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ABSTRACT Optimum power allocation is an effective way to mitigate residual self-interference and inter-
user interference in multiple input multiple output full-duplex (FD) systems. However, current research
mainly considers parts of influencing factors and sets service models fixed. Given this, we comprehensively
focus on three perspectives in a novel power allocationmethod, which involve themutingmanagement (MM)
and the assignment of both base station antennas and subcarriers in the FD system. Then, we formulate an
optimization problem to maximize the total spectrum efficiency. According to the categories of variables
in the nonconvex objective function, we first propose a hierarchical algorithm, which is decomposed into
the first-order Taylor approximation (FOTA) method and the greedy algorithm. The continuous and discrete
variables related subproblems are solved through FOTA and greedy algorithm, respectively. Among them,
the greedy algorithm is an alternative to a traditional method of exhaustive search. Considering the high
complexity of the greedy algorithm, we further introduce deep reinforcement learning (DRL) instead to
solve the corresponding subproblem. Thus, two Double Deep Q-learning Networks are constructed to train
the samples in each sub-slot. Simulation results validate that the hybrid DRL-convexmethod outperforms the
hybrid greedy-convex method. Meanwhile, the MM introduced scheme’s performance gain is more evident
than that of the method without MM in many scenarios.

INDEX TERMS Full-duplex (FD), power allocation, spectrum efficiency (SE), smart antennas, muting
management (MM), subcarrier assignment, deep reinforcement learning (DRL), jamming user (JU).

I. INTRODUCTION
With the development of big data, blockchain, stream media,
and others, related businesses have been incorporated into the
enriched public life. According to the International Telecom-
munication Union (ITU) forecast, global mobile data will
increase by about 55% annually from 2020 to 2030 and reach
5,000 Ebits in 2030 [1]. Although spectrum efficiency (SE)
for conventional communication technologies has approx-
imated the Shannon capacity bottleneck, the higher SE
requirement for future wireless communications has been
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put forward. Compared with traditional half-duplex (HD)
technology, full-duplex (FD) (i.e., co-time co-frequency full-
duplex in-band) technology can significantly improve SE [2].
Because of this, FD technology is regarded as one of the
candidates for enhanced wireless air interface technologies of
6G [3], which has a broad prospect. Nevertheless, it is beset
with severe self-interference (SI) (i.e., interference from its
emitting to receiving antennas). If the SI is not addressed
appropriately, the expected receiving signal will result in
decoded failure due to it being submerged in the transmitting
signal [4].

Currently, there are active and passive self-interference
cancellation (SIC) technologies [2], but partial SI remains
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because of inaccurate SI channel estimation and hardware
impairment [5]. Moreover, residual SI is further aggravated
caused by the extensively used multiple input multiple output
(MIMO) technology, which would make residual SI com-
pound and challenging to eliminate [6]. When multiple users
are located in the cellular network, interference from user to
base station (BS) and that from user to user also exist. All
the aforementioned interference together deteriorates the FD
performance.

As is known, lifting power could increase capacity but
decrease it in turn due to intensifying interference. The rev-
enue depends on the weights of each desired signal and
interference, which is a typical allocation problem. There-
fore, appropriate power allocation can effectively address the
tradeoff between performance gain and loss, and is mainly
fulfilled through an objective function (e.g., maximized SE,
energy efficiency (EE)). In view of this, many scholars focus
on power allocation methods to alleviate the FD performance
reduction caused by multiform interference [7]. More impor-
tantly, the diversity gain can be improved with the applica-
tion of smart antennas rather than deploying the traditional
fixed antennas [8]. With the aid of smart antennas, the FD
technique is further enhanced. Considering that spectrum
resource scarcity is an international problem [1], for this rea-
son, implementing power allocation along with FD technique
in a limited spectrum resource is very meaningful in the
current situation.

A. MOTIVATION
Despite of aforementioned benefits provided by the power
allocation method in the FD systems, current research sel-
domly considers both smart antennas and spectrum resource
scarcity in a power allocation method [9], [10], [11], [12],
[13], [14], [15]. Meanwhile, other scholars set the precon-
dition of users’ service models fixed to optimize the objec-
tive function, which may not be an overall optimum [16].
Inspired by this, we propose a power allocation method with
multiple joint associations (i.e., smart antennas, scheduled
users, and subcarriers) to improve FD performance from each
aspect. To be specific, the layer of smart antennas works
on lifting diversity gain. The muting management (MM) for
scheduled users is to restrain interference caused by parts
of users, which generate more disturbances than others. The
rational subcarrier assignment aims to reduce competition in
spectrum resources. All three elements are bound up with
SE performance. In our work, the MM is realized through a
newly designed frame structure, which considers both muting
and compensation for a small group of users. This field is
different from the previous work. Additionally, we integrate
the assignment of antennas and subcarriers in power alloca-
tion and work the joint optimization problem out through a
hierarchical algorithm, which is another new scheme to the
existing works.

B. MAIN CONTRIBUTIONS
In this paper, we review the current investigations about
power allocation in FD systems. Accordingly, we propose a

novel power allocationmethod. Themain contributions of our
work are summarized as follows:

1. Considering the different types of interference,
we divide the scheduled users by service type. To real-
ize service enabled from the user level, we define the
user identifier and devise MM by adding a trigger
region and a muting indication in sub-slot 1.

2. To integrate the affecting factors that involve the MM
and assignment of antennas and subcarriers, we for-
mulate an objective function of the power allocation
method, which considers the above three elements to
optimize the overall SE fully.

3. The proposed optimization problem is decomposed
into two subproblems in terms of continuous and dis-
crete variables. With the first-order Taylor approxima-
tion (FOTA) method, the continuous part is converted
into convexity. Then we employ the greedy algorithm
based on the traditional method (exhaustive search) to
tackle the discrete part as a benchmark.

4. Because deep reinforcement learning (DRL) is more
appropriate for solving nonconvex problems of dis-
crete variables, we design another hybrid method based
on two Double Deep Q-learning Networks (DDQNs)
instead of the greedy algorithm. Simulations demon-
strate that the hybrid DRL-convex method outperforms
the hybrid greedy-convex method. Also, our proposal
with MM achieves performance enhancement in com-
parison to that without MM.

The remainder of this work is organized as follows. The
related works are presented in Section II. Our system model,
followed by MM and uplink (UL)/downlink (DL) interfer-
ence model in each sub-slot, is described in Section III.
According to the system model, we formulate the opti-
mization problem for maximizing SE in Section IV. Section
V presents two proposed hierarchical algorithms to tackle
the nonconvex problem, and detailed complexity analysis
is presented. In Section VI, numerical results demonstrate
our proposal. Section VII remarks on the conclusion of our
work.

II. RELATED WORKS
Based on existing SIC technology, optimizing the formulated
objective function in a power allocation method is the main-
stream for improving the FD system’s performance recently.

Some scholars design optimized power allocation methods
in MIMO FD relaying. In [17], to satisfy the requirements
of each user’s signal to interference plus noise ratio (SINR),
along with saving the allocated power at the FD relay, the
authors formulate an EE-optimization problem in a block
fading channel and work the issue out through the geometric
programming method. Based on [17], the authors in [18]
mainly focus on the relationship between antenna number
and SE/EE. The optimal number of antennas to maximize
the objective function is derived. They demonstrate that a
performance bottleneck confines the FD antenna scale due
to the distortion noise.
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Moreover, other scholars apply the power control method
in FD cognitive radio networks to further promote the degrees
of freedom in the MIMO system. The authors in [19] put for-
ward four cognitive radio modes, where the secondary users
adopt different power strategies. Additionally, the authors
make a performance contrast between FD and HD in four
schemes, respectively.

The above authors in [17], [18], and [19] set the FD
antennas’ operational modes fixed, and other scholars con-
sequently research adaptive FD antennas in power allocation.
Unlike [18], the authors in [9] give an optimum ratio between
emitting and receiving antennas instead of equal numbers to
maximize the sum rate in the power allocation method. Some
scholars study power allocation with flexible antennas under
secure transmission in FD systems. In [10], the antenna selec-
tion coefficient has been put forward to regulate the number
of emitting/receiving antennas in the FD system. Then a
power allocation method based on quantum calculation is
applied to maximize the security capability and EE.

The authors in [9] and [10] regard the emitting/receiving
antennas as a group, while others in [11] and [12] treat each
FD antenna as an individual. In [11], the authors propose a
scheme that can dynamically select each emitting/receiving
antenna according to various channel conditions, thus raising
the FD diversity gain for SE enhancement in power alloca-
tion. To further research the diversity gain of FD, the authors
in [12] introduce a binary matrix to define the operating
modes of each antenna. Using the assignment matrix, they
construct a two-stage SE objective function, which is solved
through successive convex approximation.

All the above studies have not considered the FD net-
work with spectrum resource intensive. Some scholars take
bandwidth or subcarrier as a power allocation factor. The
authors in [13] adopt a three-stage Stackelberg game in power
allocation, which takes bandwidth and EE as pricing and util-
ity, respectively. They attempt to acquire the optimum utility
value through the game. In [14], the authors present auxiliary
variables and penalty factors to handle the discrete subcarrier
assignment variables. With the problem reconstruction, the
optimization solution of EE in power allocation has been
acquired through the Lagrange method. In [15], the authors
propose a power allocation method based on successive con-
vex approximation in the FD distributed antenna system. The
system includes several user-centric virtual cells that share
limited subcarriers.

