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ABSTRACT Plant diseases are a severe cause of crop losses in the agriculture globally. Detection of diseases
in plants is difficult and challenging due to the lack of expert knowledge. Deep learning-based models
provide promising ways to identify plant diseases using leaf images. However, need of larger training
sets, computational complexity, and overfitting, etc. are the major issues with these techniques that still
need to be addressed. In this work, a convolutional neural network (CNN) is developed that consists of
smaller number of layers leading to lower computational burden. Some augmentation techniques such as
shift, shear, scaling, zoom, and flipping are applied to generate additional samples increasing the training
set without actually capturing more images. The CNN model is trained for apple crop using a publicly
available dataset PlantVillage to identify Scab, Black rot, and Cedar rust diseases in apple leaves. The
rigorous experimental results revealed that the proposed model is well fit to identify apple leaf diseases and
achieves 98% classification accuracy. It is also evident from the results that it needs lesser amount of storage
and takes smaller execution time than several existing deep CNN models. Although, there exist several CNN
models for crop disease detection with comparable accuracy, but the proposed model needs lower storage
and computational resources. Therefore, it is highly suitable for deploying in handheld devices.

INDEX TERMS Apple diseases, classification, convolutional neural network, deep learning, disease
detection, image processing, machine learning.

I. INTRODUCTION

Agribusiness is one of the essential sources of the subsistence
of people for many decades. It contributes in the nourishment
of about fifty percent of the global population [1]. Agriculture
has an immense impact on people globally, either directly or
indirectly. Agriculture production needs to rise by 50-60%
to ensure the food security in coming years, especially for
countries having rapid growth of population [2]. Horticulture
contributes around 30% to the GDP of the Indian agriculture
industry [3]. Apple is one of the most widely consumed
fruit globally and among the four most produced fruits after
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banana, grape, and orange [4]. The production of apple crop
has increased in the last decade, but it is not in proportion
to the growth of the cultivation area. In India, the cultivation
area of apple crop is raised by 20%, although the production
only increased by 1-2% [5].

Globally, pests and diseases affect the overall produc-
tion of apple crop. In India, fungal diseases are one of
the major causes affecting the quality of apple fruits in
Himachal Pradesh, which is the second highest producer state
of apple fruits [4]. Infections in plants are categorized into
two categories- biotic and abiotic [6]. The pathogens such as
virus, fungi, and bacteria are the infectious agents responsible
for biotic diseases. The biotic diseases are highly transmissi-
ble and dangerous comparable to the abiotic diseases that are
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TABLE 1. Description of apple diseases.

Disease Disease Type Responsible Pathogen Symptoms

Scab Fungal Venturia inaequalis Light green spots on leaf, then grows like velvety or olive-colored
Black rot Fungal Diplodia seriata circular purplish spots (frog-eye) on leaves

Cedar rust Fungal G. juniperi-virginianae Small pale yellow spots on leaves

caused by physiological factors such as mineral deficiency,
sunburn, other environmental factors. Scab, Cedar rust, leaf
blotch, Powdery mildew, blight, Mosaic, and Black rot are
some common biotic diseases visible in apple leaves. Dis-
eases such as Scab, Cedar rust, and Black rot are emphasized
to identify. A brief description of these diseases is given here.

1) Black rot is a fungal infection caused by Diplodia
seriata fungus. It develops small sneaks on the upper
surface of the leaf during leaf unfolding. Later, frog-
eye spots with reddish or purplish edges appear on the
infected leaves. As the lesion ages, it becomes chlorotic
and higher severity leads to defoliation weakening the
tree. Black rot affects both fruits and leaves of the tree.

2) Scabis a serious infection transmitted through Venturia
inaequalis fungus. Disease symptoms appear as pale-
yellow or olive-green spots on the upper surface and
as velvety or dark lesions on the lower surface of the
leaf. As the infection spreads, it causes leaves to curl
up or drop. The severe infection leads to continuous
defoliation and damage to the tree. Scab also affects
both fruits and leaves of the tree.

3) Cedar rust is also a fungal infection caused by Gym-
nosporangium juniperi-virginianae fungus. Initially,
the reddish or pale yellow circular lesions appear on
leaves’ upper surface and gradually enlarge into bright
orange-yellow spots. Severe infection results in pale
yellow or orange spots on fruits, and an unseasonable
fall of leaves.

