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ABSTRACT Interior permanent magnet synchronous motors have become widely used as traction motors
in environmentally friendly vehicles. Interior permanent magnet synchronous motors have a high degree
of design freedom and time-consuming finite element analysis is required for their characteristics analysis,
which results in a long design period. Here, we propose a method for fast efficiency maximization design
that uses amachine-learning-based surrogatemodel. The surrogatemodel predicts motor parameters and iron
loss with the same accuracy as that of finite element analysis but in a much shorter time. Furthermore, using
the current and speed conditions in addition to geometry information as input to the surrogate model enables
design optimization that considers motor control. The proposed method completed multi-objective multi-
constraint optimization for multi-dimensional geometric parameters, which is prohibitively time-consuming
using finite element analysis, in a few hours. The proposed shapes reduced losses under a vehicle test cycle
compared with the initial shape. The proposed method was applied to motors with three rotor topologies to
verify its generality.

INDEX TERMS Finite element analysis, iron loss, machine learning,motor efficiency,multi-objectivemulti-
constraint optimization, permanent magnet motors, XGBoost.

I. INTRODUCTION
Environmentally friendly vehicles have increasingly attracted
attention as a tool for achieving carbon neutrality. Interior per-
manent magnet synchronous motors (IPMSMs) [1], [2], [3]
are used as traction motors in such vehicles because of their
high output, high efficiency, and high reliability.

IPMSMs have permanent magnets (PMs) inside the rotor.
There is a high degree of freedom in the PM arrangement
and the flux barrier arrangement, and thus various designs
are possible for a given set of specifications. Finite element
analysis (FEA) is generally used to analyze the characteristics
of IPMSMs; however, this analysis is very time-consuming.
For IPMSManalysis for automotive applications, the analysis
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time is very long because the characteristics must be obtained
under various speed and torque conditions (e.g., city driving,
suburban driving, highway driving). The design of IPMSMs
takes a long time because FEAmust be repeatedly performed
on various design alternatives. There is thus a need for an
automatic design system that can efficiently design high-
performance IPMSMs.

Many studies have proposed algorithms for efficiently
finding the optimal design. Bonthu et al. [4]minimized torque
ripple and cogging torque by optimizing the notch shape
of the rotor surface of a PM-assisted synchronous reluc-
tance motor. Farhadian et al. [5] proposed an optimization
algorithm based on improved particle swarm optimization to
optimize the torque characteristics of a synchronous reluc-
tance motor. Son et al. [6] optimized the rotor shape of an
IPMSM with grain-oriented electrical steel applied to the
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stator teeth using a modified genetic algorithm. Shi et al. [7]
proposed multi-objective optimization based on the sequen-
tial Taguchi method for a five-phase permanent magnet hub
motor. Although these methods efficiently optimize geome-
try, they are unsuitable for IPMSMs in automotive applica-
tions because they obtain the motor characteristics only at a
single current condition.

To speed up the design process, many studies have con-
structed surrogate models for FEA. A surrogate model func-
tionalizes the relationship between the input (geometry and
operating conditions) and the output (the characteristics) of
FEA. Using a surrogate model allows us to perform IPMSM
design with a reduced number of FEA iterations or with-
out FEA. Building a surrogate model requires some FEA
results. Many studies have utilized surrogate models trained
by machine learning. Islam et al. [8] optimized two rotor
design parameters at multiple output points of an IPMSM
using the response surface method. Zheng et al. [9] per-
formed the multi-objective optimization of an IPMSM with
rare-earth PMs and ferrite PMs using the response surface
method. Sun et al. [10] classified the geometric parameters
of an IPMSM into three categories by cross-factor variance
analysis and optimized them with respect to torque and loss
characteristics using kriging. Sun et al. [11], [12] proposed
a system-level design optimization method based on the
actual operating environment and a sequential subspace opti-
mization method using the kriging method for a permanent
magnet hub motor, respectively. Dhulipati et al. [13] used
support vector regression to train a prediction model for a
six-phase IPMSM. Hao et al. [14] trained a model to learn
the relationship between the design parameters and torque
ripple of an IPMSM using radial basis function networks
and used the model for optimization. Pan et al. [15] used
XGBoost, an optimized distributed gradient boosting library,
to learn the relationship between the torque characteristics
and the structural parameters of PM arc motors and used
the model for optimization. These machine-learning-based
surrogate models are very effective for the automated design
of IPMSMs.

