
Received 29 November 2022, accepted 20 December 2022, date of publication 28 December 2022,
date of current version 2 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3232853

FARANE-Q: Fast Parallel and Pipeline Q-Learning
Accelerator for Configurable Reinforcement
Learning SoC
NANA SUTISNA1,2, (Member, IEEE), ANDI M. RIYADHUS ILMY1,
INFALL SYAFALNI 1,2, (Member, IEEE), RAHMAT MULYAWAN 1,2, (Member, IEEE),
AND TRIO ADIONO 1,2, (Senior Member, IEEE)
1School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, West Java 40132, Indonesia
2University Center of Excellence on Microelectronics, Institut Teknologi Bandung, Bandung, West Java 40132, Indonesia

Corresponding author: Infall Syafalni (infall@ieee.org)

This work was supported in part by the Bandung Institute of Technology [Institut Teknologi Bandung (ITB)] Research Program 2021.

ABSTRACT This paper proposes a FAst paRAllel and pipeliNE Q-learning accelerator (FARANE-Q)
for a configurable Reinforcement Learning (RL) algorithm implemented in a System on Chip (SoC). The
proposed work offers flexibility, configurability, and scalability while maintaining computation speed and
accuracy to overcome the challenges of a dynamic environment and increasing complexity. The proposed
method includes a Hardware/Software (HW/SW) design methodology for the SoC architecture to achieve
flexibility. We also propose joint optimizations on the algorithm, architecture, and implementation to
obtain optimum (high efficiency) performance, specifically in energy and area efficiency. Furthermore,
we implemented the proposed design in a real-time Zynq Ultra96-V2 FPGA platform to evaluate the
functionality with an actual use case of smart navigation. Experimental results confirm that the proposed
accelerator FARANE-Q outperforms state-of-the-art works by achieving a throughput of up to 148.55MSps.
It corresponds to the energy efficiency of 1747.64 MSps/W per agent for 32-bit and 2424.33 MSps/W per
agent for 16-bit FARANE-Q.Moreover, the proposed 16-bit FARANE-Q outperforms other related works by
an improvement of at least 1.23× in energy efficiency. The designed system also maintains an error accuracy
of less than 0.4% with optimized bit precision for more than eight fraction bits. The proposed FARANE-Q
also offers a speed up of processing time up to 1795× compared to embedded SW computation executed
on ARM Zynq processor and 280× of computation of full software executed on i7 processor. Hence, the
proposed work has the potential to be used for smart navigation, robotic control, and predictive maintenance.

INDEX TERMS Q-learning, reinforcement learning, HW accelerator, FPGA, SoC.

I. INTRODUCTION
Recently, Reinforcement Learning (RL) [1] has gained much
attention in the Machine Learning area and it is widely
employed in various applications, including robotics [2], [3],
[4], [5], communication [6], [7], biomedical or healthcare [8],
[9], and finance [10]. Advances in the RL algorithm can
generate and evaluate the data through exploration without
preassigned labels for the training data [1], [11]. It is a fully

The associate editor coordinating the review of this manuscript and

approving it for publication was Marco Cococcioni .

autonomous technique that can learn and take action individ-
ually according to the condition of the environment.

The RL algorithm has been recognized as a promising AI
technique, particularly in a dynamic environment. However,
this algorithm has intensive computation which will pose
more challenges on time-constrained applications. A rein-
forcement learning system requires high-performance com-
putation since it needs to perform data calculations and decide
on an action in real time.

To fulfill this requirement, a high-performance hard-
ware platform is required. ASIC (Application Specific Inte-
grated Circuit) based implementation is preferable since this

144
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-9922-5688
https://orcid.org/0000-0002-3009-0022
https://orcid.org/0000-0003-4808-9254
https://orcid.org/0000-0002-7020-1524

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

platform can deliver high-performance computing with lower
power consumption. Unfortunately, the flexibility and scala-
bility of this platform are limited. Programmable computing
platforms such as Field Programmable Gate Array (FPGA)
and Graphics Processing Unit (GPU) could be alternative
solutions with a high degree of flexibility.

Several works on the RL system based on FPGAs have
been presented. For example, Q-learning based systems
are presented in [12], [13], and [14]. In [12], an efficient
Q-learning algorithm is implemented using approximatemul-
tipliers and offers low complexity and low power consump-
tion. Moreover, a parallel approach is proposed in [13] for
increasing the throughput. To increase the accuracy, the RL
system combined with deep learning to update the Q-value
is presented in [14]. In short, all these works mainly focus
on performance improvements, particularly in achieving high
calculation throughput, low-complexity implementation, and
low-power consumption.

In the previously mentioned works [12], [13], the anal-
ysis of bit precision for Q-learning calculation is not yet
available. Therefore, the designed systems result in a higher
complexity which also corresponds to higher power con-
sumption. This can be a barrier to target implementation on
a limited hardware budget (e.g., low logic resource or small
chip size). Additionally, from the perspective of system archi-
tecture, these implementations were only focused on HW
accelerator design, resulting in limited reconfigurability and
re-programmability when implemented. However, in [14],
[15], and [16], analysis of fractional bits are presented and
compared with existing works. The analysis is useful for
finding the most suitable and efficient architecture for the
corresponding device implementation such as FPGA, GPU,
or other boards.

To address the limitations of the previous works, this paper
proposes a FAst paRAllel and pipeliNE Q-Learning accelera-
tor (FARANE-Q) for a configurable Reinforcement Learning
(RL) system based on System on Chip design methodology.
To enable scalability and reconfigurability, we utilize regis-
ters and memory blocks, which can be reprogrammed by the
host Central Processing Unit (CPU) through the Advanced
eXtensible Interface (AXI) bus interface. The register and
memory block store parameters or configurations of the
RL system. Specifically, the registers store parameters of
rewards, learning rates, discount factors, and the number
of episodes for the training process. In addition, the mem-
ory blocks can be configured with an initial state transition
matrix, which represents the environment (e.g., floor plan or
layout). Finally, we also implement HW/SW co-design based
on the SoC to realize the reconfigurability.

Furthermore, we perform bit optimization on the RL accel-
erator datapath by performing design exploration to obtain an
optimum bit width, while also maintaining the accuracy of
the Q-value. Several approaches such as providing flexible
datapath design and implementing approximate computing
are also proposed in this work. Finally, the main contributions
of this work are listed as follows:

• We present FAst, paRAllel, and pipeliNE Q-learning
accelerator (FARANE-Q) for a scalable architecture of
RL accelerator by employing SoC architecture.

• We implement the proposed architecture in Avnet
Ultra96-V2 platform [17] and perform a real-time eval-
uation in realistic use case applications, especially for
smart navigation.

• We also perform joint design optimization by optimizing
multiple layers of design, including algorithm, architec-
ture design, as well as implementation aspects. Hence,
a high-performance system in terms of high accuracy,
low complexity, high throughput, and a power-efficient
system can be achieved.

• Finally, the proposed system supports a system model
that can be executed in the embedded CPU of the
designed SoC. Hence, it can be used for HW/SW
co-simulation and reduces the gap between the simula-
tion and the actual deployment.

This paper is organized as follows: Section I introduces the
work. Section II shows brief explanations of reinforcement
learning and Q-learning algorithms. Section III explains the
detailed architecture of the proposed RL accelerator design.
Section IV discusses the experimental setup, evaluation, and
performance results. Finally, Section V concludes the work.

II. BACKGROUND
A. REINFORCEMENT LEARNING
Reinforcement learning (RL) is a machine learning approach
that simulates learning through trials and errors [1]. The
learning simulation is carried out by an agent inside a defined
environment. This agent can execute a pre-defined set of
actions that can affect the state of the environment. Then,
based on the resulting environment state, the agent will
receive a feedback value called a reward. This learning pro-
cess, which is illustrated in Fig. 1, continues to iterate so
that the agent can determine the best course of action that
can result in the maximum cumulative reward. The learning
process is focused on goal-directed learning based on the
agent’s interaction with its environment.

FIGURE 1. Illustration of RL system.

Recently, research on reinforcement learning has been con-
ducted in many fields, such as in IC implementations [18],
[19], [20], Deep Neural Network (DNN) applications [21],
[22], [23], [24], [25], [26], as well as Network on Chip
(NoC) applications [27], [28], [29]. In [18], a deep rein-
forcement learning processor is implemented in 28nmCMOS
technology. Multiple DNNs are used to observe the policy
training procedure in the RL system. Moreover, a memristor-
based reinforcement learning system is proposed in [19].