It is essential to increase production capacity by timely
detecting and quickly diagnosing plant diseases. So that the
food security standards can be maintained globally. Fluores-
cence in-situ hybridization (FISH), polymer chain reaction
(PCR), immunofluoresence (IF), flow cytometry are the com-
mon molecular or serological method-based traditional tech-
niques used for disease detection/identification [6]. These
techniques can be used by the experts or phytopathologist
only inside the laboratories. Besides, the optical observa-
tion of diseases in leaves is a complex way that is error
prone also. The common advantages and limitations of these
techniques are listed in Table 2. The visual characteristics
of the infected parts such as leaves, roots, etc. are usually
affected significantly. Some specific visible patterns are gen-
erated by responsible pathogen for most of the infections.
Advancements in image processing, artificial intelligence,
and computational resources like graphical processing unit
(GPU) can reform the process of detection and prevention of
plant diseases [7].
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Machine Learning (ML) based approaches such as k-
nearest neighbor (KNN), artificial neural networks (ANN),
and support vector machine (SVM) are some most commonly
used techniques in plant disease detection/ identification.
Recently, deep learning techniques emerged to provide a
better hierarchical feature learning approach. It represents
well both low-level and high-level features with some added
complexity [8]. The convolutional neural network (CNN)
provides a solution to many complex problems such as
natural language processing (NLP), object detection, image
classification, speech recognition. In recent years, CNNs
have proved their suitability for detecting the plant diseases.
However, processing a large dataset through CNN models
leads to the requirement of high computational resources.
Therefore, it is a challenging job to deploy such models in
handheld devices such as smart phones to aid the farmers.
The motivation behind this work is to develop a light-weight
deep CNN model leading to low computational burden in
diagnosing the diseases efficiently. In this work, a novel
deep CNN model consisting of three convolutional layers
(Conv-3 DCNN) is developed to diagnose three diseases in
apple plants using leaf images. It makes use of data aug-
mentation to enhance the performance of the model. The
hyperparameters are tuned using random search technique
that helps to select the best suitable hyperparameters. The
proposed model is compared with the recent transfer learning
approaches such as VGG-19 [9], ResNet-152 [10], DenseNet-
201 [11], MobileNetV2 [12], ResNet-50 [10], VGG-16 [9],
InceptionV3 [13], Xception [14], and MobileNet [15]. The
major contribution of this paper is the development of a
novel light-weight deep CNN model for detecting apple leaf
diseases with less computational burden.

The organization of the remaining paper is as follows:
Section II presents the related work. The materials and
methodologies are introduced in Section III which consists
of the theoretical background, dataset used, and the outlines
of proposed method. The experimental setup, performance
matrices, results, and the related discussions are covered in
Section IV. At last, it is concluded with remarks on future
research scope in the Section V.

Il. RELATED WORK

Image processing and ML have the potential to aid farmers
or orchardists in detecting plant diseases in computation-
ally intelligent ways instead of manual checkups.The robust
foundation of ML for decision-making based on systemati-
cally integrating expert knowledge is very promising in many
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TABLE 2. Traditional techniques to detect/ identify plant diseases.

Technique Advantages Limitations

PCR Ease of use, portable, and a mature technique for | Based on the effectiveness of extracted DNA, PCR buffer, and poly-
detection merase activities

ELISA Detection can be performed based on change in visual | Less accurate for bacteria
colors, and a low cost technique

FISH Molecular detection technique and depends on DNA | Photobleaching causes false negative results, accuracy highly depends
prob, plant gene on nucleotide probes, and specificity disturbed by autofluorescence

materials

FCM Fast detection, simultaneous evaluation of several pa- | Detects bacterial infections only, complex and High Cost
rameters

IF distribution of target molecule can be visualized, | Photobleaching causes false negative results
Highly sensitive

areas, including agriculture procedures. SVM is capable of
separating non-linear data using hyperplanes. Therefore, it is
one of the most widely applied ML approach in plant disease
detection. In [16], authors used SVM to investigate fomato
crop health status. They considered the texture characteris-
tics as a significant feature to describe the tomato leaf and
proposed a system that uses gray-level co-occurrence matrix
(GLCM) with SVM algorithm. The similar work was done
by Deshapande et. al. [17] to identify fungal disease in maize
crop. They also used GLCM based texture features with SVM
classifier and achieved 88% classification accuracy. Authors
in [18] and [19], also used texture features of disease lesions
in recognizing the diseases in cucumber using SVM classifi-
cation technique. In a study, Chakraborty et al. [20] employed
multiclass SVM on texture features to predict disease in apple
leaves with accuracy to 96%. The feature set was created
using GLCM, which provides texture structure of disease
lesions. Vishnoi et al. [21] also used texture information to
identify diseases in urdbean and apple crops using SVM.
Authors in [22] used texture characteristics with SVM to
check health status of palm trees. They achieved 95% classi-
fication accuracy. In [23], authors performed an investigation
on fungal infections in soybean crop using SVM and achieved
an average accuracy of ~86% on PlantVillage dataset with
texture properties. They emphasized that the use of lesion
texture could be helpful in identification of plant diseases.
However, color and shape features can also be helpful in
identifying lesions with similar texture [24]. Sharif et al. [25]
investigated the utility of color and shape features with lesion
texture for detecting the diseases in citrus. They used a mul-
ticlass SVM classifier and achieved 95.8% accuracy. Ahmad
etal. [26] presented a framework, which is based on SVM and
a combination of color, texture and shape features for disease
detection in guava. The selection of optimized features out
of a large set of extracted features can lead to more efficient
disease detection [25]. Khan et al. [27] used genetic algorithm
to select optimized features and used them to classify the
diseases in apple leaves and achieved a comparatively better
accuracy of 97.10%. In addition, authors in [28] showed bene-
fits of ANN to identify the diseases in plants. The parametric
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nature of ANN and certainty in model size helped to make
faster and accurate predictions. Zhang et al. [29] also used
ANN to find diseases in maize crop using color, texture, and
shape features. In [30], authors used a neural network with
color and shape properties of infectious leave to investigate
disease in rice crop.