However, much of the above-mentioned research on design
optimization of electromagnetic machines with machine
learning did not focus on control strategies. For traction
motors for automotive applications, some operating points
(torques and speeds) are given. At that operating points, it is
necessary to consider designs that optimize the characteris-
tics such as efficiency. Because various current conditions
are possible to drive at given operating points, it is neces-
sary to determine the optimal current conditions based on
a control strategy, which requires repeated FEA. Especially
during design optimization, for each of a large number of
design alternatives, the optimal current condition needs to
be searched based on a control strategy and requires a high
computational cost. Therefore, this study proposes a fast
efficiency optimization method for IPMSM for automotive
applications with machine-learning-based surrogate models.
The contributions of this study are as follows.

• Machine-learning-based surrogate models are proposed
for predicting iron loss characteristics based on current
and speed conditions in addition to geometry informa-
tion, which can reduce characteristic computation time
compared to FEA.

• A surrogate model is used to obtain the current con-
ditions for driving at the required operating points
with copper loss minimization control and to find the
best design that maximizes the efficiency characteristics
under such control.

The rest of this paper is organized as follows. Section II
describes the mathematical modeling of the target IPMSM.
Section III describes the training of the surrogate model with
machine learning. Section IV shows the results of efficiency
maximization with a torque constraint using the proposed
surrogate model. Section V summarizes the results.

The dataset described in Section III-C is available at IEEE
DataPort [16] and the Python implementation of the iron loss
prediction model is available at GitHub [17].

II. MATHEMATICAL MODELING
A. TARGET IPMSM
This study focuses on IPMSMs for automotive applications.
Fig. 1 shows the structure of a double-layered IPMSM
(Type 2D) and Table 1 shows the corresponding specifica-
tions. To verify the generality of the proposed method, this
study uses three rotor topologies (see Fig. 4 below). All
IPMSMs have 8-pole, 48-slot stators with distributed wind-
ings. The details of each model are described elsewhere [3].

B. IPMSM MODELING
The average torque T of an IPMSM is obtained as follows.

T = Pn
{
9aiq +

(
Ld − Lq

)
id iq

}
= Pn

{
9aIa cosβ +

1
2

(
Lq − Ld

)
I2a sin 2β

}
, (1)

where Pn is the number of pole pairs, 9a is the PM flux link-
age, Ld and Lq are the d- and q-axis inductances, respectively,
id and iq are the d- and q-axis currents, respectively, and Ia
and β are the magnitude and leading angle with respect to the
q-axis of the armature current vector, respectively.

Because IPMSMs are driven under inverter voltage and
current limits, the current vector that maximizes the output
should be searched for under each limit. The current and
voltage limits are respectively expressed by the following
equations.

Ia =
√
i2d + i

2
q ≤ Iam, (2)

Va =
√
v2d + v

2
q ≤ Vam, (3)

where Iam is the maximum armature current, Va is the termi-
nal voltage, vd and vq are the d- and q-axis voltages, respec-
tively, and Vam is the maximum terminal voltage, which
depends on the dc-link voltage. The limit of the induced
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FIGURE 1. Cross section of target traction motors. Rotor topology is
Type 2D [3]. Other rotor topologies used in this study are shown in Fig. 4.

TABLE 1. General motor specifications.

voltage Vo of the IPMSM is expressed as follows.

Vo = ω
√
92
d +9

2
q

= ω

√
(9a − Ld Ia sinβ)2 +

(
LqIa cosβ

)2
≤ Vom, (4)

where9d and9q are the d- and q-axis flux linkages, respec-
tively, and themaximum induced voltageVom depends onVam
as follows.

Vom =
√
V 2
am + (RaIa)

2
− 2VamRaIa cosφ ≥ Vam − RaIam,

(5)

where Ra is the winding resistance, and ϕ is the power
factor angle. The equality condition for (5) is the power
factor cosϕ = 1. For simplicity, this study sets the maximum
induced voltage Vom to the minimum value Vam − RaIam.