VOLUME 11, 2023 145

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

In [20], a 55nm time-domain mixed-signal (TD-MS) neuro-
morphic accelerator is proposed to perform the Q-Learning.
The TD-MS improves the efficiency of energy for mobile
robots.

Reinforcement learning is also used to optimize DNN
applications. In [21], optimization of hardware resources for
DNN is proposed by using reinforcement learning. More-
over, reinforcement learning is used to search the opti-
mal quantization-voltage-frequency (QVF) policy before
DNNs [22]. In [24], on-chip deep reinforcement learning
is implemented by a network-on-chip. Finally, the works
in [25] and [26] present DNNs with reinforcement learning
to optimize the available resources e.g., GPU and FPGA,
respectively.

To some extent, reinforcement learning algorithms are also
applied in NoCs. In [27], distributed reinforcement learning is
implemented by using in-switch computing. Furthermore, the
works in [28] and [29] explore somemethods using reinforce-
ment learning for efficient energy and efficient framework in
NoCs, respectively.

A value function in RL is represented by a look-up table,
where all state-action pair values are stored individually.
Thus, memory consumption is linear to the sum of states
and actions [30]. This limitation can be addressed by replac-
ing the look-up table with a function approximator, such as
DNN [31], [32]. The neural networkwill then be trained using
a reinforcement learning algorithm. This technique is called
Deep Reinforcement Learning due to the merging of DNN
and RL technologies. However, DRL has some drawbacks.
First, it does not guarantee the convergence of the learning.
Second, in the case of medium-sized state space, RL outper-
forms the execution speed of DRL due to the latter having
more complex architecture [33]. Thus, for small-sized state
space applications, RL is preferred.

B. Q-LEARNING
Q-Learning is an off-policy RL algorithm to learn action-
value policy which has been proven to converge to an optimal
policy [1]. Q-Learning stores the action values in an N × Z
matrix, namely the Q-Matrix, whereN is the number of states
and Z is the number of possible actions. TheQ-value for every
state and action are updated using Eq. (1) as follows:

Qnew(st , at) = Q(st , at)

+α
(
(rt + γ max

a
Q(st+1)− Q(st , at)

)
(1)

where
• Qnew(st , at) is the new Q-value,
• Q(st , at) is the current Q-value,
• α is the learning rate,
• rt is the received reward,
• γ maxa Q(st+1) − Q(st , at) is the discounted future
reward for st+1.

Algorithm 1 shows the step-by-step for the Q-Learning
process. Q-Learning accepts several input parameters such
as the number of episodes, learning rate coefficient, and

discount factor. In the beginning, the Q-matrix will be ini-
tialized for every state and action. Q-Learning is then run for
the number of episodes. In each episode, the state of the agent
will be initialized to an initial value. The agent will take action
according to the policy, observe the reward and next state
information from the environment, and update the Q-value
for the action taken from that state using Eq. (1). This process
will be repeated until the agent reaches the terminal state.
Then, the learning process will be repeated for the number of
episodes. After all the number of episodes has been executed,
it will give an output of the Q-Matrix.

Algorithm 1 Q-Learning Algorithm
Input: Number of episodes, learning rate (α) and discount

factor (γ)
Output: Q-Matrix

1: Initialize the Q-value matrix for every state and action
2: while count < episode do
3: Set state to initial state s← s0
4: while s 6= sterminal do
5: Choose action A from state S
6: Do action A, observe reward R and next state S ′

7: Find the new Q-value by Eq. (1)
8: Move to next state s← S ′

9: end while
10: count ← count + 1
11: end while

As one of the most commonly applied RL algorithms,
Q-learning algorithm has been proposed to solve different
problems in various fields [34]. In the field of industrial pro-
cess, computer networking, and robotics, it is used to improve
the adaptability and performance of systems in the mentioned
fields. With its online learning capabilities, many systems
can learn to adapt into different real conditions without the
need to redesign. It is also used to solve many optimization
problems such as dynamic load management of electricity
demand, efficient resource distribution of mobile games,
Dynamic Job Shop Scheduling (DJSS), and device placement
for neural network computation [34]. Other notable applica-
tions include smart systems, particularly smart traffic light
systems [35], [36], [37].

C. RELATED WORKS
Prior to this work, there have been a few hardware implemen-
tations of the Q-learning algorithm on FPGA boards. In this
section, we will discuss previous works of the Q-Learning
accelerator to provide fundamentals in designing the pro-
posed system.

The first complete implementation of the Q-learning accel-
erator was proposed by Da Silva et al. [13]. Their work
proposed an architecture that focuses on parallelization based
on the number of available states. This architecture calculates
Q-values for all available state-action pairs simultaneously
and then selects the Q-value of the agent’s current state

146 VOLUME 11, 2023

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

FIGURE 2. Overview Architecture of the proposed Q-Learning Accelerator at the System on Chip Level.

and action. All of the calculated Q-values are stored using
registers in fixed-point format. The architecture was imple-
mented in a Xilinx Virtex-6 FPGA board and was able to
achieve a throughput of 13.4 MSps for an environment with
132 possible states and 4 actions using 20-bit Q-values.

Another architecture was proposed by Spanò et al. [12].
The proposed architecture separates the state transition func-
tion of the environment and instead receives the current and
future state as input of the architecture. Also, the architecture
does not define specific policy generator modules to choose
the agent’s action. The architecture chooses the state and
action before calculating the Q-values allowing it to reduce
the number of computation modules to one. This architec-
ture uses on-chip RAM blocks to store its Q-Matrix. The
number of RAM blocks used is equal to the number of the
agent’s actions and each memory block has a depth equal to
the number of available states. With this configuration, the
architecture can read Q-values for all available actions in a
given state simultaneously. This work also proposed the use
of approximate multipliers using barrel shifters when per-
forming multiplication with learning rate and discount factor.
The architecturewas implemented in aXilinx ZCU106 FPGA
board and was able to achieve a throughput of 112 MSps
for an environment with 128 possible states and 4 actions

using 32-bit Q-values. This architecture can also be adapted
to accelerate the SARSA algorithm.

In [33], Meng et al. proposed a pipelined Q-learning accel-
erator. The accelerator is divided into four-stage architecture.
The current action is selected in the first stage, and the next
state is computed. This stage also reads reward and Q-values
stored in the RAM blocks. In the second stage, the next action
is chosen for the next state based on the given update policy,
and the Q-value for the next state-action pair is read from
the memory. The main computation is performed in the third
stage to generate the updated Q-values. Lastly, the updated
Q-value is written back to the Q-Matrix memory in the fourth
stage. Also, an update is made to the maximum Q-value
table if the updated Q-value is higher than the maximum
Q-value of the current state. This use of a maximum Q-value
table replaces the max-tree architecture used to compute the
maximum Q-values used in [12]. The proposed architecture
was implemented in a Xilinx Virtex-7 FPGA board and was
able to achieve a throughput of 189 MSps for an environment
with 64 possible states and 8 actions using 16-bit Q-values.

Another notable work was proposed by Gankidi et al.
in [14]. The work proposed a DRL accelerator for space
rovers applications. The proposed architecture was imple-
mented in a Xilinx Virtex-7 FPGA board and was able to

VOLUME 11, 2023 147

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

achieve a throughput of 2.34 MSps for an environment with
24 possible states and 9 actions using fixed point Q-values.
A detailed comparison between our proposed architectures
and the architectures mentioned in this section is discussed in
Section IV-G.

III. PROPOSED HARDWARE ARCHITECTURE
A. SoC ARCHITECTURE
The proposed SoC Architecture mainly consists of Process-
ing System (PS) and the hardware accelerator implemented
in Programmable Logic (PL), as depicted in Fig. 2.

The PS, which includes CPU, DMA, DRAM, and the
AXI4 Bus, acts as the interface between the user and the
PL. The CPU executes a program to initialize all necessary
system configurations, such as the environment data and
learning parameters. This system configuration will then be
sent to the accelerator via the AXI4 Bus [38]. The CPU
is also responsible for starting the PL learning process by
asserting a start signal using the same AXI4 interface. Then,
the CPUwill wait until it receives an interrupt signal from the
PL which indicates the completion of the learning process.
Finally, the learning outcomes received from the PL via the
AXI4 interface will be displayed by the CPU to the user.

