
Received 29 November 2022, accepted 22 December 2022, date of publication 28 December 2022,
date of current version 2 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3232945

Trajectory Optimization and Power Allocation for
Cell-Free Satellite-UAV Internet of Things
ZHAO WU , (Member, IEEE), AND QIANG WANG
Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, China
Research Center for Intelligent Information and Communication Technology, Yulin Normal University, Yulin 537000, China

Corresponding author: Qiang Wang (wangqiangzhch@foxmail.com)

This work was supported in part by the Guangxi Natural Science Foundation under Grant 2021GXNSFBA196076; in part by the General
Project of Guangxi Natural Science Foundation Project (Guangdong-Guangxi Joint Fund Project) under Grant 2021GXNSFAA075031;
in part by the Basic Ability Improvement Project of Young and Middle-Aged Teachers in Guangxi Universities under Grant 2022KY0579;
and in part by the Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic
Technology, under Grant DH202007.

ABSTRACT Massive access outside the coverage of terrestrial cellular networks will be the main feature of
the sixth generation (6G) networks. In order to cope with it, the cognitive satellite-UAV network (CSUN) has
drawn a lot of attentions. In this paper, we investigate the UAV trajectory optimization and power allocation
for the cell-free CSUN consisting of one satellite and a swarm of UAVs. Indeed, due to the on-board energy
constraints of UAVs, both the trajectory optimization and the power allocation can significantly save the
energy to improve the energy efficiency. The joint trajectory optimization and power allocation problem
is formulated as a mixed-integer non-convex optimization problem which is extremely difficult to solve.
In order to reduce the computational complexity, we decompose the original optimization problem into two
subproblems in terms of the trajectory optimization and power allocation. For the trajectory optimization
subproblem, we model it as a Traveling Salesman Problem (TSP), and the PSO is adopted to solve it. When
the trajectory variables are fixed, the power allocation subproblem is still difficult to tackle due to its non-
convexity and large scale. Firstly, we present a kind of centralized algorithm in which the DC (difference of
two convex functions) algorithm is applied to optimize it, and then a distributed algorithm based on auxiliary
variables is proposed to reduce the signaling overhead and computational complexity. The simulation results
demonstrate the effectiveness of the proposed joint trajectory optimization and power allocation algorithm
for the cell-free CSUN.

INDEX TERMS Cell-free, satellite-UAV network, power allocation, NOMA.

I. INTRODUCTION
The wide-area coverage with a massive number of devices,
especially for the remote areas, such as the ocean, and the
desert etc., has been identified as one of the main objectives
of the upcoming sixth generation (6G) networks [1], [2], [3].
There are some challenges for the network construction in
these remote areas. One challenge is that these areas are not
suitable for large-scale construction of base stations due to
the limitation of the geographical environments [4]. The other
challenge is that the devices are always sparsely and unevenly
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distributed in wide areas which will cause unacceptable con-
struction cost for the terrestrial cellular networks.

Under the above circumstances, the satellite network has
become a promising solution to overcome these challenges
due to the advantage of seamless coverage [5], [6]. Unfortu-
nately, it is difficult to support massive access for the satellite
network as a result of the limited transmission rate and large
latency. Thus, the integration of the satellite network and
unmanned aerial vehicles (UAVs) communication is regarded
as an effective solution for the wide-area coverage with mas-
sive access [7], [8]. Indeed, flexible deployment and strong
mobility are the advantages of the UAVs, which are suitable
for the sparsely and unevenly distributed of the devices in
wide areas. The tricky thing of the UAVs communication is
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the limitation of the on-board energy, which will limit the
flight time and the energy for the signal transmission. There-
fore, the trajectory optimization for the UAVs is necessary
which can significantly save the energy consumed for flight.

In order to improve the spectrum efficiency, the cognitive
satellite-UAVnetwork, in whichUAVusers and satellite users
can share the same time-frequency resource, is considered by
a lot of works [9], [10]. Since the distance from the satellite
to ground is farther, the power control of the UAVs should be
optimized carefully to reduce the interference to the satellite
users. In addition, the cell-free network is also one of the
enabling technologies of 6G, where a larger number of access
points (APs) can simultaneously serve a smaller number of
devices. Indeed, the cell free network can be regarded as
a virtual distributed massive multiple-input multiple-output
(MIMO) system which can effectively improve the coverage
probability [11], [12], [13].