C. LOSS EVALUATION
This section describes the losses of the IPMSM. IPMSMs
for automotive applications are required to perform under
various speed and torque conditions. The Worldwide Harmo-
nized Light Vehicles Test Cycle (WLTC) is commonly used

FIGURE 2. WLTC results. (a) Vehicle speed and (b) discrete operating
points of motor.

for vehicle loss and efficiency evaluation. Fig. 2 shows the
vehicle speed and the discrete operating points of the motor
under the WLTC. For the conversion from vehicle speed to
motor operating point, the body constants of Toyota’s third-
generation Prius were used. For more details, see [3].

As shown in Fig. 2, the operating point of a motor is given
as a speed and a torque. However, there are various current
conditions where themotor can be driven at a single operating
point. Therefore, the evaluation of driving characteristics at
a certain operating point requires finding the appropriate
current conditions. This study finds the appropriate current
conditions

(
Îa, β̂

)
for a given operating point

(
ωreq,Treq

)
by

minimizing copper loss as follows.

Îa, β̂ = argmin
Ia∈(0,Iam],β∈[0,90]

RaI2a ,

s.t. T (Ia, β) = Treq,

Vo
(
Ia, β, ωreq

)
≤ Vom. (6)

The reason for using copper loss minimization is that copper
loss is easy to calculate and is often used in actual motor
drives rather than maximum efficiency control, which takes
into account iron loss and other losses.
For motors for automotive applications, it is difficult to

solve (6) analytically because the motor parameters have
strong nonlinearities due to the effect of magnetic saturation.
In general, (6) is solved numerically by repeatedly perform-
ing FEA. Fig. 3 shows the algorithm for the current condition
search based on copper lossminimization, where1Ia > 0 and
1β > 0 are the search step sizes for Ia and β, respectively,
and ε > 0 is the threshold value. Because copper loss depends
only on the current amplitude, copper loss minimization only
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FIGURE 3. Algorithm to find appropriate current conditions by minimizing
copper loss and to calculate efficiency.

needs to find the smallest current amplitude condition that
satisfies the constraints. Therefore, this algorithm performs
the characteristics analysis sequentially starting from the con-
ditionwith the smallest current amplitude and searches for the
smallest current condition that satisfies the constraints.

Once the appropriate current condition is found, the effi-
ciency is calculated. Because this study uses static magnetic
field analysis, iron loss does not affect the analyzed power,
and iron loss analysis is performed separately under arbitrary
speed conditions. Therefore, the efficiency η is calculated as
follows.

η =
ωmT −Wi

ωmT + RaI2a
, (7)

where ωm is the mechanical angular velocity, and Wi is the
iron loss.

III. MACHINE-LEARNING-BASED SURROGATE MODEL
For the efficiency maximization design, an efficiency eval-
uation is performed for a large number of solution shapes.
However, as described in Section II, the efficiency evaluation
of IPMSMs for automotive applications requires repeated
FEA, which is time-consuming and thus makes large-scale

optimization design difficult. This study constructs surro-
gate models that can predict the driving characteristics of
an IPMSM from the current and speed conditions and its
geometry using machine learning.

A. MOTOR PARAMETER PREDICTION
The parameters to be predicted by machine learning in the
efficiency maximization design are motor parameters and the
iron loss. The motor parameters include PM flux linkage 9a
and d- and q-axis inductances Ld and Lq, respectively. Using
(1) and (4) with these parameters, the average torque and
induced voltage can be calculated, respectively.

To take into account the effects of magnetic saturation, the
surrogate model that predicts these motor parameters takes
as input the current condition Ie and β in addition to the geo-
metric parameters. For the analysis of the motor parameters,
note that 9a is calculated from the FEA results at β = 0◦

and that 9a is required for calculating Ld . Based on these
relationships, we efficiently generate data and use support
vector regression and XGBoost to construct surrogate models
for motor parameters with high accuracy. See [18] for details.
This study uses the surrogate models constructed in [18] for
parameter prediction.