The mentioned system configurations are stored in the
Control and Status Registers. The Control and Status Reg-
isters consist of 7 registers with a data width of 32 bits. The
Control parameters are written by the CPU and read by the PL
while the Status parameters are written by the PL and read by
the CPU. The bitmap for the Control and Status Registers are
shown in Fig. 3. The control parameters are listed as follows:
• Number of episodes: Number of episodes to be run.
• Start: The start signal of the accelerator with a rising
edge.

• Initial state: Maze’s initial state.
• Terminal state: Maze’s terminal state. If the agent
reaches this state, one episode will be concluded and the
state will be reset to the initial state.

• Learning rate and Discount factor: Learning rate and
discount factor for the corresponding Q-value update.

While the status parameters are listed as follows:
• Total clock cycles elapsed: To calculate the execution
time of the accelerator.

• Number of Q-value updates: To calculate the number
of Q-value updates in the learning process.

B. PROPOSED Q-LEARNING ACCELERATOR
The proposed Q-Learning architecture is inspired by the
Q-learning hardware accelerator in [12]. This architecture
is constructed by the following modules: 1) Q-Updater
2) Policy Generator, 3) Environment, 4) Q-Value BRAM, and
5) Control Unit.

1) Q-UPDATER
Fig. 4 shows the architecture for theQ-Updatermodule, based
on a proposed architecture in [12]. This module updates the

FIGURE 3. Control and status registers bitmap.

FIGURE 4. Q-Updater module architecture.

Q-Value of the state-action pair based on Eq. (1) using Fixed
Point calculation.

The MUX module takes Z inputs at Q-Values for every
action and selects Q-Value based on the action taken (at).
Meanwhile, the MAX module generates a maximum value
from the Z inputs of Q(st+1, at) values. The MAX module
uses a binary tree architecture. The output of each module
is then passed to QUpdateCalc which implements Eq. (1) to
update the Q-Value.

The implemented QUpdateCalc module uses barrel
shifters as approximate multipliers. This approach is con-
sidered since its implementation requires low complexity
logic which is only shifting operation, instead of using a
direct multiplier and other approximate methods such as an
approximate compressor. In addition, since the operation is
a multiplication of one data with a constant value, we may
exploit the characteristic of barrel shifters which employ
several operations of shifting. Hence, this implementation
will consume much lower logic resources (or gate counts)
compared to other approaches.

Specifically, the values of α and γ are approximated to
their nearest sum of powers of two. The number of powers
of two is equal to the number of shifters used as approxi-
mate multipliers. Since the values of α and γ are ranging

148 VOLUME 11, 2023

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

from 0 to 1, only negative powers are used to represent
the approximate values. For 3 barrels, the number can be
approximated as:

B = 2−i + 2−j + 2−k (2)

Therefore, if we want to calculate Y = A · B, then

Y = A · 2−i + A · 2−j + A · 2−k (3)

The term 2−x is implemented using the right shifter, where
x is the number of shifts. The diagram for the approximate
multiplier using 3 barrel shifters is shown in Fig. 5.

FIGURE 5. Approximate multiplier using 3 barrel shifters.

2) POLICY GENERATOR
Fig. 6 shows the architecture of the Policy Generator (PG)
module, which is similar to [39]. The module selects the
current action at for the agent based on an action-selection
policy, which is ε-greedy policy. This policy allows the mod-
ule to generate a random action with the probability of ε or a
greedy action with the probability of 1− ε.
A greedy action is generated by the Greedy Action Selec-

tor, which compares Q-Values for all actions of the current
state (Q(st , a1 through Q(st , aZ)). An action with the highest
Q-Value will be chosen as the greedy action. The Greedy
Action Selector uses a MAX module, similar to the one
used in the Q-Updater, to determine the highest value of the
Q-Values.

Meanwhile, a random action is generated using a random
value from a Pseudo-Random Number Generator (PRNG)
module. The Least Significant Bits (LSBs) of the generated
random value represent the random action where its width
corresponds to Z number of actions.

The generated random value also acts as a comparison
value for the action-selection policy. This comparison value is
compared with a threshold value (σ). The PG module selects
the greedy action if the comparison value is less than σ .
On the other hand, if the comparison value is more than or
equal to σ , then random action is selected. This comparison
happens in a Comparator which generates a selector signal
for the multiplexer. The threshold value is determined based
on Eq. (4)

σ = bε · (2L − 1)c, (4)

where ε is the epsilon value and L is the bit width of the
PRNG.

FIGURE 6. Policy Generator module architecture.

FIGURE 7. 16-bit Fibonacci Linear Feedback Shift Register (LFSR) [40].

The PRNG used to generate the required random values is
implemented using a Fibonacci Linear-Feedback Shift Reg-
ister (LFSR). Fibonacci LFSR has the advantage that the next
L bits are immediately visible in the shift register. This is
because all the shift register stages (except for the first one)
get their inputs only from the previous stage. Thus, a random
value can be generated every clock cycle.

To achieve a maximum period of random values series, the
placement of taps required for the LFSR feedback needs to
be configured with respect to the LFSR bit size. As shown in
Fig. 7, we choose to implement a 16-bit LFSR. Accordingly,
to achieve maximum period, the taps are placed at the 16th,
14th, 13th, and 11th bits [40].

3) ENVIRONMENT
The environment that we used consists of a 2-dimensional
grid world with a total state of I × J , where I denotes
the first dimension and J denotes the second dimension of
the grid world, resulting in a total N of states. There could
be obstacles (depicted as walls) that separate each state as
illustrated in Fig. 8. When the agent hits the wall, it will
receive punishment in the form of a negative reward. On the
other hand, when the agent reaches the goal, it will receive
a reward and the episode will be reset. In this environment,
the agent is targeted to reach a goal state. To encourage the
agent to take the least amount of steps to reach the goal,
every time the agent moves, it will receive a small negative
reward. The reward function is implemented using these three
rules:

1) If the agent moves to a new state, then rt = µ1.
2) If the agent hits a wall, then rt = µ2.
3) And if the agent reaches the terminal state, then

rt = µ3.

VOLUME 11, 2023 149

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

FIGURE 8. Grid-world illustration with N = 25, State 1 as Initial State, and
State 25 as Terminal State.

FIGURE 9. Environment module architecture.

State transition and reward matrix for the maze environ-
ment are stored in BRAM as shown in Fig. 9. State transition
and reward matrix are generated by the PS and are written to
the BRAM during the initialization of the learning process.
For the terminal state, the next state will be the initial state and
the reward is 0. The address generator module will generate
the address which is used to retrieve the next state and reward
data from the State Transition and Reward BRAMs.

The next state and the reward values for each state-action
pair are stored in BRAM with the configuration illustrated
in Fig. 10. The values are sorted based on the number of
environment states (N) and by number of actions (Z). The
first Zmemories stores values for state 1, followed by the next
Z memories for state 2 and so on until it reaches state N. Each
Z memories stores a value for action 1, followed by the value
for action 2 and so on until it reaches Z action. Based on this
configuration, the BRAM size required for the environment
module can be calculated using Eq. (5) with W as the bit
width. Note that there are two values(rt and st+1) stored in
this BRAM so the calculation is multiplied by 2.

BRAM size = 2×W × N × Z (5)

FIGURE 10. Address and value configurations for (a) Next State BRAM
and (b) Reward BRAM for Z = 4, initial state of State 1, and terminal state
of State N.

4) Q-VALUE BRAM
Fig. 11 shows how the Q-Values are stored in BRAM.We use
Z numbers of BRAM to store each state-action. Each action
BRAM stores Q-Values for every possible states. The depth
of the BRAM depends on N . Q-Value BRAMs are also
accessible from the PS through the BRAM Controller, which
can be called from the main program.

FIGURE 11. Q-Value BRAM module architecture.

5) CONTROL UNIT
Control Unit module arranges all blocks in the accelerator by
providing control signals to the respected modules based on
Finite State Machine (FSM) as shown in Fig. 12 and Fig. 13.
In the Main FSM, there are 4 states, IDLE, INIT, RUNNING,
andDONE_LEARNING. The systemwill enter the state IDLE

150 VOLUME 11, 2023

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

FIGURE 12. Main Finite State Machine of the Architecture.