The sequential decision problem is known to be solved
by reinforcement learning (RL) [20]. Since RL can find an
appropriate compromise between performance and complex-
ity in the case of massive samples [21], it has attracted
tremendous attention from academia. Therefore, many schol-
ars have attempted to solve the power allocation problemwith
RL [22], [23], [24], which has also been used in FD systems
recently [25], [26], [27], [28], [29], [30]. To name a few,
in [25], based on the underlay mode referring to [19], the
authors employ DRL for power control, which increases the
secondary user’s SINR by improving its perception accuracy.

FIGURE 1. Example of a multi-user cellular network with four scheduled
users (i.e., two UL and two DL users) and one unscheduled user (i.e.,
non-service user) at the moment.

The times of satisfaction for the capacity requirement at both
primary and secondary users are defined as rewards, which
can be maximized through a training process. The authors in
[26] focus on a pair of terminals with FD capability. By set-
ting applicable states, actions, and rewards, they propose the
hybrid RL scheme to maximize the sum of SE and energy
transmission efficiency.Meanwhile, the influence of different
antenna numbers and power budgets on performance is also
studied. In [27], the authors adopt RL in an unmanned aerial
vehicle FD relay scenario to maximize secrecy capacity.
At the same time, different RL techniques are compared in
terms of secrecy rate and convergence.

In view of the above research, the researchers in [9],
[10], [11], and [12] aim to improve the spatial diversity gain
in power allocation but do not consider the case that both
emitting and receiving antennas are shared. Also, subcarrier
assignment in the objective function is not involved con-
currently. Although authors in [13], [14], and [15] consider
subcarrier assignment, the FD antennas are invariable. To the
best of our knowledge, the joint optimization problem of FD
antenna and subcarrier assignment in power allocation has not
been investigated integrally. Also, investigations in [9], [10],
[11], [14], and [15] set users’ service models fixed, ignoring
the service of muting. In response to this, we put forward
our proposal. Meanwhile, considering the advantage of RL,
we adopt DRL to enhance the algorithm in the FD system.

III. SYSTEM MODEL
Fig. 1 depicts a BS working in FD mode, equipped with N
smart antennas in the cell. Let N = {1, 2, . . . ,N } denote
the set of BS antennas. Each antenna is connected with an
analog circulator device to isolate radio UL and DL. As a
result, the operational mode of single transmitting, single
receiving, or co-transmitting co-receiving in the same band
can be selected [31], [32].

We suppose that Z users are uniformly distributed in
the cellular network. The set of users represented by
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Z = {1, 2, . . . ,Z } is classified into the subsets of UL users,
DL users, and non-service users at the moment. Each user
is equipped with one antenna and can transmit or receive
data at a different time due to working in HD mode. The
network spectrum resources are divided into M mutually
orthogonal subcarriers, the set of which is denoted as M =

{1, 2, . . . ,M}. We assume that scheduled users in different
subcarriers do not interfere with each other. As the number of
scheduled users (i.e., service users) is larger than the number
of subcarriers, scheduled users reuse part of the subcarriers,
which incurs interference. In view of this, we will describe
MM in the following subsection.

A. MUTING MANAGEMENT
The authors in [16] propose a concept of Interference Aware
Muting that forces the mobile terminal to turn off due to
causing severe interference to BS. We call such users the
jamming users (JUs). As shown in Fig. 1, if one UL and one
DL user are deemed as JUs, the UL JU would aggravate UL
to DL and UL to UL interference, while DL JU exacerbates
SI and DL to DL interference.We can observe that muting the
JUs is a tractable and explicit strategy. However, the muting
process causes a service interruption to the JU that suffers
a performance loss. In order to minimize the side effect of
muting, the muted JUs will return to regular service at the
next time slot. That is, the muting orders will be invalid at
the subsequent slot until the new arrival of orders. Under the
above operations, albeit with performance partially reduced
from outages, we still attempt to reach a state where the
advantage outweighs its drawback compared with unmuted
before. Motivated by this, we introduce MM into the system
model.

Because the service type of users depends on the service
scheduled from BS, we assume that each time slot contains
a control region and a data region for simplicity [33]. The
schedule information, which determines the service type,
is monitored in the control region by a user. When a user
has detected a downlink control information that is relevant to
UL or DL schedule information, the data will be transferred
during the related data region. The affiliated data region is
subject to the specific frame pattern that BS has configured
[34]. To better evaluate the proposed MM, we combine two
consecutive time slots (called sub-slots 1 and 2) into one
schedule unit, in which the schedule information for the two
time slots keeps the same to ensure users’ service continuity
for a while. Sub-slot 1 is added with a trigger region and
a muting indication based on the primitive frame structure,
as shown in Fig. 2, where sub-slot 2 is the default. The
intention of this configuration is that we expect to keep the
minimal possible change in order to ensure compatibility.
BS judges the service muting decisions through power policy
adjustment in the trigger region, and the muting indication
bears themuting order that delivers to related scheduled users.
During sub-slot 2, the muting order will not work so that
the silenced users can restore the service. Meanwhile, the
appropriate compensation should be considered at sub-slot

FIGURE 2. Frame structure of sub-slots 1 and 2 for each user. The
dark-blue and red-brown frames stand for DL and UL subframes,
respectively. The ellipsis indicates the specific frame pattern, which is not
our focal point in this study.

2 in terms of fairness. The offset process is unrelated to
muting order as long as sub-slot 2 has acquired the muted
users information. It is evident that the operation in sub-slot
2 is aligned with the design framework.

To manage muting from the user level, we define service
identifiers for each user in the cell.

For instance, I(τκ ) = {αu1(τκ ), α
d
1(τκ ), α

u
2(τκ ),

αd2(τκ ), . . . , α
u
Z (τκ ), α

d
Z (τκ )} is denoted as service identifiers

for Z users at κ th schedule unit, where τκ ∈ {tκ , tκ +1t}.1t
is the length of a sub-slot, and τκ = tκ or tκ +1t means the
sub-slot 1 or 2 in the κ th unit. αuz (τκ ) and α

d
z (τκ ) signifies the

UL and DL service identifier for user z at the related sub-slot,
respectively. For ease of writing, sub-slot 1 or 2 at the κ th unit
is recorded as tκ,1 or tκ,2. In this paper, we mainly analyze one
unit, so we abbreviate tκ,1 and tκ,2 to t1 and t2, respectively.

In conclusion, identifiers for user z at sub-slots 1 and 2 can
be expressed as

αχz (t1) =


1, Schχz (t1) = Muz(t1) = 1,
2, Schχz (t1) = 1, Muz(t1) = 0,
0, otherwise,

(1a)

αχz (t2) =

{
2, Schχz (t2) = Schχz (t1) = 1,
0, Schχz (t2) = Schχz (t1) = 0,

(1b)

in which χ ∈ {u, d} expresses the service type of UL or DL.
Mu and Sch are short for Muting and Schedule, respectively.
Since users work in HD mode, the muting indicator is not
attentive to the specific service type. Muz(t1)= 1 or 0 denotes
that the muting order has delivered to user z or not at sub-
slot 1. Similarly, Schχz (t1or2) = 1 or 0 indicates that user z
concerning service type χ is scheduled or not at the whole
unit. Notably, users can not be scheduled for two types of
service simultaneously due to operation under HD mode.

To sum up, αχz (t1)= 1 or 2 means that the scheduled users
have been silenced or not at sub-slot 1. αχz (t2)= 2 guarantees
the continuity of the same schedule information in a unit.
In addition, αχz (t1or 2) = 0 indicates that the user is not
scheduled at the unit.
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As the above discussions, the scheduled users can be math-
ematically categorized into two types. One is a collective of
UL users, and the other is a set of DL users, denoted by

J ={αuz (t1)=1, 2, αuz (t2) = 2; z ∈ Z} = {1, 2, . . . , J} (2)

and

K={αdz (t1)=1, 2, αdz (t2) = 2; z ∈ Z} = {1, 2, . . . ,K },
(3)

respectively.
To be specific, we use U and D (set of muted UL and DL

users at sub-slot 1) to represent {αuz (t1) = 1, αuz (t2) = 2;
z ∈ Z} and {αdz (t1) = 1, αdz (t2) = 2; z ∈ Z} in J and K,
respectively.

LetG denote the set of scheduled users, which satisfiesG =
J ∪ K = {1, 2, . . . ,G}. Note that we only consider users in
G of the interference model below.

B. INTERFERENCE MODEL
In this paper, we apply a composite fading channel and can
acquire complete channel state information (CSI) [35], [36].
Considering the channel’s frequency characteristic, we sup-
pose that the CSI between two nodes in one schedule unit
will remain unchanged [10]. Accordingly, the difference in
transmission between two sub-slots pivots on MM.

1) TRANSMISSION AT SUB-SLOT 2
We first construct mathematical modeling at sub-slot 2 for
ease of analysis because no MM is applied.