B. ROTOR SHAPE GENERATION
Next, the iron loss prediction method is described.
Fig. 4 shows the initial rotor topologies and geometric param-
eters for the three IPMSMs [3], [19], where

(
r ·1, θ

·

1

)
are

the polar coordinates, with the center of the shaft as the
origin. The geometric parameter vectors for each topology
are defined as

x2Dgeom =
(
r2D1 , θ2D1 , d2D1 , d2D2 , . . . , d2D9

)T
∈ R11,

xVgeom =
(
rV1 , θ

V
1 , d

V
1 , d

V
2 , d

V
3

)T
∈ R5,

xNablageom =

(
dNabla1 , dNabla2 , . . . , dNabla8

)T
∈ R8, (8)

and all variables not included in x•geom or dimensions not
shown in Fig. 4 are either constant or automatically deter-
mined (e.g., the PMs in the second layer in Fig. 4(a) have
the same dimensions). The arc shape at the end of the flux
barrier has been removed for simplicity. The rotor shape can
be obtained by randomly generating x•geom according to the
following equation.

x•geom(j) ∼ U (x•lwr(j), x
•

upr(j))(j = 1, . . . , 11), (9)

where U (a, b) is a random variable with a uniform distribu-
tion on an open interval (a, b), x•geom(j) is the j-th geometric
parameter, and x•lwr(j), x

•

upr(j) are its upper and lower bounds,
respectively. The upper and lower limits of the basic geomet-
ric parameters x•geom are set with inter-variable dependencies
to prevent the generation of un-designable shapes (e.g., mag-
nets popping out of the rotor area) [18]. Because the upper
and lower bounds for each parameter are different from case
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FIGURE 4. Initial rotor shapes and settings for geometric parameters.
Dimensions not shown in figure are either constant or automatically
determined. (a) 2D [3], (b) V [3], and (c) Nabla [19].

to case, the simple uniform distribution was used instead
of complex sampling methods such as the Latin hypercube
sampling. The directions of magnetization of the PMs were
fixed in the thickness direction.

For 2D, V, and Nabla topologies, 28,990, 28,539, and
27,655 rotor shapes for the training datasets were randomly
generated according to (9), respectively. Python was used
to implement the uniform distribution. (In fact, 30,000 rotor
shapes for each topology were prepared, but excluding the
cases where the FEA failed described in Sec. III-C, the num-
bers of data were as described above.)

C. FINITE ELEMENT ANALYSIS CONDITIONS
This section describes the analysis of the shapes generated in
Section III-B. Phase currents Ie, current phase angles β, and

speeds N were generated according to (10).
Ie ∼ 140

√
U (0, 1)(Arms),

β ∼ U (0, 90)(◦),
N ∼ U (0, 15000) (min)−1.

(10)

This setting means that one geometry is analyzed under only
one current and speed condition.

The rotor position was changed in one-degree (mechani-
cal angle) steps in the two-dimensional FEA using JMAG-
Designer 19.1 as the analysis software. In the iron loss
analysis, the fast Fourier transform method was adopted for
both hysteresis loss and eddy current loss computation with-
out considering the minor loop. The eddy current loss in the
PM was not considered. For the analysis, a computer with
an Intel CoreTMi9-10980XE CPU and 32.0 GB of RAM was
used. The total FEA time for 28,990, 28,539, and 27,655 rotor
shapes of the 2D, V, and Nabla topologies was 477.2, 372.5,
and 439.8 hours, respectively.

D. XGBOOST
Because the training dataset is tabular and multi-dimensional
and contains a lot of data, this study uses XGBoost as the
learning method for iron loss prediction. XGBoost is a gra-
dient boosting method proposed by Chen and Guestrin [20].
It uses decision trees as weak learners. The learning process
of XGBoost is described below.

First, the first decision tree is adapted from the input data.
Next, a second decision tree is fitted to reduce the residuals
of the first one. In this way, when K decision trees are
constructed, the predicted value f (xi) is expressed by (11)
with the k-th decision tree as fk .

f (xi) =
K∑
k=1

fk (xi), (11)

When constructing the t-th decision tree from t-1 decision
trees, the following optimization problem is solved.

min
ft

n∑
i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+�(ft) , (12)

where ŷ(t−1)i is the prediction by t-1 decision trees, and the
loss function l uses the root-mean-square error. � is the
regularization term defined as follows.