A. RELATED WORKS
In this subsection, we introduce the related works of the UAV
assisted networks and satellite communication networks.
UAV-assisted communication has been widely investigated
since it can avoid obstacles and provide the line-of-sight
(LoS) communication with ground devices due to the high
mobility of UAVs. Therefore, the UAVs can be regarded
as either base stations [14], [15], [16], [17], or mobile
relays [18], [19], [20], [21], [22]. Reference [14] inves-
tigates the joint optimization of trajectory and resource
allocation for the multi-UAV assisted backscatter communi-
cation network. In [14], the joint optimization of trajectory
and resource allocation problem is formulated as a noncon-
vex optimization problem to maximize the max-min rate
of the backscatter communication network. Particularly, the
trajectory design in [14] is proposed to maximize system
throughput. Reference [15] considers the UAV-enabled wire-
less sensor networks without eavesdropper’s CSI. In [15],
an adaptive secrecy transmission policy based on the Wyner
encoding scheme is proposed, and then a secrecy energy
efficiency (SEE) maximization problem is formulated to
jointly optimize the resource allocation and UAV trajectory.
Reference [16] evaluates the performance of the UAV inte-
grated terrestrial cellular network (UTCN) using the tools
of stochastic geometry. The results in [16] show that the
performance of the UTCN will be degraded when the density
of the UAVs is sufficiently large. Reference [17] investigates
a dual UAV enabled secure communication system. In the
scenario of [17], a UAV moves around to send confidential
messages to a mobile user while another cooperative UAV
transmits artificial noise signals to confuse malicious eaves-
droppers. In [17], a a worst-case secrecy rate maximization
problem is formulated, and it is tackled by optimizing the
three-dimensional trajectory of UAVs and time allocation.

Reference [18] considers a UAV-assisted wireless sensor
network where the UAVs paly a role of relays. In [18], the
power control and trajectory planning for the UAV-assisted
wireless sensors network are investigated to reduce the

interference between the sensors and UAVs. Reference [21]
proposes a kind of UAV-aided two way relay networks with
users pair, where the UAV receives and buffers the signals
from one user of the pair, and then forwards the signal to the
other user when the UAV is close to the other. In [22], the
authors propose an energy-constrained UAV-enabled mobile
relay assisted secure communication system, and a joint opti-
mization problem is formulated to enhance the reliability and
security of the system.

Space-air-ground network is another promising technology
for the wide-area Internet of Things (IoT) which is beneficial
in terms of both providing the seamless coverage as well as of
improving the capacity for users all over the world [23]. The
cross-tier interference is a critical problem for the space-air-
ground network if the spectrum sharing is adopted. Therefore,
the trajectory design and the power allocation for the UAVs
as well as satellite have been become the hot topics. Refer-
ence [24] investigates the joint UAV hovering altitude and
power control problem for the space-air-ground IoT networks
to reduce the cross-tier interference. Then, a two-stage joint
resource allocation based on the Lagrange dual decompo-
sition and concave-convex procedure method is proposed
to solve the problem. Reference [25] investigates the joint
resource allocation and UAV trajectory optimization for the
space-air-ground IoT, in which the UAVs act as relays to
upload the data from smart devices to low earth orbit satel-
lites. Then, the joint optimization problem is formulated as
a nonconvex optimization problem. The authors in [25] pro-
pose an iterative algorithm based on the variable substitution,
successive convex optimization techniques, and the block
coordinate decent algorithm to solve the nonconvex opti-
mization problem. Reference [26] proposes a hybrid satellite-
unmanned aerial vehicle relay network where the UAVs act
as the relay from the satellite to the terrestrial users. In [26],
the joint resource allocation in terms of the relay selection
and power allocation is considered and then a metaheuristic
teaching-learning based optimization algorithm is employed
to optimize the problem. Mobile-edge caching is another
hotspot which can effectively alleviate the heavy burden of
backhaul. The space-air-ground integrated relay network is
also considered in [27]. In [27], the UAV first amplifies
the signals from the satellites through optimizing the detec-
tion vector. Then the UAV-ground NOMA communication is
modeled as a energy efficiency optimization problem. The
work in [28] considers a cache-enabled satellite-UAV-vehicle
integrated network where the satellite acts as a cloud server,
and the UAVs are regarded as the edge caching servers.