In recent times, CNN has emerged as a promising tech-
nique for plants specific applications. CNNs have capabil-
ities to automatically generate low and high-level features.
Geetharamani and Arun Pandian [31] developed a 9-layer
deep CNN to detect multiple diseases in various cultures.
This model achieved 96% classification accuracy. In order to
enhance the accuracy [32] proposed a deep CNN model of
14 layers. The model achieved remarkable accuracy, however
it was computationally high expensive having a large number
of trainable parameters. A model with a large number of
layers takes long time in training and requires higher com-
puting resources. Similarly, authors in [33] developed a deep
CNN for plant disease detection, which was better than sev-
eral baseline classifiers. Some deep CNN models were also
developed by Agarwal et al. [34] to find the efficient solution
to plant disease detection problem. However, these models
are computationally expensive consisting of higher number
of layers and take more training time. Kamal et al. [35] used
region-based convolutional neural network (RCNN) to detect
diseases in apple plants. RCNN model is highly computation-
ally expensive but performed considerably better than some
other models.

Deep CNN models are successful but computationally
expensive at the same time. Fine-tuning and transfer learn-
ing allow to reuse the the existing models trained for some
other problem. There are several well known models trained
for general purpose object detection problems. These pre-
trained models can be fine tuned using transfer learning
to perform plant disease detection. The pre-trained models
such as CaffeNet, AlexNet, VGG, and GoogLeNet were
used to address the disease identification problem in vari-
ous plants [36]. Coulibaly et al. [37] explored a fine tuned
VGG-16 model to detect mildew diseases in millet crop
images. Similarly, transfer learning based CNN model was
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used in [38] to classify fomato leaf infections. VGG-16
model with two additional Inception modules was used
in [39] in order to accurately detect apple leaf diseases.
The model achieved accuracy of 97.14% but inclusion of
two linception units made VGG-16 more computational
expensive. A work showcased various recent pre-trained
models for disease detection in guava plants [40]. In [41],
authors exploited pre-trained ResNet-50 model through trans-
fer learning approach to identify disease in fomato crop
with 97% accuracy. The similarity among symptoms of dif-
ferent diseases raises the uncertainty in detection. In order
to quantify such uncertainty, researcher in [42] embedded
Monte-Carlo dropout (MCD) in VGG-16. However, it is
computationally expensive and less accurate. An investiga-
tion was made by Shin et al. [43] on different pre-trained
models to detect powdery mildew infection in strawberry.
The augmentation techniques were also used by them to
improve training data. Authors in [44] explored fine-tuned
ResNet-50 and MobileNet models on a self-prepared apple
leaf dataset and found MobileNet comparatively more stable
and computationally better. Recently, fine-tuned InceptionV3
model was explored by Tahir et al. [45] to detect apple leaf
diseases. They achieved 97% accuracy. In another study,
AlexNet model was used to predict apple scab disease but
the prediction accuracy was not found better than some exist-
ing methods [46]. The pre-trained models have shown good
performance in plant disease detection. But these models are
not specifically trained for such purpose and therefore, lead
to chances for precision error. Based on the literature survey,
it can be established that it is desirable to develop a deep
CNN model specifically designed to efficiently detect plant
diseases with high accuracy and less computational burden.

Ill. MATERIALS AND METHODS

This section covers complete details related to the develop-
ment of deep CNN (Conv-3 DCNN) model to investigate the
diseases in apple crops. The process of training and validating
the proposed deep CNN model is presented along with the
detailed mathematical formulations.

A. DATASET AND PRE-PROCESSING

The apple leaf images are taken from the PlantVillage dataset
available openly through the PlantVillage project [47]. The
dataset contains 3171 RGB images of apple plant leaves that
are divided into four classes. The three classes correspond
to 3 apple diseases namely black rot, scab, and apple cedar
rust. The remaining one class represents healthy/uninfected
leaf images. The expertly curated apple leaf images of size
256 x 256 for all four categories were captured with a
simple background at various plant development stages in
laboratory condition [48]. Figure 1 shows sample images
from each class. The disease classes are named after the
apple diseases and healthy class represents leaves without any
disease. Plantvillage dataset has been used in a large number
of research works. However, some other datasets such as
Guava [49] and Citrus [50] are also available.
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It is crucial to have a variety of images of leaves in the
dataset so that model can learn important variations during the
training. It helps to improve the generalizability of the deep
CNN model. Augmentation is an approach to create varia-
tions of the image artificially. Some transformations such as
shift, shearing, scaling, zoom, and flipping are employed in
this work to transform the images. These transformations cre-
ate minor variations in images that help to introduce variety
in the training set. It in turn assists to reduce overfitting and
helps the model to achieve better tolerance and ability to gen-
eralize. Figure 2 illustrates the process of data augmentation
schemes. Some samples generated by augmentation are given
in Fig. 3.