�(f ) = γT +
1
2
λ ‖w‖2 , (13)

where T is the number of leaf nodes in the decision tree,
w ∈ RT is the value stored in the leaf node, and γ, λ > 0 are
hyperparameters.

E. TRAINING SETTINGS
The input vectors x•ironloss in iron loss prediction are 14-
dimensional vectors.

x•ironloss =
(
id , iq,N , x•geom

)T
. (14)
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FIGURE 5. Prediction results for iron loss. The upper left number
indicates the coefficient of determination (higher is better).
(a), (c), and (e) show the results for hysteresis loss, and
(b), (d), and (f) show the results for eddy current loss. (a) and (b) are 2D,
(c) and (d) are V, and (e) and (f) are Nabla.

As a general formula for iron loss, an empirical equation,
called Steinmetz’s equation [21], is used.

Wi = Wh +We,

Wh = mcorekhfB1.6max ,

We = mcoreke (fBmax)2 , (15)

where Wh is the hysteresis loss, We is the eddy current loss,
mcore is the core mass, kh and ke are constants, f is the
frequency, and Bmax is the maximum flux density. Accord-
ing to (15), the hysteresis loss and the eddy current loss
have different nonlinearities with respect to frequency and
the maximum magnetic flux density. Therefore, to improve
prediction accuracy, the hysteresis loss and the eddy current
loss were predicted separately as follows.

W pred
h = fh

(
x•ironloss

)
,

W pred
e = fe

(
x•ironloss

)
, (16)

The functions fh and fe are subject to training with XGBoost.
In the training, the datasets of features and targets were

split into two subsets, namely training and test sets, in a
4:1 ratio. The datasets were standardized before training.

FIGURE 6. Efficiency maps for initial 2D model [3] (a) created by FEA and
(b) predicted by machine learning.

FIGURE 7. Evaluation points used in optimization. The blue points are for
efficiency evaluation. The red squares are for average torque constraints.

Python was used for implementation. Five-fold cross-
validation with the library Optuna was used for hyperparam-
eter tuning.

F. TRAINING RESULTS
Fig. 5 shows the prediction results of the hysteresis loss and
the eddy current loss. The prediction of both hysteresis loss
and eddy current loss was found to be highly accurate even
for unknown test data. The prediction accuracies were equally
high for all topologies.

Fig. 6 compares the efficiency maps of the initial 2D mod-
els created by FEA and those predicted by machine learning.
The computation time for generating efficiencymaps for FEA
was 4.23± 0.61 hours and that for the prediction by machine
learning was 28.18 ± 0.08 seconds. The computation times
are the means and standard deviations (std) of 5 trials for
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FIGURE 8. Efficiencies for all populations and final population for optimization design. The blue squares are the selected Pareto solution shown in
Fig. 10. (a) 2D, (b) V, and (c) Nabla.

FIGURE 9. Torques for all populations and final population for optimization design. (a) 2D, (b) V, and (c) Nabla.

FEA and 100 trials for prediction. The results of prediction by
machine learning are similar to those of FEA, suggesting that
this prediction has potential use as a highly accurate surrogate
model. The computation time of the surrogate model was
less than 0.2% that of FEA, indicating that once training is
completed, the surrogate model can be repeatedly used for
large-scale design optimization.

IV. EFFICIENCY OPTIMIZATION
In this section, a multi-objective multi-constraint optimiza-
tion design is performed using the trained prediction models.

A. PROBLEM
It is time-consuming to evaluate efficiency at all operating
points of the WLTC. Therefore, the characteristics at two
representative points are evaluated. Fig. 7 shows the evalu-
ation points used in optimization. The efficiency evaluation
points are determined based on the motor operating points in
WLTC as shown in Fig. 2, and two other torque constraints
are set tomaintain the same output as the referencemotor. The
efficiency maximization problem with a torque constraint for
the IPMSM is as follows.

min
x•geom

−w1
η
pred
1

ηinit1

− w2
η
pred
2

ηinit2

+ PAD,

s.t. gi : T
pred
i ≥ αT reqi (i = 3, 4) , (17)

where ηpred1 and ηpred2 are the predicted efficiencies at oper-
ating points P1 and P2, which are calculated by (6), (7),
and (16) and normalized by the initial values ηinit1 and ηinit2 ,
respectively. w1 and w2 are weight coefficients, (w1, w2) =
(1, 1) in this setup. PAD is the applicability domain penalty

of the prediction models [18]. The constraint conditions
gi are torque constraints for two required operating points{(
N req
i ,T reqi

)}4
i=3, which are multiplied by a coefficient

(α = 1.05) to consider the prediction error. The predicted
torques used for efficiency calculations and torque constraints
were calculated by (1) and the surrogate model for predicting
motor parameters described in Section III-A at the current
conditions obtained in (6).