FIGURE 13. Level 1 Finite State Machine of the Architecture.

when it is reset. In INIT state, the system will wait for the
PS to write the number of episodes, learning parameter (α),
discount factor (γ), state transitionmatrix, and rewardmatrix.
In the RUNNING state, the system starts learning and

remain learning until the number of episodes reached. The
inner part of RUNNING state is shown in Fig. 13. The system
takes an action, observes the reward and next state. After that,
the system updates the Q-Value and writes it back. It keeps
repeating these actions until it reaches the terminal state.
Once it reaches the terminal state, the counter for the number
of episodes will be incremented. Finally, it will repeat the
steps until it reaches the number of episodes.

After finishes learning, the system enters the final state
(DONE_LEARNING), where the PL inserts interrupt signal
to the PS to indicate that the learning process has finished.

C. ARCHITECTURE IMPROVEMENT
In order to improve the performance of the baseline par-
allel architecture (referred as V1), specifically on the

computation speed and learning efficiency, we proposed an
improved design, referred as V2 (FARANE-Q). The improve-
ments include: 1) employing pipeline architecture and
2) applying dynamic threshold (decreasing-ε) method in
determining state action. The proposed optimizations are
detailed in Fig. 14.

1) PIPELINE ARCHITECTURE
The design of V1 updates each Q-value in 4 clock cycles,
as shown in timing chart in Fig. 15. Based on the V1 archi-
tecture, which again is created based on [12], a pipelining
method is implemented to create V2. Thus, V2 updates the
Q-value every clock cycle, as shown in Fig. 16.

The achieved throughput for V1 and V2 are formulated in
Eq. (6) and Eq. (7), respectively.

0V1 =
X

(4X + 3E + 1)
× Fs (6)

0V2 =
X

(X + 2E)
× Fs (7)

where

• X is the number of times Q-value is updated,
• E is the number of episodes,
• and Fs is the operating clock frequency.

The total number of clock cycles required to complete one
learning cycle also varies. V1 requires a total of 4X + 3E + 1
clock cycles. The constant 3E is added because, for each
episode, a transition time of three clock cycles is required.
An additional constant of 1 is also added to the total clock
cycles due to a setup time of one clock cycle at the beginning
of the learning cycle. Meanwhile, V2 requires a total of
X +2E clock cycles. The constant 2E is added because, after
each episode, a transition time of two clock cycles is required.
Fig. 14 shows the pipeline staging implemented to increase
throughput in V2.

2) DYNAMIC EPSILON WITH DECREASING-ε METHOD
As stated in Section III-B3, V1 uses the ε-greedy algorithm
to determine the agent’s actions. The algorithm divides the
agent’s actions into exploration and exploitation. Exploration
happens when the agent chooses one of the available actions
randomly, while exploitation happenswhen the agent chooses
an action with the maximum Q-value. In [41], decreasing
the rate of exploration as the learning progress can be ben-
eficial for the system performance. Decreasing the rate of
exploration means the agent starts with a high exploration
rate and as the learning episode increases, the exploration
rate will decrease until it reaches zero. Thus, during the early
stage of learning, the agent tends to explore many alternatives
due to its high rate of exploration. As the rate of explo-
ration decreases, the possibility of exploitation increases and
becomes absolute at the latter stages of learning. Value-
Difference Based Exploration (VDBE) is one of the avail-
able methods to implement decreasing-ε [42], which adapts
the exploration parameter of ε-greedy in dependence with

VOLUME 11, 2023 151

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

FIGURE 14. Three stage pipeline in V2 (FARANE-Q).

FIGURE 15. Timing diagram for RL-Parallel Architecture (Our’s V1 (Parallel)).

the temporal-difference error observed from value-function
backups.

This method uses a complex equation that uses many
hardware resources. Instead, with the same concept of
decreasing-ε, we implement a simpler method that uses the
number of episodes to update the value of epsilon. Thus,
ε in Eq. (4) is replaced with εδ as described in the following
equation:

σ = bεδ · (2L − 1)c, (8)

where L is the number of bits in LFSR and εδ = δ · ε is
the dynamic epsilonwith decreasing-εmethod.Moreover, the
ratio δ is calculated as follows:

δ =
ψ − κ

ψ
.

where
• ψ is the maximum number of episodes,
• and κ is the number of current episodes or counted
episodes.

152 VOLUME 11, 2023

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

FIGURE 16. Timing diagram for RL with Parallel and Pipeline Architecture (Our’s V2 (FARANE-Q)).

Note that the dynamic threshold depends on the value of εδ
that changes according to the number of learning episodes κ .
The threshold value σ decreases as κ increases until it reaches
zero when the maximum episode is reached (ψ = κ). Since
exploration is carried out when the generated random value
is smaller than the threshold, the probability of exploration
will continue to decrease as learning episodes are increasing.
While in V1, as already stated, the probability of exploration
is determined by the value of ε in Eq. (4) and the value is
constant throughout the learning process.

D. ARCHITECTURE COMPARISON WITH STATE OF THE ART
For the sake of clarity, we summarize our proposed architec-
ture and provide a comparison to the most recent architecture
of Q-learning accelerator [12].

First, in terms of system-level design, our proposed archi-
tecture is intended as a System-on-Chip architecture instead
of a hardware accelerator core. The proposed design does not
only connect the HW accelerator to the AXI bus, but it also
includes a design of instruction set, an FSM control system,
and a memory map to provide configurability. In addition, the
proposed architecture also supports HW/SW co-simulation.
Hence, we can perform a comprehensive evaluation that
covers algorithm performance evaluation, RTL functional
simulation as well as FPGA verification. The proposed

FIGURE 17. Hardware setup using Avnet Ultra96 V2 Board.

design is essentially different with the previously designed by
Spanò et al. [12], where the previous design mainly focused
on the discussion of the hardware accelerator core with no
explanation details on the SoC architecture side.

Second, in the point of view of hardware accelerator, while
themain block components are built on a common fundamen-
tal (an environment, a Q-updater, and a policy generator), our
proposed design has several improvements on the modules as
follows:

VOLUME 11, 2023 153

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

FIGURE 18. Random Number Generator Comparison between
(a) Congruential PRNG [12], [13] versus (b) Proposed Fibonacci LFSR.

• Data Flow Control:Our design (FARANE-Q) supports
both parallel and pipeline techniques on the architecture.
The proposed design can maintain throughput at update
sample in one clock cycle and hence it obtains a high
throughput system. Moreover, we provide detail timing
diagrams and their throughput formulations for both
parallel and pipeline methods.

• Random Number Generator: Our design employs a
Fibonacci LFSR based random generator that allows fast
calculation and also requires low-complexity implemen-
tation (e.g. only XOR logic), while the random generator
in [12] is implemented based on congruential PRNG,
similar as initially described in [13]. This congruential
PRNG based random generator is more complex since it
involves more logics to implement multiplications and
various combinational logics as shown in Figure 18.

• Interpreter and Environment: Our design is designed
as a grid-wall environment. Our proposed design imple-
ments grid-wall environment which is different and
more complex than the environment in [12]. In our
proposed environment, a specific interpreter architecture
is required in order to address this case. In terms of
complexity, the wall is more complex than grid-based-
only environment, since for the same value of state size,
the grid-wall actually implements higher number of state
spaces with irregular layout, and it actually increases the
number of actual number of states. On the other hand,
in the grid based, the obstacles have been considered as
subset of states.

• Policy Generator: In our design, we proposed ε-greedy
based policy generator, where a threshold value is cal-
culated dynamically based on decreasing-ε criteria as
described in Eq. (8). Meanwhile, the work in [12] uses
ε-greedy with a constant value of ε.

To conclude the architecture comparison, we provide
Table 1 which shows the comparisons between the Q-updater

TABLE 1. Architecture comparison with state of the art.

module in [12] and our proposed design. To obtain a fair com-
parison in terms of the resource utilization data and achiev-
able maximum clock frequency, we implemented our design
on the same target device, which is Xilinx Zynq UltraScale+
MPSoC ZCU106 XCZU7EV-FFVC1156-2-E FPGA Board.
For the dynamic power consumption, we use an activity
factor of 0.5 while the rest of the parameters remain the
default parameters. Furthermore, we also show a comparison
between the 16-bit and 32-bit variations of the architectures.

While we use the same high-level design of the Q-updater
module, the implementation results show that our design uses
less hardware resources compared to [12]. The implementa-
tion results of our design do not use any DSPs. Moreover,
instead of using LUTRAM, we use BRAM to store the
Q-Matrix. With lower resource utilization, our design was
able to achieve lower power consumption despite achieving
a clock frequency of 158 MHz for the 16-bit and 32-bit
architectures.