B. DEEP CONVOLUTIONAL NEURAL NETWORK

The deep CNN is a feed-forward ANN based deep learning
technique. Here, the word deep refers to higher number of
layers in a CNN. Usually, a deep CNN is constructed by
stacking several building blocks such as convolutional layers
with a typical non-linear activation unit, pooling layers, and
fully connected layers. It has exhibited certain advantages
over the state-of-the art ML based methods as it doesn’t
require any additional efforts for feature engineering. It is
successfully used in several applications including image/text
classification, NLP, and precision agriculture, etc. [6]. The
initial layers of deep CNN extracts different types of lower
level features.

1) CONVOLUTIONAL LAYER

The convolutional layer is responsible to perform convolution
a filter (kernel) on an input image. The convolutional layer
produces feature maps by finding the local conjunction that
appears in the previous layers. Fundamentally, the convolu-
tional layer is a combination of two components: a linear
convolution operation and a non-linear activation unit.

The convolution operation is performed over the vol-
umes of images with more than one channels such as RGB
images [51] and expressed as in (1):

ng nw ncC
conv(l,K), , = Z Z Z Kijilvi-1ytj-1.6 (1)
i=1 j=1 k=1
where the kernel K (f3, fiy, nc) convolve with the image
I (ng, nw, nc) of different size but of similar no. of channels
nc and generate a feature map O (oy, ow, 2). The fj, fi» rep-
resent the height and width of the kernel. And, ny, ny denote
the height and width of the given image. Conventionally, the
kernel is considered as an odd dimensional square window,
ie., fg = fw = f. The dimension of the generated feature
map [51] is defined as in (2):

(Lw+u’

Feature_map (oy, ow,2) =

N
N

where symbol p denotes the value of padding and s is stride,
and z is the number of kernels convolved with input image.
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(a) Black Rot

(b) Apple Scab

(c) Cedar Apple Rust (d) Healthy leaf

FIGURE 1. Samples of the apple leaf images of four classes namely Black rot, Scab, Cedar rust, and healthy leaves collected from the PlantVillage dataset.

Original Batch Image .
Image ———> of Images — 5 Augmentation
Dataset Object
Train CNN Batch of Images
on batch (Randomly transformed)

FIGURE 2. Representation of the process of data
augmentation/manipulation.

The rectified linear unit (ReLU) is the most widely employed
activation function [52]. ReLu doesn’t activate all neurons at
the same time. The neurons are activated only when output of
the convolution unit or other linear transform is either equal
to or greater than zero. It is expressed as in (3):

f(z) = max(0, z) 3)

2) POOLING LAYER

The pooling layer is used for downsampling of the feature
maps generated by the convolutional layers. It reduces the
size of activation maps that contain a large number of param-
eters. Thus, it reduces the computational burden, controls
overfitting and reduces the training time. The max, min,
average are the major pooling operations. But, max pooling
is widely employed and takes the maximum value from each
input patch. The max pooling operation is given in (4):

Max_Pooling : y; = max(P;) @
i€R;
where R denotes a receptive field containing P pixels. The
dimension of generated feature map [52] is defined in (5).

2 —
ng +2p f+1
s
an+2p—f
s

1s

Feature_map (oy, ow, n¢) = (I_
+ 1], nc)
(5

The pooling operation only modifies the dimensions ng and
nw whereas n¢ remains unchanged.
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3) FULLY CONNECTED LAYER

The fully connected (FC) or dense layers in CNN are similar
to the layers in traditional neural networks and typically con-
nected at last stages of a CNN to construct output layers with
a desired number of outputs. The FC layers operate on 1-D
data. The flatten layer arranges the 2-D output of previous
layers in a 1-D representation. The FC layers conduct two
types of functioning: linear and non-linear transformations.
These transformations can be expressed as in (6)-(7):

Z=wl.x+b 6)
0 =f2) @)

where, X is the input feature map, W is weight, and b denotes
bias terms, and O denotes the output of the fully connected
layer.

For better prediction, optimal weights are eventually
needed to reduce the loss function. Gradient descent approach
is the most widely used technique to find the optimal weights.
Adam algorithm is another technique to get less noisy and
smoother path during optimizing the gradients [53]. It per-
forms learning rate annealing based on finding the adaptive
estimates of the lower order moments.

C. PROPOSED METHOD

The proposed deep CNN (Conv-3 DCNN) model composed
of 3 convolutional layers and two fully connected layers
after the three max-pooling units. ReL.U is explored as a
nonlinear activation function at each convolution layer and at
first dense layer. Softmax function is employed at the output
layer to classify apple plant diseases. The softmax function
is responsible for multiclass classification and assumes that
each sample belongs to exactly one class. Figure 4 illustrates
the pipelining of various layers along with the activation
functions used in the developed deep CNN model.