The current conditions for the efficiency evaluation were
determined by copper loss minimization using the algorithm
in Fig. 3 with the surrogate model instead of FEA. This
algorithm is implemented using the array computation in
the Python library NumPy. The torque prediction results are
given as the maximum output control at the required speed
using the surrogate models for motor parameters.

NSGA-II [22] was used as the optimization algorithm and
the Python library pymoo was used for the implementa-
tion [23]. For 2D, V, and Nabla, the population sizes were 50,
25, and 40, and the numbers of offspring were 10, 8, and 10,
respectively. These values depended on the dimensions of the
geometric parameters. Latin hypercube sampling was used
for sampling the initial population, the tournament method
was used for selection, simulated binary crossover was used
for crossover, and polynomial mutation was used for muta-
tion. The termination condition was set to 50 generations.

B. OPTIMIZATION RESULTS
Figs. 8 and 9 show the efficiency and torque results for all
populations and the final population during the optimization
process. For all topologies, clear Pareto fronts were gener-
ated for ηpred1 and ηpred2 , which have a trade-off relationship.
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FIGURE 10. Best rotor shapes of selected Pareto solution (blue squares in
Fig. 8). (a) 2D, (b) V, and (c) Nabla.

TABLE 2. Geometric parameters for best rotor shapes.

The final population became highly efficient while satisfying
the torque constraints. Therewas a strong correlation between
T pred3 and T pred4 . The maximum torque T req3 at low speed
was the most effective constraint in this setup. Severe torque
constraints converge the population to a shape that can reduce
copper loss. Thus, especially for 2D and V, the final popula-
tion tended to have higher efficiency ηpred1 than ηpred2 , where
copper loss is dominant rather than iron loss. On the other
hand, for Nabla, the average torque tends to be the highest
among the three topologies. Therefore, the effect of the torque
constraints on the final population is not significant; the final
population formed a broad Pareto front to ηpred1 and ηpred2 .
A comparison of the characteristics of the three topologies
indicates that efficiency ηpred1 at low speed tends to be highest
for Nabla, where torque is easily obtained, and that efficiency
η
pred
2 at high speed tends to be highest for 2D, which has a

high reluctance torque ratio.
FEA of the best shape was performed to verify the validity

of the optimization results. Fig. 10 shows the selected best
rotor shapes and Table 2 shows their geometric parameters.
The best shapes are indicated by blue squares in Fig. 8.
Fig. 11 shows the total losses under WLTC, where losses dur-
ing regeneration were not considered. The optimized models
achieved a loss reduction of 1.9% for 2D, 10.1% for V, and
5.6% for Nabla compared with the initial geometries. This
is thanks to the accelerated computation time for individ-
ual evaluation, which allows many shape alternatives to be
considered.

Table 3 shows the optimization computation time for each
topology, where the results were measured for 10 optimiza-
tion runs on a computer with an Intel CoreTMi7-9700K CPU,
32.0 GB of RAM, and an NVIDIA GeForce RTX 3090
SUPER (24 GB) GPU. The optimization calculation took
only about 2 hours even for 2D, which has 11 dimen-
sions and the largest number of geometric parameters among
three topologies. Thus, our proposed method can complete
efficiency optimization with many parameters, which is

FIGURE 11. Loss under WLTC, where losses during regeneration were not
considered.

TABLE 3. Computation time for optimization.

prohibitively time-consuming using FEA, in a relatively short
time. Furthermore, once trained, the prediction model can
be used repeatedly, allowing optimization under different
conditions to be performed repeatedly in a short time.

