
activation ReLU ReLU ReLU
weight_constraint 2 2 2
GRU dropout_rate 0.0 0.1 0.1
use_bias True True True
activation ReLU ReLU ReLU
weight_constraint 3 3 3
RNN dropout_rate 0.1 0.2 0.1
use_bias True True True
activation ReLU ReLU ReLU
Istm_weight_constraint 3 3 3
ann_weight_constraint 3 3 3
LSTM-ANN Istm_dropout_rate 0.0 0.0 0.0
ann_dropout_rate 0.0 0.2 0.1
Istm_use_bias True True True
ann_use_bias True True True
activation ReLU ReLU ReLU
rnn_weight_constraint 2 2 2
ann_weight_constraint 3 3 3
RNN-ANN rnn_dropout_rate 0.0 0.0 0.0
ann_dropout_rate 0.2 03 0.1
rnn_use_bias True True True
ann_use_bias True True True
activation ReLU ReLU ReLU
gru_weight_constraint 3 3 2
ann_weight_constraint 3 3 2
GRU-ANN gru_dropout_rate 0.0 0.0 0.0
ann_dropout_rate 0.0 0.4 0.1
gru_use_bias True True True
ann_use_bias True True True
n_estimators 500 10 1000
min_samples_leaf 1 5 1
RF max_depth 10 5 10
criterion mse mse mse
max_features None None None

conditions different, and impossible to replicate, we can also
see that the proposed methods generically improve the metric
values attained by other authors.

An extensive dataset collected from 11 WS from the
Colorado CoAgMET network was used to assess model
performance under different climate conditions and longer
periods of data. Our results show that the evaluated models
give similar performance to the ones obtained when using
the Vale do Lobo dataset, with average R? of 0.984, MAE
of 0.16 mm/day, MAPE of 4.84 %, and a RMSE of
0.261, when using the Hybrid FAO56-PM model. The result
is particularly relevant when considering the diversity of
weather conditions, and the long period of data that comprises
almost 30 years.
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Also, our work shows that the recurrent hybrid network
models (e.g., LSTM-ANN) give similar results to the non-
hybrid recurrent network models (e.g., LSTM). However, its
computational cost is lower due to the decrease of trainable
parameters, requiring only 21 % of training, and 58 % of
inference time when compared to the non-hybrid recurrent
networks. This is an important result when using edge
computing, where computational power is limited.

Future work will include a dataset collected from the
existing WS infrastructure that is installed in the Algarve
region, in south Portugal. The objective will be to develop
local and pooled models of ET, predictors for the Algarve
region. Also, since all limited feature models here presented
are compatible with the freely available weather forecast
APIs, the impact of using such APIs as input data to the ML
models here developed needs to be further assessed.

APPENDIX

DEEP LEARNING ALGORITHM PARAMETERS

In this section, the hyperparameters and value ranges that
were used in the grid search procedure are presented in
Table 5. Tuned hyperparameters, for models presented in
Table 1, 2, and 3, are presented in Table 6. Please note that,
fixed hyperparameter values (e.g., number of neurons, and
neural network architecture) are described in Sec. III-B.
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