B. MOTIVATION AND CONTRIBUTIONS
As aforementioned, most of the prior works about the UAV
trajectory design focus on the transmission rate maximization
through optimizing the UAV trajectory. However, the energy
consumed for flight is far more than the energy consumed for
signal transmission. In addition, most of the related works
about the satellite networks and UAV-assisted networks do
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not consider the distributed resource allocation algorithm
which is crucial for the large-scale networks.

In this paper, we investigate the joint trajectory opti-
mization and power allocation for the cell-free cognitive
satellite-UAV IoT networks (CSUN). The objective of the
trajectory optimization is to search the shortest route for
the UAVs to save the on-board energy. For the power allo-
cation, we present a kind of centralized algorithm where
the DC (difference of two convex functions) algorithm is
empolyed to optimize it, and then a distributed algorithm is
proposed to reduce the signaling overhead and computational
complexity.

The main contributions of this paper are summarized as
follows:

1) We propose a kind of joint optimization framework
for the trajectory optimization and power allocation of
the cell-free CSUN. The joint trajectory optimization
and power allocation is formulated as a mixed inte-
ger nonconvex programming problem (MINP). Partic-
ularly, the total distance traveled by the UAV swarm is
integrated into the energy constraint of the MINP.

2) The formulated MINP is a large scale nonconvex opti-
mization problem. In order to reduce the computa-
tional complexity, the original optimization problem is
decomposed into two subproblems in terms of the tra-
jectory optimization and power allocation. Specifically,
the trajectory optimization problem is a combinatorial
optimization problem, and we model it as a Traveling
Salesman Problem (TSP). Then, a kind of PSO for
TSP is adopted to optimize the trajectory optimization
problem.

3) The power allocation subproblem is still extremely
difficult to tackle due to the nature of nonconvexity.
The DC (difference of two convex functions) method
is used to solve the power allocation subproblem, and
then we propose a distributed algorithm through intro-
ducing the auxiliary variables to reduce the signaling
overhead and computational complexity.

The rest of the paper is organized as follows. Section II
describes the system model for the cell-free CSUN. The
UAV trajectory optimization is introduced in section III.
In section IV, we optimize the power allocation problem
using DC programming method, and a distributed algorithm
is proposed in section V. In section VI, simulation results
are provided to evaluate the performance of the proposed
algorithm. Finally, we conclude this paper in section VII.

II. SYSTEM MODEL
In this paper, we consider a downlink of a wide-area IoT-
oriented cell-free CSUN as shown in Fig.1, in which there are
a satellite,K single-antennaUAVs,Ns single-antenna satellite
users, and NU single-antenna UAV users. To improve the
spectrum efficiency, the satellite and all the UAVs share the
same time-frequency resource. It is assumed that all the UAV
users are divided into N groups according to the distances
among the UAV users, and the n-th user group will be served

FIGURE 1. System model of the cell-free satellite-UAV network.

in the n-th time slot. The number of the users in the n-th user
group is denoted by Un. The cell-free architecture is applied
to improve the coverage probability, where all UAVs serve
all the UAV users in the same user group. The hover-to-serve
mode is considered, in which the UAV swarm transmit data
when they are hovering above a group of users, and after
the transmission, they will fly to the overhead of the next
user group. The bandwidth is divided into G subcarriers, and
each subcarrier can be assigned to at most one UAV user
in each time slot in order to mitigate the intra-group inter-
ference. Since the subcarrier assignment problem has been
investigated by a lot of works, we assume that the subcarrier
assignment is fixed in this paper.