For the modeling’s sake, we initially assume that all users
in G share the same subcarrier, and BS fixes Nt emitting and
Nr receiving antennas, satisfying Nt = Nr = N .
The signal received at BS from user j at sub-slot 2 can be

written as

yuj (t2) = huj (t2)
√
pj(t2)xuj (t2)

+

∑
j′∈J ,j′ 6=j

huj′ (t2)
√
pj′ (t2)x

u
j′ (t2)

+

∑
k∈K

(wk (t2))H HSI(t2)xdk (t2)+ n
u
j (t2), (4)

where

huj (t2) =
√
d−γj ◦ aaaj(t2) ◦wwwj(t2) ∈ C1×N (5)

represents the channel vector from user j to BS. d j ∈ R1×N

denotes the distance vector from user j to each BS antenna.
aaaj(t2) ∈ R1×N and wwwj(t2) ∈ C1×N indicate the lognormal
shadow fading and small-scale fading vector, respectively.
Both aaaj and wwwj obey independently identical distribution as
aaaj,wwwj ∼ CN (0, 11×N ) [15], where 11×N stands for 1 × N
dimensional vector with elements all 1.

The first term of (4) implies the desired signal. The second
term signifies the interference caused by other UL users
except user j (namely, UL to UL interference), and the third

term indicates the residual SI, which has been mitigated by
DL precoding (i.e., DL power allocation).
pj(t2) in the first term represents the transmitted power of

user j, which satisfies

pj(t2) ∈ P(t2) = {p1(t2), p2(t2), . . . , pJ (t2)} , (6)

where P(t2) is a set of transmitted powers for all UL users.
Meanwhile, xuj (t2) stands for the transmission symbol from
user j, which follows E[xuj (t2)(x

u
j (t2))

∗] = 1.
HSI(t2) ∈ CN×N in the third term is the residual SI matrix

and follows

HSI∼CN
(√

aσ 2
SI

/
(a+ 1)1N×N , INσ 2

SI

/
(a+1)

)
, (7)

where a is the Rician factor and σ 2
SI is the SI power ratio

of pre-SIC to post-SIC [35]. Additionally, xdk (t2) denotes the
received symbol of user k from BS, which also satisfies
E[xdk (t2)(x

d
k (t2))

∗] = 1.
DL precoding vector for user k is expressed as wk (t2) ∈

CN×1, which satisfies

wk (t2) ∈W(t2) = {w1(t2),w2(t2), . . . ,wK (t2)} . (8)

W(t2) means the set of DL precoding vectors of all DL
users.

The last term nuj (t2) ∈ CN×1
∼ CN (0, σ 2

u,jIN ) indicates
additive white gaussian noise (AWGN) vector related to user
j at BS.

The signal received at user k from BS at sub-slot 2 is
similarly expressed as

ydk (t2) =
(
hdk (t2)

)H
wk (t2)xdk (t2)

+

∑
k ′∈K,k ′ 6=k

(
hdk (t2)

)H
wk ′ (t2)xdk ′ (t2)

+

∑
j∈J

gk,j(t2)
√
pj(t2)xuj (t2)+ n

d
k (t2), (9)

where hdk (t2) ∈ CN×1 denotes the channel vector from BS to
user k .

Similar to (4), the first term in (9) represents the expected
signal. The second term indicates the interference caused by
receiving other DL users’ signals, which is the aforemen-
tioned DL to DL interference. The third term means user k is
interfered with by UL users, namely, the UL to DL interfer-
ence. In the third term, gk,j(t2) represents channel gain from
UL user j to DL user k . The final term ndk (t2) ∼ CN (0, σ 2

d,k )
stands for AWGN at user k .

According to (4) and (9), the target UL or DL user signal
mingles with different categories of interference, as shown in
Fig. 1, thus inducing undesirable channel conditions. It results
in an optimization bottleneck of FD performance for the case
of all BS radiating/receiving antennas inflexible [32]. Hence,
we refine each BS antenna’s working mode, which covers
reception/transmission independence mode and coexistence
mode.
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The smart antennas are modeled with an assignment vector
Q = [qu,qd], in which qu and qd are subvectors of receiving
and emitting antennas, respectively. The subvectors at sub-
slot 2 is written as

qu(t2) =
[
qu1(t2), q

u
2(t2), . . . , q

u
N (t2)

]
, (10a)

qd(t2) =
[
qd1(t2), q

d
2(t2), . . . , q

d
N (t2)

]
, (10b)

where qχl (t2) is the state of antenna l (∀l ∈ N ), defined as

qχl (t2) =

{
1, antenna l is used for service χ,
0, antenna l is not used for service χ.

(11)

Accordingly, the vectorQ acts on the channel vector as the
following (12) and (13) to realize the adaptive antennas.

Moreover, the interference model only applies to the users
that share the same subcarrier. We reconstruct the UL/DL
interference model by assigning BS antennas and subcarriers.
So (4) and (9) can be rewritten as

yuj,m(t2)

= qu(t2) ◦ huj (t2)
√
pj(t2)xuj (t2)b

u
j,m(t2)

+

∑
j′∈J ,j′ 6=j

qu(t2) ◦ huj′ (t2)
√
pj′ (t2)x

u
j′ (t2)b

u
j′,m(t2)b

u
j,m(t2)

+

∑
k∈K

(wk (t2))H
((
qu(t2)

)T qd(t2)
)

◦HSI(t2)xdk (t2)b
d
k,m(t2)b

u
j,m(t2)

+qu(t2) ◦ nuj (t2)b
u
j,m(t2) (12)

and

ydk,m(t2) =
(
hdk (t2)

)H
◦ qd(t2)wk (t2)xdk (t2)b

d
k,m(t2)

+

∑
k ′∈K,k ′ 6=k

(
hdk (t2)

)H
◦qd(t2)wk ′ (t2)xdk ′ (t2)b

d
k ′,m(t2)b

d
k,m(t2)

+

∑
j∈J

gk,j(t2)
√
pj(t2)xuj (t2)b

u
j,m(t2)b

d
k,m(t2)

+ ndk (t2)b
d
k,m(t2), (13)

respectively, where operator ‘‘◦’’ represents Hadamard prod-
uct. bχz,m(t2) is the assignment state of subcarrier m to user z
for service χ , represented as

bχz,m(t2) =

{
0, Schχz (t1) = Schχz (t2) = 0,
1, Schχz (t1) = Schχz (t2) = 1.

(14)

It is evident that a scheduled user corresponds to the user
assigned a subcarrier and vice versa. In conclusion, the
assignment states for each user constitute the subcarrier allo-
cation matrix, which is defined as

B(t2) = [bu1(t2), b
d
1(t2), b

u
2(t2), b

d
2(t2),

. . . , buZ (t2), b
d
Z (t2)]

T
∈ R2Z×M , (15)

where bχz (t2) = [bχz,1(t2), b
χ
z,2(t2), . . . , b

χ
z,M (t2)] is a subma-

trix for user z.

Note that for an arbitrary subcarrier m, one and only one
yuj,m(t2) has practical significance. It results from the fact
that each scheduled user is only assigned one subcarrier.
Hence, we could substitute the expression yuj (t2) for y

u
j,m(t2)

in the paper below for simplification. Similarly, ydk,m(t2) is
simplified to ydk (t2).

2) TRANSMISSION AT SUB-SLOT 1
Since the transmission at sub-slot 1 involves an additional
factor related to MM, we reformulate the interference UL/DL
models at sub-slot 1 according to (12) and (13) as

yuj (t1) = qu(t1) ◦ huj (t1)
√
pj(t1)xuj (t1)b

u
j,m(t1)ej(t1)

+

∑
j′∈J ,j′ 6=j

(
qu(t1) ◦ huj′ (t1)

√
pj′ (t1)x

u
j′ (t1)

· buj′,m(t1)ej′ (t1)b
u
j,m(t1)ej(t1)

)
+

∑
k∈K

(
(wk (t1))H

((
qu(t1)

)T qd(t1)
)

◦HSI(t1)xdk (t1)b
d
k,m(t1)ek (t1)b

u
j,m(t1)ej(t1)

)
+qu(t1) ◦ nuj (t1)b

u
j,m(t1)ej(t1) (16)

and

ydk,m(t1)

=

(
hdk (t1)

)H
◦ qd(t1)wk (t1)xdk (t1)b

d
k,m(t1)ek (t1)

+

∑
k ′∈K,k ′ 6=k

((
hdk (t1)

)H
◦ qd(t1)wk ′ (t1)xdk ′ (t1)b

d
k ′,m(t1)

· ek ′ (t1)b
d
k,m(t1)ek (t1)

)
+

∑
j∈J

gk,j(t1)
√
pj(t1)xuj (t1)b

u
j,m(t1)ej(t1)b

d
k,m(t1)ek (t1)

+ ndk (t1)b
d
k,m(t1)ek (t1), (17)

where ez(t1) is the service muting state written as

ez(t1) =

{
0, α

χ
z (t1) = 1, αχz (t2) = 2,

1, α
χ
z (t1) = 2, αχz (t2) = 2.

(18)

It is obvious that value 0 means muting. Similar to the
subcarrier assignment, ez(t1) is a part of the vector e(t1) =
[e1(t1), e2(t1), . . . , eZ (t1)].

As seen from (18), the muting indicator only acts on the
scheduled user, parameters ez(t1) and bχz,(·)(t1) are highly
correlated. The notation ‘‘(·)’’ in bχz,(·)(t1) means the allocated
specific subcarrier to user z.