A dropout layer is also used additionally at the third max
pool layer to the effect of overfitting. The dropout unit basi-
cally eliminates some random selected neurons. The network
could not rely on any one feature therefore some neurons are
ignored to spread out the weights for better generalization.

Initially, at the first convolution level 32 filters (3 x 3)
with valid padding and stride (1, 1) is selected to convolute
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(@ (b) © ()
FIGURE 3. Random samples of augmented images through various transformations.
TABLE 3. Structure of the deep CNN model employed for apple plant leaf disease detection.
No. Layer Name Filter Number of | Stride Padding Weights Bias Activation
Size Filters
1 Input (Image) 256 X 256 x 3
2 Convolution + | 3x3 32 [11] valid 3x3x3x32 1x1x32 | 254 x 254 x 32
ReLU
Pooling (Max) 2x2 [22] valid 127 x 127 x 32
4 Convolution + | 3 x3 16 [11] valid 3x3x32x16 | 1 x1x16 | 125 x 125 x 16
ReLU
Pooling (Max) 2x2 [22] valid 62 x 62 x 16
6 Convolution + | 3x3 8 [11] valid 3x3x16x8 1x1x8 60 x 60 x 8
ReLU
7 Pooling (Max) 2x2 [2 2] valid 30 x 30 x 8
Flatten 1 x 1 x 7200
9 Fully Connected 16 x 7200 16 x 1 1x1x16
+ ReLU
10 Fully Connected 4% 16 16 x 1 1x1x4
+ Softmax
11 Output 1x1x4

over RGB images of size 256 x 256. It generates 32 feature
maps of size 254 x 254. In output feature map the number
of channels is same as the number of filters applied. At the
first pooling layer, the previously generated feature maps
are downsampled by a kernel of size 2 x 2 and 32 feature
maps of size 127 x 127 are generated. The same kernels are
used at respective higher layers. The working process of the
proposed deep CNN method can be understood with the help
of layered architecture illustrated in Fig. 5. All the values
and parameters related to the development of the deep CNN
model are summarized in Table 3.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The deep CNN model is trained and evaluated on the
dataset described in Section III-A. The dataset is parti-
tioned into training, validation, and test with a ratio of
70-20-10 using hold-out validation method. Accordingly,
the training, validation, and test sets are comprised of
228, 634, and 319 images respectively, and are outlined
in Table 4.

VOLUME 11, 2023

A. EXPERIMENTAL SETUP

The deep CNN model is implemented in Python using Keras,
Scikit-learn, Opencv, and Pillow libraries on the Google
Colab virtual platform consisting of Nvidia P100 GPU
with 12 GB RAM. The results are visualized with the help of
Matplotlib library. With a learning rate of 0.0001 and mini-
batch size of 50, the model is trained for 1000 epochs. The
categorical cross entropy approach is employed to estimate
the loss. This approach is suitable for multiclass classification
problem and defined using (8).

N
loss(L) = = Y yim10g (pim) ®)
m=1

where N denotes no. of classes such as (N > 2), y represents
a binary indicator that indicates correct labeling of class m
and observation #, and p is the probability of predicting that
the observation i belongs to the class m.

The Adam optimization algorithm is used for gradient
optimization with 1 = 0.9, 82 = 0.999 exponential decay
rates for first and second moments. The hyperparameter
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conv2d_input: InputLayer

conv2d: Conv2D

RelLU

max_pooling2d: MaxPooling2D

conv2d_1: Conv2D

RelLU

max_pooling2d 1: MaxPooling2D

convld 2: ConvZD

RelLU

max_pooling2d 2: MaxPooling2D

flatten: Flatten

denge: Denge

RelLU

Y

denze 1:Dense
Softmax
Output
I
\ 2 v v L4
Scab Black Rot Cedar rust Healthy

FIGURE 4. Pipelining of layers in the deep CNN model.

tuning is performed using random search techniques to select
the best suitable hyperparameters. The details of optimized
hyperparameters related to the developed deep CNN model
are reported in Table 5.

Model effectiveness is checked by comparing the results
with those achieved for the pre-trained built-in mod-
els like VGG-19 [9], ResNet-152 [10], DenseNet-201
[11], MobileNetV2 [12], ResNet-50 [10], VGG-16 [9],
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InceptionV3 [13], Xception [14], and MobileNet [15]. All
the pre-trained models are applied on the same training and
test dataset. These models are used through the transfer learn-
ing approach which improves the model generalization and
allows rapid progress.

B. PERFORMANCE METRICS USED FOR MODEL
EVALUATION

The model performance is evaluated in respect of various
metrics which can be derived from confusion matrix.

1) Accuracy: Accuracy is a commonly used performance
metric that provides the ratio of correct prediction and
the total no. of data samples or the total prediction
made by the classifier. Both overall and individual class
accuracy can be determined from the confusion matrix.

2) Precision: It gives the fraction of all positive predictions
that are actually positive.