V. CONCLUSION
This paper proposed a machine-learning-based surrogate
model for predicting iron loss characteristics. This model
allowed us to obtain the current conditions for the operating
points with copper loss minimization control and to perform
efficiency maximization design in a short time. The effective-
ness of the proposed method was validated by IPMSMs with
three rotor topologies.

The surrogate model takes the current and speed conditions
as inputs in addition to geometry information. It achieved
highly accurate iron loss prediction under a wide range of
speed and torque conditions. The computation time of the
surrogate model was less than 0.2% that of FEA. Therefore,
the surrogatemodel allows an efficiencymaximization design
with multi-dimensional geometrical parameters to be per-
formed, which is prohibitively time-consuming using FEA.
The best shapes obtained in the optimization reduced the
losses under the WLTC by 1.9%, 10.1%, and 5.6% compared
with that for the initial motors for 2D, V, and Nabla, respec-
tively. The computational time required for the optimization
was 123.58 minutes even with 11-dimensional geometric
parameters, indicating that the design can be completed in
a short time. Furthermore, once trained, the prediction model
can be used repeatedly, allowing optimization under different
conditions to be performed repeatedly in a short time.

In future work, the driving characteristics of the optimized
models will be verified using prototypes.
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The dataset described in Section III-C is available at IEEE
DataPort [16] and the Python implementation of the iron loss
prediction model is available at GitHub [17].

REFERENCES
[1] T.-A. Huynh, P.-H. Chen, and M.-F. Hsieh, ‘‘Analysis and comparison

of operational characteristics of electric vehicle traction units combining
two different types of motors,’’ IEEE Trans. Veh. Technol., vol. 71, no. 6,
pp. 5727–5742, Jun. 2022.

[2] A. Brosch, O. Wallscheid, and J. Bocker, ‘‘Torque and inductances esti-
mation for finite model predictive control of highly utilized permanent
magnet synchronous motors,’’ IEEE Trans. Ind. Informat., vol. 17, no. 12,
pp. 8080–8091, Dec. 2021.

[3] Y. Shimizu, S. Morimoto, M. Sanada, and Y. Inoue, ‘‘Influence of perma-
nent magnet properties and arrangement on performance of IPMSMs for
automotive applications,’’ IEEJ J. Ind. Appl., vol. 6, no. 6, pp. 401–408,
2017.

[4] S. S. R. Bonthu, M. T. B. Tarek, and S. Choi, ‘‘Optimal torque ripple reduc-
tion technique for outer rotor permanent magnet synchronous reluctance
motors,’’ IEEE Trans. Energy Convers., vol. 33, no. 3, pp. 1184–1192,
Sep. 2018.

[5] M. Farhadian, M. Moallem, and B. Fahimi, ‘‘Multimodal optimization
algorithm for torque ripple reduction in synchronous reluctance motors,’’
IEEE Access, vol. 10, pp. 26628–26636, 2022.

[6] J.-C. Son, J.-Y. Kim, J.-W. Choi, D.-K. Lim, and H.-K. Yeo, ‘‘Perfor-
mance enhancement of the IPMSM for HEV applications using grain-
oriented electrical steel and design optimization,’’ IEEE Access, vol. 10,
pp. 46599–46607, 2022.

[7] Z. Shi, X. Sun, Y. Cai, and Z. Yang, ‘‘Robust design optimization of a
five-phase PM hub motor for fault-tolerant operation based on Taguchi
method,’’ IEEE Trans. Energy Convers., vol. 35, no. 4, pp. 2036–2044,
Dec. 2020.

[8] M. S. Islam, M. Chowdhury, A. Shrestha, M. Islam, and I. Husain,
‘‘Multiload point optimization of interior permanent magnet synchronous
machines for high-performance variable-speed drives,’’ IEEE Trans. Ind.
Appl., vol. 57, no. 1, pp. 427–436, Jan. 2021.

[9] S. Zheng, X. Zhu, L. Xu, Z. Xiang, L. Quan, and B. Yu, ‘‘Multi-objective
optimization design of a multi-permanent-magnet motor considering mag-
net characteristic variation effects,’’ IEEE Trans. Ind. Electron., vol. 69,
no. 4, pp. 3428–3438, Apr. 2022.