In view of the correlation, we introduce a new parameter
b̃z(t1) called a service-enabled state, which is defined as

b̃z(t1) = bχz,(·)(t1)ez(t1), (19)
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and satisfies

b̃z(t1) =


1, user z is not muted for the assigned

subcarrier at sub-slot 1,
0, user z is muted for the assigned

subcarrier at sub-slot 1.

(20)

The service-enabled states of each user also form the vector
B̃(t1) = [b̃1(t1), b̃2(t1), . . . , b̃Z (t1)].
We rewrite (16) and (17) using parameter B̃(t1) and can

readily get the new expressions at sub-slot 1 that resemble
(12) and (13) at sub-slot 2. The difference between UL/DL
interference models at each sub-slot lies in the varied param-
eters B and B̃ below

yuj (ti) =

{
f j(Q, B̃,W,P, t1), j ∈ J ,
f j(Q,B,W,P, t2), j ∈ J ,

(21a)

ydk (ti) =

{
gk (Q, B̃,W,P, t1), k ∈ K,
gk (Q,B,W,P, t2), k ∈ K,

(21b)

where f j and gk are the functions of the received UL and DL
signals at the matched sub-slot, respectively.

To strive for simplification of (21a) and (21b), we regulate
new variate B̂ to substitute for B and B̃ below

B̂(ti) =

{
B̃(ti), i = 1,
B(ti), i = 2.

(22)

b̂z(ti) is the element of B̂(ti), which follows

b̂z(ti) =

{
bχz,(·)(t1)ez(t1), (·) = assigned subcarrier,

bχz,m(t2), ∀m ∈M.
(23)

As a result, we create a single standard formula instead of
the two expressions at each sub-slot for the sake of problem
formulation.

IV. PROBLEM FORMULATION
The UL SINR of user j at sub-slot 1 or 2 is written as

γ u
j (Q, B̂,W,P, ti)

=

b̂j(ti)pj(ti)
(
h̃
u
j (ti)

)H
h̃
u
j (ti)

8UU(ti)+8SI(ti)+ σ 2
u,jb̂j(ti) (q

u(ti))T qu(ti)
, (24)

where

h̃
u
j (ti) = qu(ti) ◦ huj (ti). (25)

8UU(ti) and 8SI(ti) are the covariances matrices of UL to
UL interference and SI, respectively. They are given by

8UU(ti) =
∑

j′∈J ,j′ 6=j
b̂j′ (ti)pj′ (ti)

(
h̃
u
j′ (ti)

)H
h̃
u
j′ (ti), (26)

8SI(ti) =
∑
k∈K

b̂k (ti) (wk (ti))H H̃SI(ti)
(
H̃SI(ti)

)H
wk (ti),

(27)

in which

H̃SI(ti) =
((
qu(ti)

)T qd(ti)
)
◦HSI(ti). (28)

Similarly, the DL SINR of user k is expressed as

γ d
k (Q, B̂,W,P, ti)

=

b̂k (ti)
(
h̃
d
k (ti)

)H
wk (ti) (wk (ti))H h̃

d
k (ti)

φDD(ti)+ φUD(ti)+ b̂k (ti)σ 2
d,k

, (29)

where

h̃
d
k (ti) = hdk (ti) ◦ q

d(ti). (30)

φDD(ti) and φUD(ti) are the variances of DL to DL and UL
to DL interference, respectively. They are written as

φDD(ti) =
∑

k ′∈K,k ′ 6=k
b̂k ′ (ti)

(
h̃
d
k (ti)

)H
wk ′ (ti) (wk ′ (ti))H h̃

d
k (ti),

(31)

φUD(ti) =
∑
j∈J

g2k,j(ti)pj(ti)b̂j(ti). (32)

Finally, we substitute (24) and (29) into the Shannon for-
mula to acquire the SE of UL user j and DL user k as

Ruj (Q, B̂,W,P, ti)= log det
(
IN+γ u

j (Q, B̂,W,P, ti)
)

(33)

and

Rdk (Q, B̂,W,P, ti)= log
(
1+γ d

k (Q, B̂,W,P, ti)
)
, (34)

respectively, where det(·) is the determinant operator.
Thus, the total SE of all scheduled users in the cell at the

schedule unit is defined as

R(Q, B̂,W,P) =
2∑
i=1

R(Q, B̂,W,P, ti)

=

2∑
i=1

∑
j∈J

Ruj (Q, B̂,W,P, ti)

+

∑
k∈K

Rdk (Q, B̂,W,P, ti)

 (35)

Given the (35), it is noteworthy that the total SE is related
to multiple influencing factors. The parameters P and W
apparently work for UL and DL power allocation to mitigate
interference. In contrast, the parameters Q and B̂ are indi-
rectly concerned with that, which is explained below.

In (24), the powers of a specific user j′ or k can impact the
8UU or 8SI term of user j, which brings side effects to the
SE of user j. Similarly, in (29), the user k ′ or j will decrease
the SE of user k via the increase of φDD or φUD. For ease of
presentation, we suppose two users as an entirety, one user
at numerator referring to (24) or (29) with a higher ratio of
throughput to power (also called EE) is interfered with by
another. If the performance loss is higher than the SE obtained
by the lower-EE user, the total performance will degrade.
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Hence, it is easily acquired that the appropriate parameter B̂ to
mute the lower-EE user can effectively mitigate the residual
SI (equivalent to 8SI) or multi-user interference (same as
8UU, φDD, or φUD). Also, parameter Q is correlated with
the composite channel gains, such as h̃

u
j , h

u
j′ , and h̃

d
k , which

directly affect the powers. It shows a better performance than
fixed channel gains huj , h

u
j′ , and hdk when they are in poor

condition. In fact, the essence of parameters Q and B̂ comes
down to a power allocation issue.

In order to implement a comprehensive power allocation
method, we take (35) as an objective function and formulate
the optimization problem subject to several constraints as

max
{Q,B̂,W,P}

R(Q, B̂,W,P) (36a)

s.t. i ∈ {1, 2}, (36b)

χ ∈ {u, d}, (36c)∑
m,m∈M

bχz,m(ti) ≤ 1, (36d)

αχz (ti) ∈ {1, 2}, (36e)

b̃z(t1) ∈ {0, 1}, ∀z ∈ Z, (36f)

qχl (ti) ∈ {0, 1}, ∀l ∈ N , (36g)

qul (ti)+ q
d
l (ti) ∈ {1, 2}, (36h)∑

k∈K

∣∣∣qd(ti)wk (ti)∣∣∣ ≤ Pmax, ∀k ∈ K,

0 ≤ qd(ti)wk (ti) ≤ pmax, wk (ti) ∈W(ti), (36i)

0 ≤ pj(ti) ≤ pmax, pj(ti) ∈ P(ti), ∀j ∈ J , (36j)

Ruj (Q, B̂,W,P, ti) ≥ Ru
req, ∀j ∈ J /U , (36k)

Ruj (Q, B̂,W,P, t2) ≥ βRu
req, ∀j ∈ U, β > 1,

(36l)

Rdk (Q, B̂,W,P, ti) ≥ Rd
req, ∀k ∈ K/D, (36m)

Rdk (Q, B̂,W,P, t2) ≥ βRd
req, ∀k ∈ D, β > 1.

(36n)

(36b) and (36c) restrict two sub-slots in one schedule unit
and two types of service, respectively. (36d) means each user
can be only assigned one subcarrier at most. (36e) and (36f)
imply that only the scheduled users could be silenced subject
to identifiers in (36e). (36g) and (36h) determine the work
modes of each BS antenna. pmax and Pmax are the maximum
powers for the user and BS, respectively. Thus, (36i) and (36j)
are each the maximum power constraint for DL and UL users.
(36k) and (36m) are the quality of service (QoS) constraints
for the unmuted UL and DL users at sub-slot 1 or 2, while
(36l) and (36n) are the QoS constraints for the resumed UL
and DL users at sub-slot 2, which were once muted at sub-
slot 1. The compensation coefficient β is used to remedy the
performance loss for the muted users.
We fulfill the integration of the abovementioned three ele-

ments through (36a). By solving the optimization problem,
we can acquire a maximum SE with the optimal UL/DL
power allocation, which also considers MM and the assign-
ment of BS antennas and subcarriers.

V. ALGORITHM DESCRIPTION
Apart from the binary constraints, the object function (36a)
and the constraints (36k)-(36n) are all nonconvex. Hence, this
is a non-deterministic polynomial hard (NP-hard) optimiza-
tion problem [37]. Furthermore, binary variables Q and B̂
with coupled UL and DL power allocation make the tradi-
tional solution even more impractical. Considering Q and B̂
are discrete variables while W and P are continuous, based
on different variable types, we mainly present two hierar-
chical methods to solve the problem of (36) in this section.
The hierarchical method intends to split the problem into two
subproblems.We can go through each subproblem by looping
to solve the initial problem ultimately.