IV. PERFORMANCE RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
This section discusses the experimental setup we used to val-
idate the proposed design. The designed system was imple-
mented on the Xilinx Ultra96 V2 FPGA platform [17]. The
experimental setup includes an FPGA, a display, and a host
PC, as shown in Fig. 17.

To access the FPGA, we used the PYNQ platform as
a hardware abstraction layer, which enables the use of
Python programming language and libraries to program the
FPGA [43]. The PYNQ platform is installed as a Linux boot
image in the board’s SD card memory. The platform then can
be accessed through Jupyter Notebook which is run on a PC
connected to the FPGA through a USB connection.

The host PC accesses the processing system on the FPGA
by connecting to the Jupyter Notebook through the web
browser and navigating to the available static IP address
of the board [44]. The PS will then run a full software
Python-based RL model which simulates the RL computa-
tions performed by the FPGA. Then, PS will initiate the
data environment for learning on PL and start the hardware
learning process. Finally, the performances of the model on
PS and the architecture on PL can be evaluated together to get

154 VOLUME 11, 2023

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

the performances of the algorithm/architecture. This HW/SW
co-simulation offers a comprehensive evaluation where the
software simulation acts as a benchmark for comparing the
hardware computation results.

For the simulation, we consider a maze navigation prob-
lem, where the agent has four possible directions (Z = 4)
of actions (up, down, left, and right). While previous studies
such as [12], [13], and [33], also perform simulations with
eight possible actions, our maze simulation differs in terms
of moving diagonally, which is the same as taking two of
four possible actions (up/down and right/left) sequentially.
Therefore, we only consider simulations with four possible
actions. However, the proposed system essentially could be
expanded to support a various number of states and actions by
easily modifying the design. The general system parameters
used for the experiments are presented in Table. 2.

TABLE 2. System parameters for experiment and simulation.

B. HARDWARE RESOURCE
Table 3 shows the implementation results for V1 while
Table 4 shows the implementation results for V2. Both
designs are implemented with two different datapath
(16 and 32 bits) and four different numbers of states (N).
In addition, both architecture shown here are implemented at
operating frequency of 125 MHz.

Since we employ approximate multipliers, our design does
not require DSP at all to calculate the new Q-Value with an
exception in V2 (FARANE-Q) which uses a single DSP to
implement the multiplication required for threshold changes.
The approximate multipliers are implemented as LUTs.
Therefore, the usage of LUT and FF in the FPGA board
increases along the bit-width. Additionally, as N increases,
the depth of the required BRAM also increases. This is justi-
fied due to the increase of N increasing the memory usage to
store the Q-Matrix, reward table, and state transition matrix.

It can be noted that the implementation results pre-
sented are shown only for an agent with 4 available actions
(Z = 4). This is due to our experiments focused on solving
maze navigation cases with 4 possible actions. However, our
design can be modified to support other cases which required
more than 4 actions by increasing the parallelization of the
design. The modification will increase the amount of BRAM
used, the number of binary tree stages in the MAX module,
the number of inputs to the multiplexer used to select the
Q-value, and the required bit to represent all available actions.

C. POWER CONSUMPTION
Table 5 shows the dynamic power consumption for V1
and V2. The data shown are obtained from the implemen-
tation report of both architectures. Variations of implementa-
tions are similar to the one used for IV-B.

TABLE 3. FPGA utilization of V1 for 16-bit and 32-bit Q-learning
accelerator block for Z = 4 and 125 Mhz clock frequency.

TABLE 4. FPGA utilization of V2 (FARANE-Q) for 16-bit and 32-bit
Q-learning accelerator block for Z = 4 and 125 Mhz clock frequency.

Similar to the resource utilization results, as N increases,
the dynamic power consumption also rises. While compared
to each other, V1 consumes more power than V2. This is
justified due to the higher LUTs required for V1.

D. ACCURACY
To evaluate the accuracy of the proposed algorithm, we cre-
ated a Python simulation as our benchmark to produce
Q-Matrix with a double-precision floating-point. This simu-
lation serves as a golden reference for comparison with the
Fixed-Point representation of the Q-Matrix read from the
BRAM. Each architecture has its software simulation due to
a difference in action-policy implemented. In this evaluation,
the accuracy metric is measured as an error rate, which can
be calculated by using the following equation:

err =

∑N
i=0

∑Z
j=0
|Q(si,aj)−Q̂(si,aj)|

|Q̂(si,aj)|

N · Z
, (9)

where N is the number of states, Z is the number of actions,
Q(si, aj) is the Q-Matrix read from BRAM, and Q̂(si, aj) is
the Q-Matrix from simulation used as the reference.

The experiment is carried out with 2 different maze envi-
ronments with a different total number of states (N). Each
maze environment is run through each architecture with a ran-
domized start and terminal state. Then, the resultingQ-Matrix
is compared to Q-Matrix from each architecture’s golden
reference to calculate the error rate. The experiment is then
repeated with another randomized start and terminal state and
the whole is reiterated several times.

The experiment is also carried out with a different variation
of fraction bits which are detailed in Table 6. Both V1 and
V2 use a signed 32-bit fixed-point representation for this
experiment. The fixed-point format is used to represent all

VOLUME 11, 2023 155

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

FIGURE 19. Average error rate for each variation of fraction bits throughout different maze environment sizes.

TABLE 5. Power consumption of V1 and V2 for 16-bit and 32-bit
Q-learning accelerator block for Z = 4 and 125 Mhz clock frequency.

TABLE 6. Parameter variation for accuracy experiment.

the variables directly used for Q-value calculation, which
are Qnew(st , at), Q(st ,A), Q(st+1,A), and rt . This format is
the same throughout all of the modules in both architectures
while other variables used separate bit representations which
match each required range and value representation. With the
described configuration, changing the fraction bits width only
requires the user to re-initialize the reward matrix with the
desired fraction bits width through the PYNQ interface. Thus,
there is no need to re-synthesize both architectures. From
our software simulation, we found out that the minimum and
maximum value for the Q-Matrix is -16.89 and 10.0. Thus,
the minimum integer bit needed is 6 bits (5 bits integer with
a sign bit).

Fig. 19 shows the average error rate results for each frac-
tion bits variations throughout several iterations of the men-
tioned experiment procedure. The same error rate percentage
is obtained for V1 and V2. For testing on the maze with
N = 100, the error rate is in the range of 0.4% to 0.005%
with an error difference of about 0.5%. As for the results in
the maze with N = 400, the error rate is in the range of 1.2%

to almost 0% with an error difference of about 0.2%. Despite
this, the error difference between the two results is still very
small (<1%) for both maze cases.

The experimental results also show that the error rate
decreases as the number of fraction bits increases. The change
in error rate is not significant when the number of fraction
bits exceeds 16. However, when the fraction bit is less than
16, it can be seen that the error rate for N = 100 is smaller
than the result for N = 400. This is because, with a higher
number of possible states, the number of states with a differ-
ent number of visits is also higher, which leads to a higher
difference in Q-values. However, despite the error rate, the
produced Q-matrix is still optimal to guide the agent to reach
the terminal state.

E. COMPUTATION TIME
An experiment was conducted to calculate the time required
to carry out learning on both implemented designs. The RL
algorithm was executed with several variations in the number
of learning episodes. A software model of the Q-learning
algorithm is also run on a 2.6 GHz Intel Core i7 CPU and
an ARM CPU as standard for comparison. Fig. 20 shows the
results of the computational time that has been measured.
In comparison with the two software model calculations,
a significant reduction in computation time was obtained.
Compared to computation run on i7 CPU, an average reduc-
tion in computation time by 70× for V1 and 199× for V2
(FARANE-Q) was achieved.While compared to computation
run on ARM CPU, an average reduction in computation
time by 452× for V1 and 1277× for V2 (FARANE-Q) was
achieved.

Meanwhile, when compared to each other,
V2 (FARANE-Q) is faster than V1 (Parallel). Where the
computation time of V2 (FARANE-Q) is 2.8× shorter than
the computation time of V1. It’s also worth noting that
(FARANE-Q) computes faster with an average of 1.4×more
Q-updates than V1, which is shown in Fig. 21.

156 VOLUME 11, 2023

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

FIGURE 20. Execution time of Maze problem with only software and with
accelerator.