3) Recall or Sensitivity: It is the measure of ratio of
correctly predicted positive samples and all positive
samples.

4) Specificity / True Negative Rate (TNR): It defines the
ratio of correctly predicted negative samples and all
negative samples.

5) F1-Score: It gives the harmonic mean of the precision
and recall, and refers to the no. of correctly classified
instances. It ranges from O to 1.

6) Cohen Kappa: Cohen Kappa is a measure of inter-rater
reliability. Its higher value defines the model to be more
reliable. It ranges from 0 to 1.

7) AUC-ROC (Area Under the Curve of Receiver Oper-
ating Characteristics ): Area under Curve is a measure
of ability of the model to distinguish the classes. The
higher AUC value indicates that the model is better in
distinguishing the classes. ROC curve is employed to
visualize the behavior of a multi-class classifier and
represented as the probability curve that plots model
sensitivity against the false-out rate.

C. RESULT ANALYSIS

1) VISUAL ANALYSIS OF FEATURE MAPS

The deep CNN reduces the need of additional feature engi-
neering processes. The kernels applied at different layers
generate the “‘activation maps’ or generally called “‘feature
maps”’. The feature maps obtained at different convolutional
and pooling layers for an apple leaf infected with Cedar Rust
are demonstrated in Fig. 6-8.

The early convolutional layers learn the features like edges,
corners, and simple texture and preserving the most of the
information in the input image. Pooling layers downsample
the feature maps. Figure 6 illustrate 32 feature maps gener-
ated at first convolutional block (convl+ pooll). It can be
observed from the figures that orange, pale yellow lesions
are highlighted within the leaf image. But, deeper layers
defines an abstracted form of original image and encodes
high level information such as disease spots and complex
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FIGURE 5. Layered architecture of proposed deep CNN model for apple plant leaf disease detection.
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FIGURE 6. Feature maps generated at (a) first convolutional layer, and (b) first pooling layer in deep CNN model.

texture. Specifically, the feature maps at second convolutional specific to a disease. Sixteen feature maps specific to second
layers tells less about the image and more about the lesions convolutional black (conv24-pool2) are illustrated in Fig.7.
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TABLE 4. Splitting the apple plant leaf dataset into three subsets training, validation and testing with the 70-20-10 strategy.

Infection Training Set Size | Validation Set Size | Test Set Size | Total
Scab 441 126 63 630
Black rot 434 124 63 621
Cedar rust 192 55 28 275
Healthy 1151 329 165 1645
Total Images 2228 634 319 3171
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FIGURE 7. Feature maps generated at (a) second convolutional layer, and (b) second pooling layer in deep CNN model.
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Moreover, the feature maps get sparser at more deeper layers
that detect specific information about patterns and shapes.
Figure 8 shows 8 features maps related to third convolutional
block (conv3+pool3). These feature maps represent only the
complex information such as lesion shape and size. The fully
connected layers learn to connect high level features to the
classes.
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FIGURE 8. Feature maps generated at (a) third convolutional layer, and (b) third pooling layer in deep CNN model.

2) ACCURACY ANALYSIS

In this experiment, the proposed CNN model is evaluated
for its accuracy. The training accuracy is plotted along with
validation accuracy against the number of epochs in Fig. 9(J).
It can be observed that there is only a small difference in
training and validation accuracy curves. It declare that the
proposed model fits well for the addressed problem. It can
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FIGURE 9. Accuracy versus epochs: a. VGG-19, b. ResNet-152, c. DenseNet-201, d. MobileNetV2, e. ResNet-50, f. VGG16, g. InceptionV3, h. Xception,

i. MobileNet, j. Proposed deep CNN.

also be observed from the graph that model accuracy initially
increases sharply with increasing epochs. Later it improves
slowly. The plots for loss function of the model in Fig. 10(J)
also provide similar information. Initially, when the model
starts learning, the validation loss is apparently higher than
the training loss. Once the model learned the features of
disease classes, the validation loss is decreased and the vali-
dation accuracy is increased. Specifically, the accuracy of the
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model starts saturating at 1000 epochs and the validation error
decreases apparently.

Figure 11 illustrates the confusion matrix obtained for the
model. The most of the samples lie along the diagonal of
the confusion matrix indicating a good performance. Various
parameters including recall, precision, Kappa, f1- score, and
AUC-ROC can be estimated through confusion matrix. The
overall accuracy of the model at parameters specified in the
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i. MobileNet, j. Proposed deep CNN.

Table 5 is obtained as 98%. On evaluating the accuracy for
individual diseases, it is observed that the proposed model
identifies each disease with a good accuracy as given in
Fig. 12.

The AUC-ROC curves for the model are given in
appendix VI. It can be observed from the curves that the
model has good ability to distinguish among the classes.
In a good test result the curve should be closer to upper
left corner. The ROC curve plot for apple_scab class is the
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lowest whereas the curve for the class black_rot is highly
closer to the upper left corner. Therefore, the model is able to
identify the leaf images infected with black_rot disease more
accurately in comparison to other classes.