A. HYBRID GREEDY-CONVEX METHOD
A practicable method for the continuous variables related
subproblem is to construct an approximate function that is
easier to solve than the original NP-hard problem. Several
approximation algorithms, such as successive convex approx-
imation and majorization-minimization, are used to address
this issue [38], [39]. Considering the nature of SE equations,
we apply another approximate method called the FOTA in
this paper.
First, we reformulate the problem of (36) based on the fixed

Q and B̂ to realize problem decomposition as

max
{W,P}

R(W,P) (37a)

s.t. (36b), (36i), (36j), (37b)

Ruj (W,P, ti) ≥ Ru
req, ∀j ∈ J /U , (37c)

Ruj (W,P, t2) ≥ βRu
req, ∀j ∈ U , β > 1, (37d)

Rdk (W,P, ti) ≥ Rd
req, ∀k ∈ K/D, (37e)

Rdk (W,P, t2) ≥ βRd
req, ∀k ∈ D, β > 1, (37f)

where the expansion of (37a) through the logarithmic prop-
erty is written as

R(W,P) = R1(W,P)− R2(W,P), (38)

where

R1(W,P)=
2∑
i=1

∑
j∈J

log det
(
Juj (ti)+ pj(ti)A

u
j (ti)

)
+

∑
k∈K

log
(
Kd
k (ti)+ b̂

d
k (ti)

(
h̃
d
k (ti)

)H
wk (ti) (wk (ti))H h̃

d
k (ti)

) , (39)

R2(W,P)=
2∑
i=1

∑
j∈J

log det
(
Juj (ti)

)
+

∑
k∈K

log
(
Kd
k (ti)

).
(40)

On the right hand side of (39) and (40), several newly
defined expressions are represented as follows

Juj (ti) = 8UU(ti)+8SI(ti)+ Cu
j (ti), (41)
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Kd
k (ti) = φDD(ti)+ φUD(ti)+ Dd

k (ti), (42)

Au
j (ti) = b̂uj (ti)

(
h̃
u
j (ti)

)H
h̃
u
j (ti), (43)

where Cu
j (ti) and Dd

k (ti) in (41) and (42) are defined as

Cu
j (ti) = σ

2
u,jb̂

u
j (ti)

(
qu(ti)

)T qu(ti), (44)

Dd
k (ti) = b̂dk (ti)σ

2
d,k , (45)

respectively.
From (39) and (40), we can see that both R1(W,P) and

R2(W,P) are concave logarithmic functions. As the forma-
tion of (40) is more straightforward than (39), we only need
to analyze (40) mathematically.

The FOTA of (40) with multiple iterations will converge to
R2(W,P) due to the function concavity [40]. Accordingly,
we can acquire the approximate value of R2(W,P) by taking
derivatives. To facilitate partial differentiation, we convert
Juj (ti) andK

d
k (ti) in (40) to a formalizationwith only two direct

variables as

Juj (ti) =
∑

j′∈J ,j′ 6=j
pj′ (ti)Au

j′ (ti)

+

∑
k∈K

(wk (ti))H Ed
k (ti)wk (ti)+ Cu

j (ti), (46)

Kd
k (ti) =

∑
k ′∈K,k ′ 6=k

b̂dk ′ (ti)
(
h̃
d
k (ti)

)H
wk ′ (ti) (wk ′ (ti))H h̃

d
k (ti)

+

∑
j∈J

Fuj (ti)pj(ti)+ Dd
k (ti), (47)

where

Ed
k (ti) = b̂dk (ti)H̃SI(ti)

(
H̃SI(ti)

)H
, (48)

Fuj (ti) = g2k,j(ti)b̂
u
j (ti). (49)

As a result, we calculate n iterations to obtain the FOTA of
(40) as

R2(W,P) ≈ R2(W (n),P (n))+ R′2(W
(n))(W −W (n))

+R′2(P
(n))(P − P (n))

= R(n)
2 (W,P), (50)

where

R′2(W
(n))(W −W (n))

=

2∑
i=1

∑
j∈J

∑
k∈K

tr

(
2
((

Juj (ti)
)(n))−1

Ed
k (ti) (wk (ti))

(n)

·

(
wk (ti)− (wk (ti))(n)

))
+

∑
k∈K

∑
k ′∈K,k ′ 6=k

(
2
(
Kd
k (ti)

)−1
b̂dk ′ (ti)

·

(
h̃
d
k (ti)

)H
(wk ′ (ti))(n) h̃

d
k (ti)

(
wk ′ (ti)−(wk ′ (ti))(n)

)) ,
(51)

R′2(P
(n))(P − P (n))

=

2∑
i=1

∑
j∈J

∑
j′∈J ,j′ 6=j

tr

(((
Juj (ti)

)(n))−1
Au
j′ (ti)

·

(
pj′ (ti)−

(
pj′ (ti)

)(n)))
+

∑
k∈K

∑
j∈J

(
Kd
k (ti)

)−1
Fuj (ti)

(
pj(ti)−

(
pj(ti)

)(n)) . (52)

Obviously, (51) and (52) are affine functions with respect
to W and P , respectively. Hence, we transform (50) into
an affine function approximately. Substituting (50) into (38),
we acquire the concave object function of problem (37)
accordingly.

Similarly, the nonconvex constraints (37c)-(37f) can be
each decomposed with two logarithmic functions subtracted,
so we approximately achieve the concave constraints with the
assistance of the FOTA method.

Consequently, we convert the problem of (37) into an
approximate convex optimization problem as

max
{W,P}

R1(W,P)− R(n)
2 (W,P) (53a)

s.t. (36b), (36i), (36j), (53b)

Ruj,1(W,P, ti)− Ru(n)j,2 (W,P, ti) ≥ Ru
req,

∀j ∈ J /U , (53c)

Ruj,1(W,P, t2)− Ru(n)j,2 (W,P, t2) ≥ βRu
req,

∀j ∈ U, β > 1, (53d)

Rdk,1(W,P, ti)− Rd(n)k,2 (W,P, ti) ≥ Rd
req,

∀k ∈ K/D, (53e)

Rdk,1(W,P, t2)− Rd(n)k,2 (W,P, t2) ≥ βRd
req,

∀k ∈ D, β > 1. (53f)

With Matlab convex tool [41], we can work out the convex
optimization problem and obtain the optimal solution forW ,
P , and the corresponding total SE.
Since the optimum solution of discrete variables Q and

B̂ can not be acquired through differentiating regularly, a
direct approach to choosing an appropriate configuration is an
exhaustive search referring to [14]. Nevertheless, when prob-
lem parameters extend, global search, such as the exhaustive
search [10], is incompetent due to the curse of dimensionality
with two discrete variables. Accordingly, the greedy algo-
rithm only searches several local optimums (namely, candi-
dates) instead of the global optimum. Subsequently, it selects
the best candidate from the candidate list to approximate the
global optimum [42]. Since the greedy algorithm adopts a
top-down structure, in which the backtracking is unnecessary,
the efficiency is promoted to some extent compared with the
exhaustive search. Thereby we apply the greedy algorithm
to find a suboptimal configuration. In order to decrease the
ergodic samples, we evenly pick up iQ and iB̂ samples through
a sample rate from universal sets of Q and B̂, respectively,
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where

iQ =

{
2(2N )rQ , iQ < 2 · 3N ,
2 · 3N , otherwise,

(54)

and

Algorithm 1 Hybrid Greedy-Convex Method
1: Set I = 1.
Initialize ζ , Imax, ωth.
2: Repeat each candidate member in the list:
3: Pick up iQ and iB̂ samples from the universal set stochastically,
following the greedy search rule.
4: Set i= 1.
5: Repeat to identify a candidate member:
6: Choose one candidate member Qi,I , B̂i,I from the samples.
7: Set n = 0.
Generate the initial value of W (0), P (0).
8: Repeat each FOTA using (50):
9: Set n = n + 1.
10: Until

∣∣∣R(n)
2 (W,P)i − R(n−1)

2 (W,P)i
∣∣∣ < ζ or reach the max

iteration.
11: Solve (53) with R(n)

2 (W,P)i to acquire the approximatemaximum
total SE: R(Qi,I , B̂i,I ,W∗,P∗).
12: If i = 1, set R∗I = R(Qi,I , B̂i,I ,W∗,P∗).
13: Else if∣∣∣R(Qi,I , B̂i,I ,W∗,P∗)− R(Qi−1,I , B̂i−1,I ,W∗,P∗)

∣∣∣ > ζ

Set R∗I = R(Qi,I , B̂i,I ,W∗,P∗), ω = 0.
Else ω = ω + 1

14: Set i = i + 1.
15: Until reach the max iteration iQiB̂ or ω > ωth.
16: If I > 1
If
∣∣R∗I − R∗I−1

∣∣ > ζ

ω = 0.
Else ω = ω + 1.
17: Set I = I +1.
18: Until reach the max iteration Imax or ω > ωth.
19: Choose the maximum candidate member as R∗ from list.
20: Return R∗.

iB̂=

{
(2ZM )rB̂ + (2Z2M )rB̂ , iB̂<

(
2J+K+1

)
M J+K−M ,(

2J+K + 1
)
M J+K−M , otherwise.

(55)

rQ and rB̂ are the resolution ratios of sampling for Q and
B̂, respectively. 3N ,M J+K−M , and 2J+K are each the number
of combinations for BS antenna, subcarrier, and muted user
assignment. 2N and 2ZM (2Z2M ) are each product of rows
and columns of Q and B̂.
The greedy selection rule should follow two steps: 1) Initi-

ate the configuration of all emitting/receiving antennas shared
and all scheduled users unmuted; 2) Gradually decrease the
share level of antennas and increase the muted users in a
random process. Besides, we set a tolerance threshold ωth to
accelerate seeking the sub-optimal candidate.