TABLE 7. Throughput calculation for V1 for 125 Mhz clock frequency.

Although the two architectures are working on the same
problem, the difference in the number of writes is due
to the different action-policy used by each architecture.
As explained in Section IV-D, V1 uses ε-greedy with an ε
value of 0.3. The value is hard-coded directly in the architec-
ture. Therefore, the probability of V1 performing exploration
is less than its probability to perform exploitation. Although
the probability of exploration stays the same throughout the
learning process, the overall number of steps taken is less than
in V2 (FARANE-Q). In contrast to V1, V2 (FARANE-Q)
uses decreasing-ε, where the epsilon value decreases from
0.875 to 0 as the number of episodes increases. Because of
this, the probability to perform exploration early in the learn-
ing process is almost absolute and requires significantly more
steps. Therefore, V2 (FARANE-Q) updates more Q-values
than V1 because the number of actions it takes during the
learning process is significantly more than V1.

Additionally, from these two results, we can evaluate the
throughput results, where the throughput is calculated as
the number of updated Q-values within learning time (at a
specified episode). At the same clock frequency of 125 MHz,
the V1 can achieve an average throughput of 31.11 MSps,
while the average throughput of V2 (FARANE-Q) can
achieve up to 123.969 MSps. This achievable throughput
of V2 (FARANE-Q) is approximately 3.98× improvement
from V1. Table 7 and 8 shows the detailed throughput cal-
culations for each learning episode.

FIGURE 21. Number of Q-value updates made for various learning
episodes.

TABLE 8. Throughput calculation for V2 for 125 Mhz clock frequency.

FIGURE 22. Cumulative rewards.

F. CUMULATIVE REWARD
To further show convergent learning outcomes, cumulative
reward experiments were carried out. The cumulative reward
is defined as [23]:

R =
T∑
i=1

γ iri,

VOLUME 11, 2023 157

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

where T is the total time steps for an episode and γ is a
discount factor ranged from 0 to 1. In this case, we take the
discount factor γ = 0.875.
As we know, the agent receives rewards according to the

actions taken and in one learning episode the agent will
perform many actions. Thus, the accumulation of rewards
received by the agent in one episode can show how the result-
ing policy performance is. A positive reward is only given to
the agent when the selected action makes the agent reach its
goal state while other actions will be given negative rewards.
As the number of actions needed by the agent to reach its
goal state increase, the cumulative reward value decreases.
Therefore, a minimum action will show a maximum cumula-
tive reward.

Fig. 22 shows how the cumulative reward changes as the
learning episodes increase. The two graphs, in red and orange,
show the learning processes performed in V1 (Parallel), while
the green and blue graphs show the learning processes per-
formed in V2 (FARANE-Q). A comparison is also shown
with software-based learning that model each architecture,
labeled as SWV1 and SWV2. Moreover, the hardware-based
learning processes are labeled asHWV1 andHWV2. BothV1
and V2 (FARANE-Q) show similar results compared to their
respective software models, even with the use of approximate
multipliers. In the early learning episodes, the cumulative
rewards are minimum as the agent tends to choose an action
randomly resulting in many actions required to reach its ter-
minal state. As the episode increases, the cumulative reward
also increases and converges to the maximum cumulative
reward possible.

When compared to each other, the effect of different thresh-
old equations is shown in Eq. (4) for V1 (Parallel) and Eq. (8)
for V2 (FARANE-Q). Since V1 uses a constant threshold,
the probability of random actions stays constant throughout
the learning process. This results in a relatively flat line
after around 150 learning episodes were performed. A small
fluctuation with a margin of ±3% is due to random actions
still taken by the agent in V1, whereas V2 (FARANE-Q)
uses a dynamic threshold which decreases the probability of
random actions as the learning progress for V2. This results
in a gradual increase in cumulative reward as the learning
episode progress. Near the end of the learning process, the
cumulative reward accumulated on V2 does not vary as much
compared to the beginning of the learning process. This is due
to only greedy actions being chosen at episodes nearing the
end of the learning process.

G. COMPARISON WITH OTHERS
Table 9 shows the comparison of our two architectures with
other works. To get a fair comparison from the available data
sources for each work, we tried to select the results with the
closest number of N and Z to each other. In addition, we also
calculated area efficiency and energy efficiency for eachwork
as a form of normalization. Eq. 10 shows how to calculate the
area efficiency, and Eq. 11 shows how to calculate the energy

efficiency [45] as follows:

Aeff =
Throughput
LUT
1000 × G

, (10)

Eeff =
Throughput
Power × G

, (11)

where Aeff and Eeff are the area efficiency and energy effi-
ciency for an agent, respectively, and G is the number of
agents. The better performances are indicated by the larger
values of the area and/or energy efficiencies. Note that the
more agents are working in parallel, the more Q-values are
produced.

It should be noted that through Section IV-B to IV-F,
the V1 and V2 (FARANE-Q) use a clock frequency
of 125 MHz. However, in this section, we implemented the
V2 (FARANE-Q) with a clock frequency of 150 MHz for
both 32 and 16 bits fixed precision. The detailed utilization
values and the achieved throughput are shown in Table 9.

The work in [14] uses a neural network to estimate the
Q-value and replace the Q-matrix. Their work shows results
from two different architectures. One design uses a single
neuron, while another uses a multi-layer perceptron (MLP).
We chose to compare our design with the single neuron
architecture because it is the only one with detailed hardware
utilization data. Compared to ours, the design with single
neuron architecture required more resources in LUT and
achieved lower clock frequency.

The work in [13] is the first complete implementation of
an accelerator for RL. Their work implements an architecture
focusing on parallelization based on the number of available
states. While the implementation allows the computation of
Q-values for each available state simultaneously, only one
will be updated to the Q-matrix. Thus, this parallelization
seems redundant. The architecture uses only LUT, DSP, and
register. The LUT and DSP are used to implement the pro-
cessing module, while the register is mainly used to store
the required values. For 30-bit width configuration, with
N = 132 and Z = 4, the work in [13] requires a much higher
amount of hardware resources. While there is no available
information on the achieved clock frequency, the architecture
achieves a throughput of 13.4 MSps, which is lower com-
pared to both of our architectures. With its higher number
of LUTs and lower throughput, the work area efficiency is
much lower than ours. However, it should be noted that the
architecture is implemented in a different platform than ours,
which may affect its difference in power consumption and
achieved throughput.

The work in [12] implements an architecture that focuses
on parallelization based on the number of available actions.
This work is also the base for both of our architectures. With
the implementation of the approximated multiplier, [12] only
requires a small amount of DSP compared to [13]. According
to the presented data in [12], despite the exact configura-
tion of 32-bit width, N = 128, and Z = 4, their design
requires much smaller hardware resources compared to both

158 VOLUME 11, 2023

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

TABLE 9. Comparison with other works.

of our architectures. Thus, their design can achieve an area
efficiency of 111.78MSps/1KLUT per agent, which is higher
than ours. However, the energy efficiency of this architec-
ture, which is 788.73 MSps/W per agent, is lower than V2
(FARANE-Q) due to its high dynamic power consumption of
142mW, despite its low resource utilization. This also applies
to the 16-bit variation of their design. The design achieves a
higher clock frequency of 158 MHz. Due to the higher clock
frequency and even the lower hardware resources than their
32-bit counterpart, their design achieves an area efficiency
of 320.49 MSps/1KLUT per agent and an energy efficiency
of 1975 MSps/W per agent.

Finally, we compare our proposed architectures with [33].
In [33], similar to V2 (FARANE-Q), pipeline architecture is
also proposed but uses no approximate computing. It also
uses the ε-greedy algorithm for determining the actions.
However, in our proposed method V2 (FARANE-Q), we use
dynamic ε-greedy with decreasing-ε. Another uniqueness
of [33] is the use of multi-agent, in this case, double agents.
Thus, the throughput is contributed by two agents that work
in parallel. Compared to ours and other work presented
here, [33] has the highest throughput of 189 MSps by using
a double agent, and our V2 (FARANE-Q) has the second
highest with a throughput of 148.55 MSps by only an agent.
With its area efficiency of 549.42 MSps/1KLUT per agent,
this architecture can achieve the highest area efficiency. This
is possible due to its small LUT utilization and high through-
put. We assume they did not include the overall SoC utiliza-
tion, such as the processing system and memories with its
connections. This is shown by the absence of BRAM and
LUTRAM (Not-Available/NA) utilization in the paper. Thus,
using Eq. (11) that considers the number of agents used, our

16-bit FARANE-Q has the highest energy efficiency, which
is 2.06 × higher than [33].