[10] X. Sun, Z. Shi, G. Lei, Y. Guo, and J. Zhu, ‘‘Multi-objective design
optimization of an IPMSM based on multilevel strategy,’’ IEEE Trans. Ind.
Electron., vol. 68, no. 1, pp. 139–148, Jan. 2021.

[11] X. Sun, Z. Shi, Y. Cai, G. Lei, Y. Guo, and J. Zhu, ‘‘Driving-cycle-oriented
design optimization of a permanent magnet hub motor drive system for
a four-wheel-drive electric vehicle,’’ IEEE Trans. Transport. Electrific.,
vol. 6, no. 3, pp. 1115–1125, Sep. 2020.

[12] X. Sun, N. Xu, and M. Yao, ‘‘Sequential subspace optimization design of
a dual three-phase permanent magnet synchronous hub motor based on
NSGA III,’’ IEEE Trans. Transport. Electrific., early access, Jul. 13, 2022,
doi: 10.1109/TTE.2022.3190536.

[13] H. Dhulipati, E. Ghosh, S. Mukundan, P. Korta, J. Tjong, and N. C. Kar,
‘‘Advanced design optimization technique for torque profile improve-
ment in six-phase PMSM using supervised machine learning for direct-
drive EV,’’ IEEE Trans. Energy Convers., vol. 34, no. 4, pp. 2041–2051,
Dec. 2019.

[14] J. Hao, S. Suo, Y. Yang, Y. Wang, W. Wang, and X. Chen, ‘‘Optimization
of torque ripples in an interior permanent magnet synchronous motor
based on the orthogonal experimental method and MIGA and RBF neural
networks,’’ IEEE Access, vol. 8, pp. 27202–27209, 2020.

[15] Z. Pan and S. Fang, ‘‘Torque performance improvement of permanent
magnet arc motor based on two-step strategy,’’ IEEE Trans. Ind. Informat.,
vol. 17, no. 11, pp. 7523–7534, Nov. 2021.

[16] Y. Shimizu. (Aug. 19, 2022). Dataset for Iron Losses of IPMSMs. IEEE
Dataport. Accessed: Aug. 19, 2022. [Online]. Available: https://ieee-
dataport.org/documents/dataset-iron-losses-ipmsms

[17] Y. Shimizu. Ironloss_Prediction_of_IPMSM_by_XGBoost. Github.
Accessed: Aug. 19, 2022. [Online]. Available: https://github.com/yshimi
zu12/ironloss_prediction_of_IPMSM_by_XGBoost

[18] Y. Shimizu, S. Morimoto, M. Sanada, and Y. Inoue, ‘‘Using machine
learning to reduce design time for permanent magnet volumeminimization
in IPMSMs for automotive applications,’’ IEEJ J. Ind. Appl., vol. 10, no. 5,
pp. 554–563, 2021.

[19] S. Suzuki, S. Morimoto, M. Sanada, and Y. Inoue, ‘‘Performance compari-
son of IPMSMs using a low iron loss material for automotive application,’’
in Proc. 19th Int. Conf. Elect. Mach. Syst. (ICEMS), Nov. 2016, pp. 1–6.

[20] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
San Francisco, CA, USA, Aug. 2016, pp. 785–794.

[21] C. P. Steinmetz, ‘‘On the law of hysteresis,’’ Proc. IEEE, vol. 72, no. 2,
pp. 197–221, Feb. 1984.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[23] J. Blank and K. Deb, ‘‘Pymoo: Multi-objective optimization in Python,’’
IEEE Access, vol. 8, pp. 89497–89509, 2020.

YUKI SHIMIZU (Member, IEEE) received the
B.E., M.E., and Ph.D. degrees from Osaka Prefec-
ture University, Sakai, Japan, in 2016, 2018, and
2022, respectively. In 2018, he joined with Toy-
ota Motor Corporation, Aichi, Japan. Since 2022,
he has been with the Graduate School of Science
and Engineering, Ritsumeikan University, where
he is currently an Assistant Professor. His research
interests include design and control of permanent
magnet synchronous motors using machine learn-

ing and deep learning. He is a member of the Japan Institute of Power
Electronics and Society of Automotive Engineers of Japan.

VOLUME 11, 2023 49

http://dx.doi.org/10.1109/TTE.2022.3190536