Through the outer loop (namely, greedy method) and inner
loop (namely, convex method) updates, a relatively optimum
solution can be acquired. Accordingly, the hybrid greedy-
convex method is summarized in Algorithm 1.

Nevertheless, the greedy method could be easily trapped
in the local optimum for nonconvex problems even though it
explores the last candidate. This is due to the fact that there
are limited candidates in the list. Since the RL technique has
a significant advantage in tackling a vast amount of data,
we will adopt the DRL technique based on the previous
proposal.

B. HYBRID DRL-CONVEX METHOD
It is known that Markov Decision Process (MDP) is a tuple
that includes four elements as sets of current states st , next
states st+1, actions at , and rewards rt+1, where the t means
the time step. In our devised system model, the work mode
for BS antennas, the assignment of subcarriers, and the user
MM are all handled by FD BS. We take BS as an agent
for this reason. Because the set of actions is finite, we use
discrete variables Q and B̂ as action a = (aq, ab̂), in which
aq represents the BS antenna assignment, ab̂ denotes the joint
of subcarrier assignment andMM. Considering that BS-agent
adopts two sets of actions for each sub-slot in a schedule unit,
we mainly focus on the agent behavior at sub-slot 1. This is
because the action at sub-slot 2 is pared-down owing to no
muting orders imported compared with sub-slot 1. Therefore
analyzing realization at sub-slot 1 can reasonably cover the
following implementation at sub-slot 2.

The action space can be written as

A = {(aq, ab̂)1, (aq, ab̂)2 . . . , (aq, ab̂)A1A2}, (56)

where A1 and A2 are the total number of combinations of aq

and ab̂, respectively.
The determined action at time step t from A will act on

the constrained multi-user interference model and the FOTA
algorithm, namely, the environment. Subsequently, the envi-
ronment outputs the SINR of each scheduled user and total
SE at time step t + 1, which are treated as the next state st+1
and reward rt+1, respectively. The state and the state space
are recorded as

st+1 = (γ u
1 , γ

u
2 , . . . , γ

u
J , γ

d
1 , γ

d
2 , . . . , γ

d
K )t+1 (57)

and

S = {s1, s2, . . . , sA1A2}, (58)

while the output reward is denoted as

rt+1 =

∑
j∈J

Ruj +
∑
k∈K

Rdk

∣∣∣∣∣∣ t + 1

 . (59)

It is evident that once the BS-agent chooses a specific action
at step t , each scheduled user will transit from the current
state st to the next state st+1 that is calculated based on the
determined action, and thus the BS-agent is rewarded in the
meantime. Correspondingly, the state transition probability is
P(st+1|st , at ). With the new state and benefit, BS-agent will
adapt its policy via trial-and-error and repeatedly make a new
round of decisions. Note that the learning process of BS-agent
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FIGURE 3. Interaction of learning BS-agent and environment.

is directed by a reward that follows constraints of (36) in the
environment.

The interaction betweenBS-agent and environment is visu-
alized in Fig. 3 and deemed an MDP, which is a discrete
decision problem on the time sequence.

In an MDP, the state value is determined by Behrman
optimal equation [43]. Therefore an optimal reward table (i.e.,
Q table) will be acquired from the state and action values.
Each element of the Q table is a necessary return from MDP
and is written as

Q(st , at ) = Eπ

[
T∑
i=t

γ i−tri+1|st , at

]
, (60)

where γ denotes the discount factor to the future step reward.
If γ is set to 1 (0), the agent concentrates on the long-term
(short-term) step reward [44]. The above flow is called Q
learning, which is suitable for solving nonconvex problems
with discrete variables.

However, for traditional Q learning, BS will maintain
a A1A2 × A1A2 size Q table, which will cause excessive
memory occupation. On account of Q learning, the deep
Q-learning network (DQN) exploits a deep neural network to
estimate the Q value instead of the lookup table [45], thereby
avoiding the case that the dimension of the Q table is too
large to be looked up. DDQN is an improvement of DQN,
which contains two Q-networks: an online Q-network for
action selection and a target Q-network for action evaluation.
It evades overfitting when selection and estimation are pro-
cessed in the same DQN [46]. Given the above superiority
in DDQN, we propose another hierarchical solution of the
hybrid DRL-convex method, where DDQN is an alternative
to the greedy algorithm.

Fig. 3 presents a macroscopic perspective of the interaction
process, while we will introduce DDQN in a microscopic
view to show the training process of the BS-agent.

In DDQN, the online Q-network and the target Q-network
are represented asQ(st , at ; θt ) andQ(st , at ; θ

−
t ), respectively.

θ−t and θt are the weighting factors on the to-do lists of
training.

BS-agent initializes the online Q values for each action and
state. The action at (namely, Q and B̂ at time step t) with the

FIGURE 4. Flow of DDQN.

maximum Q value is selected, where

at = argmax
a
Q(st , a; θt ). (61)

Therefore, the related reward rt+1 (the total SE) and new
state st+1 (i.e., theUL/DLSINRof each user) will be obtained
through interaction with the environment. st , at , rt+1, and
st+1 together constitute a tuple that is stored in a replay
buffer R.

For the learning process, the tuples are randomly picked
out in batch from the replay buffer R. BS-agent determines
the next action through the online Q-network with the max
operation based on st+1. The determined action is put into
the target Q-network to acquire the true value as

yt = rt+1 + γQ
(
st+1, argmax

a
Q(st+1, a; θt ); θ−t

)
. (62)

Then, BS-agent calculates the loss function through the mean
squared error between the true values and the prediction
values for the tuples as

L(θt ) = E
[
(yt − Q(st , at ; θt ))2

]
. (63)

Later, weighting factors θt are updated in each step through
backpropagation based on the gradient descent method as

θt+1← θt + v · ∇θtL(θt ), (64)

where v means the learning rate, which decides how much
degree of deviation to learn. The gradient descent is defined
as

∇θtL(θt ) = E
[
(yt − Q(st , at ; θt ))∇θtQ(st , at ; θt )

]
. (65)

The Q value is also updated in each time step:

Q(st , at ; θt )← Q(st , at ; θt )+ v · (yt − Q(st , at ; θt )) . (66)

Comparatively, weighting factors θ−t are only copied once
in an episode through Polyak averaging method and repre-
sented as

θ−t ← ρθt + (1− ρ)θ−t , (67)

where ρ is a hyperparameter, decides the soft update ability.
Fig. 4 shows the training process in one step or

episode. All the above episodes (called one epoch) train-
ing acts on sub-slot 1, where BS-agent only considers par-
tial constraints (36k) and (36m) in the environment. For
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sub-slot 2, BS-agent should switch to the reduced action
space (i.e., the muting orders are excluded.) and retrain the
network with constraints (36k)- (36n). Since the environ-

Algorithm 2 Hybrid DRL-Convex Method
1: Set D = 1.
2: Repeat each DDQN:
3: Set i = 1.
Initialize θt,D, θ

−

t,D,AD.
4: Repeat each episode:
Set t = 1.
Initialize state s1.
5: Repeat each step:
Use (61) to select at = (aq, ab̂).
6: Set n = 0.
Generate the initial value ofW (0), P (0).
7: Repeat each FOTA using (50):
8: Set n = n+ 1.
9: Until

∣∣∣R(n)2,D(W,P)i − R
(n−1)
2,D (W,P)i

∣∣∣ < ζ or reach the
max iteration.
10: Solve (53) with R(n)2,D(W,P)i to acquire the approxi-
mate maximum total SE: RD(W,P)i.
11: RD(W,P)i assigned to rt+1.
12: Store tuple (st , at , rt+1, st+1) in R.
13: Pick up batch b from R.
14: Select at+1 with maximum online Q value from b.
15: Use (63) to calculate the loss function.
16: Use (64) and (66) to update θt,D and Q value, respec-
tively.
17: Set t = t + 1.
18: Until reach the max steps.
19: Use (67) to update θ−t,D.
20: Set i = i + 1.
21: Until reach the max episodes.
22: Return θt,D, θ

−

t,D, r
∗

t+1.
23: D = D + 1.
24: If D = 2, output muted users information.
25: Until D > 2.

ment in each learning process varies, the outputs of the
prediction from the neural network in each sub-slot differ
due to different environment interactions. As a consequence,
two DDQNs should be trained separately, one DDQN for
sub-slot 1 and the other for sub-slot 2, to maintain two groups
of weighting factors. Considering that the training process
at sub-slot 2 is similar to that at sub-slot 1, the procedure
is not described in detail. In conclusion, in the training
process, one iteration of training is the equivalent of a sin-
gle pass for a time step. It is the same as one interaction
with the environment, such as the involved sub-slot 1 or 2,
through the given combined action at the corresponding time
step.

Fig. 5 shows the information transmission between the two
DDQNs, where the muted users information exchanges after
DDQN1 ends the training for the purpose of compensation to

FIGURE 5. Information transmission between two DDQNs.

the muted users. At the end of a session, DDQNs will acquire
convergent weighting factors for each neural net. With the
trained neural nets, BS-agent has finally grasped a skill from
the environment to select a suboptimal action. Meanwhile,
the real-time performance is guaranteed as the samples can
be trained off policy.