Compared with other works in Table 9, we want to
highlight that the data in our work shows more than just
the resource utilization and the power consumption of the
PL. It shows the AXI modules, memory blocks, and the
PL combined resource utilization and power consumption.
Tables 10 and 11 show the distribution of resource utilization
and power consumption relative to the three modules. Based
on the given distribution, the AXI modules use the most
LUTs and Registers but they have a low dynamic power
consumptions (19 mW for 16-bit and 20 mW for 32-bit).
The resource utilization is then followed by the PL and the
memory blocks. Meanwhile, the memory blocks have the
highest dynamic power consumption (40 mW for 16-bit and
52 mW for 32-bit), while the PL has the lowest (8 mW for
16-bit and 15 mW for 32-bit).

The AXI modules interface the memories and the PL with
the PS. Thus, these modules are active before the learning
process begins when the PS initializes the hyperparameters
and environment to the PL and memory blocks. These mod-
ules are also active after the learning process ends, specifi-
cally when the PS reads the final Q-Matrix from the memory
blocks. The opposite happens for the PL, which is active
only during the learning process. Meanwhile, the memory
blocks are constantly being read and written before, during,
and after the learning process. Due to these behaviors, it is
justified that our V2 has lower power consumption despite its
higher resource utilization compared to other works. The high
resource utilization of the AXI modules does not translate to
high power consumption because it is mostly idle or inac-
tive compared to the memory blocks, which contribute the

VOLUME 11, 2023 159

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

TABLE 10. Resource and power distribution of V2 for 16-bit.

TABLE 11. Resource and power distribution of V2 for 32-bit.

highest dynamic power consumption despite its low resource
utilization.

V. CONCLUSION
In this paper, we have proposed a scalable and configurable
Reinforcement Learning system in SoC architecture. The
designed system is capable of performing the RL algorithm
in variable system parameters, such as the different sizes of
state-action, a random layout of floorplan (state transition),
and system configurations. Hence, it can be deployed for
different applications of RL with various system configu-
rations. Experimental results showed that our FARANE-Q
achieves an acceleration ratio of up to around 1795× and
280× compared to embedded ARM on Zynq and Intel i7
processor, respectively. In addition, the employed fraction-
bit optimization and approximate computing techniques pro-
vide a low complexity design, with lower LUTs and without
DSPs implementation, and a low error rate of up to less than
0.4% for more than 8 fraction bits. Our parallel and pipeline
architecture of FARANE-Q achieves a high throughput of
148.55 MSps with a higher clock frequency of 150 MHz.
Finally, the proposed FARANE-Q outperforms others by at
least 1.23× in energy efficiency.

ACKNOWLEDGMENT
The authors acknowledge Handi Nugroho Setiawan for the
early data for Version 1.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 2018.
[2] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea,

E. Solowjow, and S. Levine, ‘‘Residual reinforcement learning for
robot control,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 6023–6029.

[3] B. Zuo, J. Chen, L. Wang, and Y. Wang, ‘‘A reinforcement learning based
robotic navigation system,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern.
(SMC), Oct. 2014, pp. 3452–3457.

[4] S. Gu, E. Holly, T. Lillicrap, and S. Levine, ‘‘Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 3389–3396.

[5] S. Shao, J. Tsai, M. Mysior, W. Luk, T. Chau, A. Warren, and B. Jeppesen,
‘‘Towards hardware accelerated reinforcement learning for application-
specific robotic control,’’ inProc. IEEE 29th Int. Conf. Appl.-Specific Syst.,
Architectures Processors (ASAP), Jul. 2018, pp. 1–8.

[6] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and
D. I. Kim, ‘‘Applications of deep reinforcement learning in communica-
tions and networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21,
no. 4, pp. 3133–3174, 4th Quart., 2019.

[7] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
‘‘Experience-driven networking: A deep reinforcement learning based
approach,’’ in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM),
Apr. 2018, pp. 1871–1879.

[8] C. Yu, J. Liu, S. Nemati, and G. Yin, ‘‘Reinforcement learning in health-
care: A survey,’’ ACM Comput. Surv., vol. 55, no. 1, pp. 1–36, Jan. 2023.

[9] A. Coronato, M. Naeem, G. De Pietro, and G. Paragliola, ‘‘Reinforcement
learning for intelligent healthcare applications: A survey,’’ Artif. Intell.
Med., vol. 109, Sep. 2020, Art. no. 101964.

[10] T. P. Le, C. Rho, Y. Min, S. Lee, and D. Choi, ‘‘A2GAN: A deep
reinforcement-based learning algorithm for risk-aware in finance,’’ IEEE
Access, vol. 9, pp. 137165–137175, 2021.

[11] G. Hinton and T. J. Sejnowski, Unsupervised Learning: Foundations of
Neural Computation. Cambridge, MA, USA: MIT Press, 1999.

[12] S. Spanò, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino,
M. Matta, A. Nannarelli, and M. Re, ‘‘An efficient hardware implementa-
tion of reinforcement learning: The Q-learning algorithm,’’ IEEE Access,
vol. 7, pp. 186340–186351, 2019.

[13] L. M. D. Da Silva, M. F. Torquato, and M. A. C. Fernandes, ‘‘Paral-
lel implementation of reinforcement learning Q-learning technique for
FPGA,’’ IEEE Access, vol. 7, pp. 2782–2798, 2018.

[14] P. R. Gankidi and J. Thangavelautham, ‘‘FPGA architecture for deep
learning and its application to planetary robotics,’’ in Proc. IEEE Aerosp.
Conf., Mar. 2017, pp. 1–9.

[15] S. S. Sahoo, A. R. Baranwal, S. Ullah, and A. Kumar, ‘‘MemOReL:
A memory-oriented optimization approach to reinforcement learning on
FPGA-based embedded systems,’’ in Proc. Great Lakes Symp. VLSI, 2021,
pp. 339–346.

[16] A. R. Baranwal, S. Ullah, S. S. Sahoo, and A. Kumar, ‘‘ReLAccS: Amulti-
level approach to accelerator design for reinforcement learning on FPGA-
based systems,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 40, no. 9, pp. 1754–1767, Sep. 2021.

[17] Avnet. (2021). Ultra96-v2 Board. Accessed: Nov. 3, 2021. [Online].
Available: https://www.avnet.com/wps/portal/us/products/new-product-
introductions/npi/aes-ultra96-v2/

[18] J. Lee, S. Kim, S. Kim, W. Jo, D. Han, J. Lee, and H.-J. Yoo, ‘‘OmniDRL:
A 29.3 TFLOPS/W deep reinforcement learning processor with dualmode
weight compression and on-chip sparse weight transposer,’’ in Proc. Symp.
VLSI Circuits, Jun. 2021, pp. 1–2.

[19] R. Berdan, T. Marukame, S. Kabuyanagi, K. Ota, M. Saitoh, S. Fujii,
J. Deguchi, and Y. Nishi, ‘‘In-memory reinforcement learning with
moderately-stochastic conductance switching of ferroelectric tunnel junc-
tions,’’ in Proc. Symp. VLSI Technol., Jun. 2019, pp. T22–T23.

[20] A. Amravati, S. B. Nasir, S. Thangadurai, I. Yoon, and A. Raychowdhury,
‘‘A 55 nm time-domain mixed-signal neuromorphic accelerator with
stochastic synapses and embedded reinforcement learning for autonomous
micro-robots,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2018, pp. 124–126.

[21] S.-C. Kao, G. Jeong, and T. Krishna, ‘‘ConfuciuX: Autonomous hardware
resource assignment for DNN accelerators using reinforcement learning,’’
in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2020, pp. 622–636.

[22] F. Tu, W.Wu, Y. Wang, H. Chen, F. Xiong, M. Shi, N. Li, J. Deng, T. Chen,
L. Liu, S. Wei, Y. Xie, and S. Yin, ‘‘Evolver: A deep learning processor
with on-device quantization–voltage–frequency tuning,’’ IEEE J. Solid-
State Circuits, vol. 56, no. 2, pp. 658–673, Feb. 2021.

[23] J. Yang, S. Hong, and J.-Y. Kim, ‘‘FIXAR: A fixed-point deep rein-
forcement learning platform with quantization-aware training and adap-
tive parallelism,’’ in Proc. 58th ACM/IEEE Design Autom. Conf. (DAC),
Dec. 2021, pp. 259–264.