Comparison With Other Methods: The performance of
the model is contrasted with pre-trained models includ-
ing VGG-19 [9], ResNet-152 [10], DenseNet-201 [11],
MobileNetV2 [12], ResNet-50 [10], VGG-16 [9], Incep-
tionV3 [13], Xception [14], and MobileNet [15] using
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TABLE 5. Hyperparameters for the proposed deep CNN.

Parameter Description
No. of Epochs 1000
Mini-batch size 50
Learning rate 0.0001

Training set Size 2218
Validation set size 634

Test set size 319
Validation step 13
Activation function | ReLU
Dropout Rate 0.4
Adam 4 0.9
Adam [2 0.999

Confusion Matrix

Apple_Scab 59 3 0 1
«» Black_Rot 0 63 0 0
o
w
o
Q
o
2
= Cedar Rust 0 1 26 1

Healthy 0 1 0 164
%0,50 o Q_\f} é@'\
@7 ab' 2 &7 Q@'
ol F R
= ?

Predicted Classes

FIGURE 11. Confusion matrix of the proposed model.

transfer learning approach. The developed model is compared
with pre-trained models in terms of overall accuracy, time
consumption (training and testing time), FLOP, size (stor-
age space), and depth of the model as given in Table 6.
In addition, the models are also compared in terms of
their precision, recall, F1- score, and ROC AuC values. The
impact of epochs on the performance of these models is
also evaluated. For a particular model, the training epochs
varies from 1 to 1000. Both training and validation accuracies
are indicated against the number of epochs and compared
with the plot of our model in Fig. 9. The uneven variation
between the training and validation accuracies of pre-trained
models shows that the proposed model best fit for apple
disease detection. In addition, the loss function for all these
models is also evaluated and given in Fig. 10 with the plot
of proposed model. The rigorous observation of the results
reveals that the proposed model outperforms in comparison to
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Precision, Recall and F1l-score, Specificity,
ICA, and Kappa comparison

1
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0.86

Scab Black_Rot Cedar_Rust Healthy
W Precision 0.93 0.99
Recall 0.94 1 0.93 0.98
W Fl-score 0.97 0.96 0.96 0.99
W Specificity 1 0.98 1 0.98
mIcA 0.98 0.98 0.97 0.99
W Kappa 1 0.91 1 0.57

FIGURE 12. Class-wise performance in respect of precision, f1-score,
specificity, recall, individual class accuracy (ICA), and Kappa coefficient.

Batch Size (BS) and Learning Rate (LR) Comparison

oy 100
© 99
= 98
g 57
< — %
c X 55
el 94
T 93
o 92
= 91
= 30
BS=50 BS =100 BS =150 BS =200

LR =0.0001 98.94 96.78 95.46 94.89

mLR=0.001 93.16 96.28 97.82 97.95

LR=001 92.32 94.32 96.45 98.12

FIGURE 13. Validation accuracy achieved at different learning rates and
mini-batch sizes.
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FIGURE 14. Validation accuracy achieved at different dropout rates.

pre-trained models. And, among all other pre-trained models
MobileNetV2 model performed better.

The proposed model needs lesser storage and lower execu-
tion time in comparison to other models as observed from
Table 6. The pre-trained models have a large number of
weights that require additional storage. On the contrary, pro-
posed model involves the smaller no. of parameters than the
pre-trained models evaluated in this work. Generally, a high
number of parameters and intermediate output/feature maps
or a high number of convolutions require more storage space
and more time to execute. The proposed model performs well
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TABLE 6. Comparison of proposed Deep CNN model with popular pre-trained models.

Model No. of Training | Testing Size FLOP Depth | Accuracy | Precision | Recall | FI- ROC
Param- Time Time Score | AuC
eters (h) (s)
VGG-19 143,667,240 | 25 257 5499 MB | 1.96E+10 | 19 0.96 0.94 0.92 0.92 0.97
ResNet-152 58,772,356 19 73 230 MB | 1.13E+10 | 152 0.95 0.95 091 0.93 0.96
DenseNet-201 | 20,242,984 17 48 80 MB 437E+09 | 201 0.94 0.95 0.92 0.93 0.94
MobileNetV2 | 3,538,984 9 54 14 MB 3.14E+8 53 0.97 0.96 0.93 0.94 0.93
ResNet-50 25,636,712 12 20 98 MB 1.10E+10 | 50 0.90 0.90 0.88 0.88 0.89
VGG-16 138,357,544 | 15 16 528 MB | 1.58E+10 | 23 0.96 0.94 0.95 0.94 0.94
InceptionV3 23,851,784 12 14 92 MB 2.00E+09 | 159 0.95 0.95 0.94 0.94 0.97
Xception 22,910,480 13 113 88 MB 1.10E+10 | 126 0.95 0.93 0.94 0.93 0.96
MobileNet 4,253,864 10 82 16 MB 5.69E+11 | 88 0.96 0.95 0.94 0.94 0.97
Deep CNN 121,964 8 11 11 MB 1.32E+08 | 3 0.98 0.98 0.97 0.97 0.99
TABLE 7. Comparison of classification accuracy of proposed model with the methods exploited in prior researches in the domain.
References Method Crop/Plant Dataset Used No. of | No.of Param- | Accuracy
Classes eters
[34] CNN Tomato PlantVillage 10 208,802 91%
[33] CNN Assorted PlantVillage 39 1,156,516 98%
cultures
[41] ResNet-50 Tomato PlantVillage 10 25,636,712 97%
[39] VGG-INCEP Apple Apple Leaf images 5 97%
[31] CNN Assorted PlantVillage 39 212,543 96%
cultures
[45] InceptionV3 Apple PlantVillage 4 23,851,784 97%
[46] AlexNet Apple PlantVillage 2 62,378,344 87%
[54] 1520CNN & ResNet- | Apple PlantVillage 4 25,636,712 96%
[44] MobileNet Apple Apple Leaf images 5 4,253,864 74%
ResNet-50 25,636,712 78%
[27] SVM Apple PlantVillage 4 97%
[20] SVM Apple PlantVillage 3 96%
This work Proposed CNN Apple PlantVillage 4 121,964 98%