The hybrid DRL-convex method is summarized in
Algorithm 2, where θt,D(θ

−

t,D) represents the weighting fac-
tors in the online (target) Q-network of DDQND (D ∈ {1, 2}),
and the italic RD indicates SE at sub-slotD.AD stands for the
action space at sub-slot D.

C. COMPLEXITY ANALYSIS
For expanded parameters, we select 2(2N )rQ and (2ZM )rB̂ +
(2Z2M )rB̂ samples from the universal sets in the greedy
algorithm. Additionally, the time complexity of the FOTA
method is O(nMJ (J + K )). To sum up, the time com-
plexity of the hybrid greedy-convex method (HGC) is
O(nImaxMJ (2(2N )rQ + (2ZM )rB̂ + (2Z2M )rB̂ )(J + K )). It is
obvious that rQ and rB̂ mainly determine the exponential
computational complexity [47]. To evaluate the effective-
ness of HGC, we take the hybrid exhaustive-convex method
(HEC) as a baseline. Since exhaustive search is incompetent
to traverse all combinations in the expanded parameters,
to realize the method’s feasibility, we keep the same iterations
for exhaustive search and greedy algorithm for the sake of
fairness. In this regard, the time complexity of HGC equals
to that of HEC.

As the training process for the DRL method relates to
many factors (e.g., the kernel size, size of the feature map,
and number of channels for input and output), it is tough to
provide an accuracy complexity. But from the point of each
iteration view, the time complexity depends on the number
of episodes (namely E) and steps (namely T ). Thus, the
time complexity of the hybrid DRL-convex method (HDC) is
O(2nETTiterMJ (J+K )), where Titer indicates the complexity
in one iteration.

Compared with the exponential computational complexity
of HGC/HEC, the complexity of HDC is much less in the sce-
nario of high dimensions. Moreover, when DDQN1 is trained
well, it is unnecessary to retrain the DDQN1 unless there are
significant changes in the interference model. Accordingly,
the time complexity drops to O(nETTiterMJ (J + K )). Since
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TABLE 1. Simulation parameters.

parameter dimensionality is highly related to the number
of neurons and hidden layers in the deep neural network,
we tend to apply a sophisticated network to cover the complex
parameters and improve performance.

In the following section, we additionally introduce
HDC/HGC/HEC without MM for comparison. The related
complexity isO(nETTiterMJ (J+K )) andO(nImaxMJ ((2N )rQ
+(2ZM )rB̂ )(J+K )) for HDC andHGC (HEC) each. Although
the complexity of HGC (HEC) without MM has decreased
more than that of HDC without MM, that of HGC (HEC)
without MM is still higher.

VI. PERFORMANCE EVALUATION
A. SIMULATION PARAMETERS
In this section, we illustrate multiple numerical results to
evaluate the performance of our proposal. We assume Z users
uniformly spread in a square with a side of 50 m, where the
FD BS is located in the center. The FD BS is equipped with
N smart antennas, while each user only provides one HD
antenna. To simplify the experiment, we suppose all users are
scheduled by BS (i.e., αχz (t1) = 1, 2, αχz (t2) = 2,∀z ∈ Z),
and half of the stochastic scheduled users receive Schdz (t1) =
Schdz (t2) = 1, at the same time the other half get Schuz (t1) =
Schuz (t2) = 1. M mutual orthogonal subcarriers are reused
in the network. The detailed parameters information of the
interference model refers to Table 1.

For the DRL method, we train the proposed DDQNs by
using Python 3.6, TensorFlow-gpu 1.14, and Keras 2.1.6 for
5000 episodes with 2500 steps each. Each DDQN has three

FIGURE 6. Training process of HDC with different parameter
configurations at sub-slot 1.

fully connected layers by applied dropout. There are 1024,
512, and 256 neurons, followed by the Relu activation func-
tions in each hidden layer. The hyperparameters and other
parameters also refer to Table 1.

B. RESULTS
1) ANALYSIS OF CONVERGENCE SPEED
Because there is no training process in HGC/HEC and both
DDQNs are nearly the same training process, we only present
HDC at sub-slot 1 in Fig. 6.

From Fig. 6, we can see that the reward per user for each
configuration gradually increases and eventually converges to
a relatively steady maximum value. When the reward stops
growing, it indicates that the neural network has been trained
well. Moreover, the more complicated parameter will incur
a lower training speed and a more fluctuating final reward.
It is clear that the algorithm convergence is bound up with the
dimensionality of parameters. For instance, a neural network
with G = 8, N = 2, M = 6 undergoes 300 episodes to train
stabilized, while 4000 episodes are required to train a neural
network with G = 28, N = 12, M = 6.
In the following subsections, we will further emphasize

the superiority of the HDC algorithm with MM for various
parameters in detail.

Note that the mentioned HDC, HGC, or HEC algorithm in
the previous sections embodiesMM by default. In the follow-
ing subsections, the case of MM not included is regarded as
the reference, so we will stress the condition of whether MM
is introduced or not elaborately.

2) ANALYSIS OF THE NUMBER OF SCHEDULED USERS
From Fig. 7, since no JU appears at G = 8, the total SE in a
schedule unit under this case is served as a baseline for other
cases of different numbers of scheduled users to compare
with, thus highlighting the total SE gain. It can be seen that
the increases of both the number of scheduled users and total
SE gain are asymmetrical. For example, the total SE gain
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FIGURE 7. Emergence of JUs and performance comparisons at different
numbers of scheduled users with N = 4, M = 6.

of HDC without MM (namely, HDC-WOM) at G = 28 is
only 131.5%, while the number of scheduled users rises to
350% compared with that at G = 8. On the other hand, from
G = 8 to 16, more scheduled users located in the current cell
will make total SE growth. However, this upward tendency
stops at G= 20. The above two observations suggest that the
total SE is seriously restricted by the tight resource situation,
where the spectrum resources are insufficient to maintain the
scheduled users. So mutual interference becomes the villain
of the performance exacerbation.

Compared with HDC-WOM, the HDC with MM
(HDC-WM) shows a relatively robust performance advan-
tage. The reason is that muting the JUs helps alleviate the
spectrum resource competition, such as five JUs having
been muted at G = 28. This action will bring HDC-WM
more incremental gains. Meanwhile, it illuminates that the
appeared probability of JUs increases as the number of
scheduled users mounts. Consequently, the proposed MM
successfully seeks the tradeoff between total SE and total
scheduled users by muting several JUs.

For the convenience of performance comparison, we adopt
the average total SE per scheduled user instead of the total
SE as a performance metric below. Compared with Fig. 7,
Fig. 8 presents the relationship between the performance and
the number of scheduled users from another point of view.
Because of the scarce spectrum resources, the performance
of each algorithm is decreasing monotonously, correlated
with raising the number of scheduled users. As expected,
the HDC-WM outperforms the HDC-WOM. To be specific,
the performance distinctness becomes more evident (from 0
to 25.8% gain) as the number of scheduled users increases.
The reason is that the number of JUs determines the MM’s
marginal increment level (see Fig. 7).

Generally, both the HDC algorithms get better perfor-
mance than the HGC/HEC algorithms since HDC has a
more robust convergence owing to lower complexity. The gap

TABLE 2. Performance comparison.

between the HGC with MM (namely, HGC-WM) and the
HGC without MM (namely, HGC-WOM) is inconspicuous,
which is 3 bps/Hz at most, so does the discrepancy between
the HEC with MM (i.e., HEC-WM) and the HEC without
MM (i.e., HEC-WOM).

For the greedy algorithm in HGC, limited candidates
lead the trap in local optimum, thus decreasing the advan-
tage of MM. Noticeably, the HGC-WM is outperformed
by the HGC-WOM at G = 20 and even can not meet
the minimum QoS for all users at G = 28. It is caused
by the higher complexity of HGC-WM than that of
HGC-WOM as the dimensionality expands. To be spe-
cific, the extra complexity of HGC-WM compared with
HGC-WOM is O(nImaxMJ ((2N )rQ + (2Z2M )rB̂ )(J + K )).
In our experiment settings, the excess part can be rewritten as
O(nImaxMJG((2N )rQ + (2G2M )rB̂ )), which has an influential
role rather than profits brought by MM in the case of large
parameters. Since HEC has an identical complexity to HGC,
the handling ability of HEC is similar to HGC. It also proves
that MM in HGC or HEC is no longer privileged in terms of
complicated parameters. It is noteworthy that, for a learning
method, the complexity between HDC-WM and HDC-WOM
is nearly the same. It only depends on Titer, which can be
ignored in a learning process. Thus the advantage of MM can
be well displayed in HDC.

For HEC, The performance of HEC is worse than that of
HGC. Although the complexity is equal between them, the
exhaustive search in HEC directly seeks the global optimum
with randomness and blindness, which is a lack of efficiency
compared with adopting a top-down design in HGC. There-
fore, the HEC can not cope with G = 24.