[24] Y. Wang, M. Wang, B. Li, H. Li, and X. Li, ‘‘A many-core accelerator
design for on-chip deep reinforcement learning,’’ in Proc. 39th Int. Conf.
Computer-Aided Design, Nov. 2020, pp. 1–7.

[25] Y. G. Kim and C.-J. Wu, ‘‘AutoScale: Energy efficiency optimization
for stochastic edge inference using reinforcement learning,’’ in Proc.
53rd Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2020,
pp. 1082–1096.

[26] H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, ‘‘FA3C: FPGA-accelerated
deep reinforcement learning,’’ in Proc. 24th Int. Conf. Architectural Sup-
port Program. Lang. Operating Syst., Apr. 2019, pp. 499–513.

160 VOLUME 11, 2023

N. Sutisna et al.: FARANE-Q for Configurable RL SoC

[27] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, ‘‘Accelerating
distributed reinforcement learning with in-switch computing,’’ in Proc.
ACM/IEEE 46th Int. Symp. Comput. Archit., Jun. 2019, pp. 279–291.

[28] H. Zheng and A. Louri, ‘‘An energy-efficient network-on-chip design
using reinforcement learning,’’ in Proc. 56th Annu. Design Autom. Conf.,
Jun. 2019, pp. 1–6.

[29] T.-R. Lin, D. Penney, M. Pedram, and L. Chen, ‘‘A deep reinforcement
learning framework for architectural exploration: A routerless NoC case
study,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2020, pp. 99–110.

[30] Y. Fenjiro and H. Benbrahim, ‘‘Deep reinforcement learning overview of
the state of the art,’’ J. Autom., Mobile Robot. Intell. Syst., vol. 12, no. 3,
pp. 20–39, Dec. 2018.

[31] M. A.Wiering andM. VanOtterlo, ‘‘Reinforcement learning,’’Adaptation,
Learn., Optim., vol. 12, no. 3, p. 729, 2012.

[32] L. Baird, ‘‘Residual algorithms: Reinforcement learning with function
approximation,’’ in Machine Learning Proceedings 1995. Amsterdam,
The Netherlands: Elsevier, 1995, pp. 30–37.

[33] Y. Meng, S. Kuppannagari, R. Rajat, A. Srivastava, R. Kannan, and
V. Prasanna, ‘‘QTAccel: A generic FPGA based design for Q-table based
reinforcement learning accelerators,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshops (IPDPSW), May 2020, pp. 107–114.

[34] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, ‘‘Q-learning algorithms:
A comprehensive classification and applications,’’ IEEE Access, vol. 7,
pp. 133653–133667, 2019.

[35] L. Shoufeng, L. Ximin, and D. Shiqiang, ‘‘Q-learning for adaptive traffic
signal control based on delay minimization strategy,’’ in Proc. IEEE Int.
Conf. Netw., Sens. Control, Apr. 2008, pp. 687–691.

[36] M. Abdoos, N. Mozayani, and A. L. C. Bazzan, ‘‘Traffic light con-
trol in non-stationary environments based on multi agent Q-learning,’’
in Proc. 14th Int. IEEE Conf. Intell. Transp. Syst. (ITSC), Oct. 2011,
pp. 1580–1585.

[37] H. Wei, G. Zheng, H. Yao, and Z. Li, ‘‘IntelliLight: A reinforcement
learning approach for intelligent traffic light control,’’ in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 2496–2505.

[38] Xilinx. (2017).Ultra96-V2 Board. Accessed: Jun. 7, 2022. [Online]. Avail-
able: https://docs.xilinx.com/v/u/en-US/ug1037-vivado-axi-reference
-guide

[39] G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Matta, M. Re,
and S. Spanò, ‘‘An action-selection policy generator for reinforcement
learning hardware accelerators,’’ inProc. Int. Conf. Appl. Electron. Pervad-
ing Ind., Environ. Soc. New York, NY, USA: Springer, 2020, pp. 267–272.

[40] A. K. Panda, P. Rajput, and B. Shukla, ‘‘FPGA implementation of 8, 16 and
32 bit LFSR with maximum length feedback polynomial using VHDL,’’ in
Proc. Int. Conf. Commun. Syst. Netw. Technol., May 2012, pp. 769–773.

[41] M. A. Wiering, ‘‘Explorations in efficient reinforcement learning,’’
Ph.D. dissertation, Fac. Sci. (FNWI), Inform. Inst. (IVI), Univ. Amster-
dam, Amsterdam, The Netherlands, 1999.

[42] M. Tokic, ‘‘Adaptive ε-greedy exploration in reinforcement learning based
on value differences,’’ in Proc. Annu. Conf. Artif. Intell. New York, NY,
USA: Springer, 2010, pp. 203–210.

[43] Xilinx. (2021). PYNQ: Python Productivity. Accessed: Jun. 8, 2022.
[Online]. Available: http://www.pynq.io/

[44] AMD. (2018). Getting Started With PYNQ. Accessed: Jul. 22, 2022.
[Online]. Available: https://pynq.readthedocs.io/en/latest/getting_started.
html

[45] M. Rothmann and M. Porrmann, ‘‘A survey of domain-specific architec-
tures for reinforcement learning,’’ IEEE Access, vol. 10, pp. 13753–13767,
2022.

NANA SUTISNA (Member, IEEE) received
the B.S. degree in electrical engineering and
the M.S. degree in microelectronics from the
Bandung Institute of Technology, Indonesia, in
2005 and 2011, respectively, and the Ph.D.
degree in computer science and electronics from
the Kyushu Institute of Technology, in 2017.
From 2017 to 2020, he was a Postdoctoral Fellow
at the Department of Computer Science and Sys-
tem Engineering, Kyushu Institute of Technology.

He is currently a Lecturer with the Institut Teknologi Bandung. His research
interests include VLSI design, baseband wireless system design, AI proces-
sor design, and HW/SW co-design and co-verification.

ANDI M. RIYADHUS ILMY received the B.Sc.
degree in electrical engineering from the Insti-
tut Teknologi Bandung (ITB), Indonesia, in 2022.
He is currently working as a Researcher with the
Microelectronic Center, ITB. His research inter-
ests include computer architecture, artificial intel-
ligence, VLSI design, and embedded systems.

INFALL SYAFALNI (Member, IEEE) received
the B.Eng. degree in electrical engineering from
the Institut Teknologi Bandung (ITB), Bandung,
Indonesia, in 2008, the M.Sc. degree in elec-
tronic engineering from the University of Science
Malaysia (USM), Penang, Malaysia, in 2011, and
the Dr.Eng. degree in engineering from theKyushu
Institute of Technology (KIT), Iizuka, Fukuoka,
Japan, in 2014. From 2014 to 2015, he held a
research position at KIT. From 2015 to 2018,

he held an ASIC engineer position at the ASIC Development Group, Logic
Research Company Ltd., Fukuoka. In 2019, he joined the ITB, where he is
currently an Assistant Professor with the School of Electrical Engineering
and Informatics and a Researcher with the University Center of Excellence
on Microelectronics, ITB. His current research interests include logic syn-
thesis, logic design, VLSI design, efficient circuits, and algorithms.

RAHMAT MULYAWAN (Member, IEEE) received
the B.Eng. degree in EE from the ITB, Indonesia,
in 2008, and the M.Sc. degree in EE from the TU
Delft, The Netherlands, in 2011. He is currently a
member of the Microelectronics Centre, ITB. His
research interests include intelligent signal pro-
cessing, MIMO systems, and transceiver design
for optical wireless communications.

TRIO ADIONO (Senior Member, IEEE) received
the B.Eng. degree in electrical engineering and the
M.Eng. degree in microelectronics from the Insti-
tut Teknologi Bandung, Indonesia, in 1994 and
1996, respectively, and the Ph.D. degree in VLSI
design from the Tokyo Institute of Technology,
Japan, in 2002. He is currently a Professor with the
School of Electrical Engineering and Informatics,
and also works as the Head of the IC Design Labo-
ratory, Microelectronics Center, Institut Teknologi

Bandung. He holds a Japanese patent on a high-quality video compression
system. His research interests include VLSI design, signal and image pro-
cessing, VLC, smart cards, and electronics solution design and integration.

VOLUME 11, 2023 161