with a lower number of convolution operations and parame-
ters thus it requires less storage space and low computation
time. Additionally, a less number of add-multiply operations
are performed in the proposed CNN, therefore it requires a
less number of FLOP. Due to these benefits, this model can
be easily deployed in the form of a mobile app in smartphones
to assist the non-pathologist/ farmers to diagnose and identify
apple diseases in the orchards at real-time.

A comparative study is also performed with other existing
methods. For this, only those research works are consid-
ered that use similar experimental setup and PlantVillage
dataset. The comparison of such methods is given in Table 7
on the basis of various parameters. The table revels that
the introduced model gives considerably better results than
most of the other methods. Its performance is slightly infe-
rior to the model used by [33] but the proposed model

6606

involves much fewer parameters leading to lesser training
time.

3) INFLUENCE OF LEARNING RATE AND BATCH SIZE

The CNN model is trained with mini-batch gradient descent,
which splits the training dataset to small subsets. Mini-
batch calculates the gradient of loss function and updates
the weights, which results robust convergence of the net-
work [55]. The hyperparameters batch size (BS) and the
learning rate (LR) of the network are highly correlated [56].
In this experiment, the model behavior is analyzed on various
mini-batch sizes and learning rates. The results are obtained
with batch size of 50, 100, 150 and 200 and learning rate of
0.0001, 0.001, and 0.01 as reported in Fig. 13. The proposed
model obtained the highest validation accuracy at learning
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FIGURE 15. ROC Curves of a) proposed CNN model, b) Apple_Scab disease, c) Apple_Black_Rot disease, d) ROC Curve of Apple_Cedar_Rust

disease, and e) Apple_Healhty category.

rate 0.0001 and mini-batch size 50. It is observed that smaller
learning rate is more influential with smaller batch size. With
larger batches, the higher learning rate gives better accuracy.
Overall, smaller batch with smaller learning rate could be
recommended for such problems.

4) INFLUENCE OF DROPOUT RATE

Dropout is a regularization technique, which allows ignoring
some units during the model training and to reduce the over-
fitting. The influence of the dropout rate (DR) is analyzed
by training the model at distinct dropout values starting from
0.0 to 0.8 with a step size of 0.2. The validation accuracy of
the model against varying dropout rate is provided in Fig. 14.
The highest validation accuracy of 98.94% is achieved at
dropoutrate 0.4. It is also observed from the figure that higher
dropout rate is not good for accuracy.

V. CONCLUSION AND FUTURE WORK

A deep CNN model was proposed in this work to identify
diseases in apple crops with the help of leaf images. It can
assist the non-expert farmers in apple orchards and lower
the stress on plant pathologists. The model was trained on
3171 apple leaves for 1000 epochs. The accuracy of the
model was evaluated to 98% on PlantVillage dataset. The
rigorous investigation manifests the proposed model to be
better than various pre-trained CNN models. The method was
also found better than some other existing methods on the
basis of various parameters including accuracy and memory
requirements. The model achieves good accuracy for differ-
ent diseases between 97% to 99%. The model successfully
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balanced the accuracy and precision. The AUC-ROC curve
showed that the proposed model is reliable and consistent.
The possible extension of this work include collection of
more leaf images of apple plants from various geographically
different areas with varying image quality at different plant
growth stages in different cultivation conditions. The large
dataset with improved image variability would allow more
rigorous experiments helping to improve the model to detect
diseases at different stages for a variety of apple crops.

VI. APPENDIX A THE AUC-ROC CURVE DEMONSTRATING
THE PROPOSED MODEL FOR ALL CLASSES

The ROC curve of the deep CNN model is illustrated in
Fig. 15(a), additionally the class-wise ROC curve are also
given here. See Fig. 15(b)-15(e).
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