3) ANALYSIS OF THE NUMBER OF ANTENNAS
Fig. 9 shows that the performance is positively correlatedwith
the number of antennas at BS. That is to say, configuring large
antennas is a straightforward means of promoting spatial
diversity gain. The HDC-WM achieves 6 bps/Hz marginal
increment compared with the HDC-WOM, and the perfor-
mance gap between them becomes virtually static along with
the number of antennas. Combining Fig. 8, an alternate view
points out that the MM performance gain mainly depends on
the number of scheduled users.
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FIGURE 8. Performance comparisons at different numbers of scheduled
users with N = 4, M = 6.

FIGURE 9. Performance comparisons at different numbers of antennas at
BS with G = 16, M = 6.

The margin between HGC-WM and HGC-WOM is
obscure at N = 2/4/6/8. Similarly to Fig. 8, too much calcu-
lation causes the HGC performance degradation in the case
of large antennas, so HGC represents a moderative perfor-
mance growth. Additionally, at N = 12, the HGC-WM is
surpassed byHGC-WOMover 11 bps/Hz, stemming from the
superiority in MM nullified by extra complexity. It is worth
noting that the disparity between HEC-WM and HEC-WOM
is more conspicuous than that between HGC-WM and HGC-
WOM at N = 12. The result illustrates that when tackling
large parameters, the HEC-WM is inferior to HGC-WM.

The performance distinctness between HDC
and HGC/HEC increases with the number of antennas. The
minimum gap between them is less than 10 bps/Hz at N = 2,
while the peak discrepancy is over 60 bps/Hz at N = 12.
The result demonstrates that HDC has superiority in tackling
multiple antennas.

FIGURE 10. Performance comparisons at different numbers of subcarriers
with G = 16, N = 4.

4) ANALYSIS OF THE NUMBER OF SUBCARRIERS
Fig. 10 depicts that the relative abundant subcarriers in
the current network will provoke HDC into a better SE.
It is obvious that more spectrum resources will decrease all
kinds of interference. Nevertheless, the discrepancy between
HDC-WM and HDC-WOM is narrowed with the number of
subcarriers increasing. The reason is that the influence of JUs
to the entirety has declined, owing to the relatively adequate
spectrum resources. To be specific, the gap is 9 bps/Hz at
M = 1, while it has a 3 bps/Hz drop at M = 6. Notice that
our proposed MM is more appropriate in scenarios of scarce
spectrum resources.

Although HGC for the two algorithms also displays a
growing performance trend atM = 1 to 4, the ascending trend
is suppressed or reversed at M = 5, 6. This is due to the fact
that, for HGC, the profit derived from spectrum resources is
less than the loss of calculation at the related configurations.
Significantly, the phenomena that HDC-WOM begins to out-
perform HGC-WM at M = 5, emphasizes the conclusion in
Fig. 8.

For HEC, the exasperate performance trend is more acute
when more subcarriers are assigned. It proves that the tra-
ditional exhaustive search can be not fully applied to the
scenario of two discrete variables.

From Fig. 7-10, we can see that the algorithm performance
is highly correlated with the size of parameters, such as
the number of scheduled users, antennas, and subcarriers.
To fully evaluate the performance comparison between the
proposed and traditional algorithms, we set the upper bound
of parameters as G = 28, N = 12, and M = 6 in our
simulations. The numerical results are presented in Table 2.
It validates that only the proposed HDC with MM can gain
better performance than that without MM in the case of
extended parameters. Although the proposed HGC is worse
than HDC, it shows relative robustness due to adopting a top-
down structure rather than HEC.
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FIGURE 11. Performance comparisons at different residual
self-interference power ratios with G = 16, N = 4, M = 5.

5) ANALYSIS OF RESIDUAL SELF-INTERFERENCE
The above analysis mainly focuses on the three factors,
which are variable-related parameters in the objective func-
tion. In the following simulations, we will further analyze
other influencing factors, such as the parameter σ 2

SI of the
interference model and parameters pmax, β in the constraints.
Fig. 11 displays the average SE per user for different

residual SI power ratios. It can be observed that the impact
of residual SI on performance is almost weak when the ratio
is less than −110 dB. Performance deteriorates drastically
when the ratio exceeds−90 dB. It proves the essential of SIC
technology and that the stronger residual SI can worsen the
FD communication system. The performance gap between
HDC-WM and HDC-WOM is 5 bps/Hz at first, which gradu-
ally increases as the ratio increases. Nevertheless, the growing
trend is not obvious at the outset till the ratio is beyond
−105 dB. On the other side, the performance enhancement
between the two algorithms is 13 bps/Hz at −80 dB. The
finding means that the strong residual SI would strengthen
the JUs’ adverse effects. As a result, applying MM will
gain a prominent performance in the situation of stronger
residual SI.

The performance tendency of HGC/HEC is similar to that
of HDC. The main distinction is that the performance gain
brought by MM in HGC/HEC is lower than that in HDC.
It also results from the higher complexity of HGC-WM/HEC-
WM than that of HGC-WOM/HEC-WOM, as we present in
the complexity analysis.

6) ANALYSIS OF MAXIMUM TRANSMIT POWER
Fig. 12 represents the effect of different pmax settings on
SE. As is known that the degree of interference depends on
transmit power directly. The lower transmit power makes
the interference more negligible. Irrespective of interference
to some degree, the non-learning methods can easily find
the best member without too much traversal. Meanwhile,
the influence of JUs is minimal. Accordingly, there is little
difference among algorithms at pmax = 6 dBm.

FIGURE 12. Performance comparisons at different uplink/downlink
transmit power constraints with G = 16, N = 4, M = 5.

Thereafter, the performance profit brought by increasing
power still outweighs the cost from interference. Especially
at pmax = 10 dBm, the performance boost is remarkable.
It means that the state of a low power level accompanied by a
low interference floor condition will have a greater potential
to improve performance. This circumstance terminates at
pmax = 22 dBm, where SE nearly reaches the peak for each
algorithm. If the pmax continues increasing, interference will
become the dominating factor to impact performance. For this
reason, the transmit power of each user and BS should stop
to elevate, so as to avoid performance degradation.

Note that the performance gap between HDC-WM and
HDC-WOM gradually increases till convergence as increas-
ing power budget. For instance, the gap between two HDCs
is 0 and 7 bps/Hz at pmax = 6 and 22 dBm, respectively. The
reason is that the side effect of JUs at an upper power level
is much greater than that at a comparatively low level. Cor-
respondingly, there is a clear superiority with MM applied in
the case of strong JUs. On the other hand, when interference
becomes stronger, the exhaustive search and greedy method
are tough to tackle MM, especially in the exhaustive search,
so the advantage of MM is inconspicuous for them.

For the different types of algorithms (i.e., HEC, HGC, and
HDC), their performance is mainly restricted to the parameter
sizes of scheduled users, antennas, and subcarriers, while
parameters of residual self-interference and maximum trans-
mit power are irrelevant to complexity. As a result, the vari-
ation tendencies among different algorithms in Fig. 11 and
Fig. 12 are more consistent than in Fig. 8, Fig. 9, and Fig. 10.

7) ANALYSIS OF COMPENSATION COEFFICIENT
In Fig. 13, we show the effect of each compensation coeffi-
cient on performance. Because compensation factors do not
work on algorithms without MM, the algorithms maintain the
same SE regardless of the coefficients. Note that each perfor-
mance of algorithms with MM decreases monotonically with
an increase in compensation coefficients. It demonstrates
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FIGURE 13. Performance comparisons at different compensation
coefficients with G = 16/22/28, N = 4, M = 6.

that the remedy of muting users against interruption would
intensify interference at sub-slot 2. That is, the means of
compensation merely attends to the JUs at the expense of the
entirety.

Sincemore scheduled users in the current cell would arouse
more JUs, the decay of SE is more significant with increasing
the compensation coefficient at a larger G. If we assume G=
28, the performance of HDC-WM is even worse than that of
HDC-WOM at β = 2. In view of the principle of fairness,
the value can not be higher than an upper limit. We set β =
1.4 to attempt to cover the interests of the majorities and the
individuals.

VII. CONCLUSION
In this paper, a novel power allocation method in the FD
multi-user MIMO system has been studied. Specifically,
in this scheme, three major factors (such as smart antennas,
scheduled users, and subcarriers) related to power allocation
have been considered. To further improve performance from
user level, we introduce MM by modifying the frame struc-
ture to alleviate interference related to JUs. After formulating
the problem of the optimal power allocation method, we pro-
pose a hierarchical algorithm method concerning different
types of variables. That is, the subproblem of continuous
variables is solved through FOTA. Meanwhile, the other of
discrete variables is addressed through the greedy algorithm
based on the traditional exhaustive search. Considering the
high computational complexity of the greedy algorithm when
applied with extended parameters, we devise the jointed DRL
method to obtain a better performance. The DRL method
contains two DDQNs. One DDQN is used to train samples in
sub-slot 1, and the other is applied at sub-slot 2. Simulation
results reveal that HDC outperforms HGC/HEC in three main
aspects. Meanwhile, compared with non-introduced MM,
the case with introduced MM has achieved a performance
enhancement due to degrading the side effect of JUs. In con-
clusion, our proposal offers a new way to improve SE in

multi-user MIMO FD Systems. One possible extension of
this work is to develop an improved DRL scheme to further
optimize the performance in the scenario with massive users
and antennas.
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