Due to the energy limitation of UAV, the trajectory opti-
mization is considered to decrease the energy consumption
for flight. For the sake of simplicity, we assume that the plane
coordinate of the UAV swarm hovering above one certain user
group is fixed, and the altitude of the UAV swarm is constant
throughout the transmission process. The plane coordinate of
the UAV swarm hovering above the n-th user group is denoted
as (xn, yn). Let Z denote the total distance traveled by theUAV
swarm, and Z can be expressed as:

Z =
N∑
i=1

N∑
j=1

dijwij (1)

where dij =
√
(xi − xj)2 + (yi − yj)2 denotes the distance

between the i-th user group and the j-th user group;wij∈{0, 1}
indicates whether the path between the i-th user group and the
j-th user group is chosen or not;

A. SIGNALS MODEL
Since the cell-free transmission mode is considered, all the
UAVs serve all the users in the same user group simultane-
ously. The received signal of the u-th user in the n-th group
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on the g-th subcarrier can be given as:

rn,u,g =
K∑
k=1

hn,u,g,ksn,u,g,k + zn,u,g (2)

where hn,u,g,k and sn,u,g,k are the channel coefficient and the
transmit symbol from the k-th UAV to the u-th user in the n-th
user group using the g-th subcarrier, respectively. hn,u,g,k =
β0d
−2
n,u,k , where β0 is the channel gain at a reference distance

of 1meter(m), and dn,u,k is the distance between the k-th UAV
and the u-th user in the n-th group. zn,u,g ∼ CN (0, σ 2) is the
additive white Gaussian noise at the u-th user in the n-th user
group using the g-th subcarrier.
In order to improve the spectrum efficiency, we assume that

the satellite and UAVs share the same spectrum resources.
In this paper, we only consider the leakage interference
from the UAV to the satellite users and ignore the leakage
interference from the satellite to the UAV users since it is
relatively weak. The interference from the UAV swarm to the
i-th satellite user in the n-th time slot is given by:

In,i =
Un∑
u=1

K∑
k=1

G∑
g=1

hn,i,kpn,u,g,k (3)

where hn,i,k denotes the channel coefficient from the k-th
UAV to the i-th satellite user in the n-th time slot. hn,i,k =
β0d
−2
n,i,k , and dn,i,k represents the distance between the k-th

UAV and the i-th satellite user in the n-th time slot. pn,u,g,k
is the transmit power of the k-th UAV to the u-th user of the
n-th user group.

In this paper, we consider the propulsion energy and com-
munication energy for the UAVs, and the on-board energy
constraints of UAVs is formulated as follows [?].

c
ηk

N∑
n=1

Un∑
u=1

G∑
g=1

pn,u,g,kT + prck T + E
ind
k + Zξ ≤ E

ob
k ,∀k (4)

where c is the power loss coefficient, ηk denotes the effi-
ciency of power amplifiers in radio frequency chains. T is
the total flight time of the UAV, and it dependents on the
trajectory of the UAV. prck is the circuit power consumption
of the k-th UAV. E indk represents the energy consumed by the
cooling system, which is transmit-power-independent. ξ is
the energy consumption constant per unit distance.

Since both prck and E indk are fixed for the given trajectories,
we simplify the constraint 4 as

c
ηk

N∑
n=1

Un∑
u=1

G∑
g=1

pn,u,g,kT + Zξ ≤ Ek ,∀k (5)

where Ek = Eobk − p
rc
k T − E

ind
k .

It is assumed that the channels from the UAVs to the u-th
user in the n-tn user group using the g-th subcarrier can be
sorted as:

hn,u,g,1 ≤ hn,u,g,2 ≤ · · · ≤ hn,u,g,K (6)

It can be regarded as a multiple APs and one user NOMA
system, in which the signals with the better channel condi-
tions have priority to be decoded, however, the signals with
worse signals is still useful for the corresponding user, and
they cannot be subtracted. Therefore, in the multiple APs and
one user NOMA system, the signals with the better channel
conditions will be interfered by the signals with the worse
channel conditions. Thus, the transmit rate of the u-th user in
the n-th user group using the g-th subcarrier can be written
as:

Rn,u,g =
K∑
k=1

log(1+
hn,u,g,kpn,u,g,k

k−1∑
l=1

hn,u,g,lpn,u,g,l + σ 2

) (7)

B. PROBLEM FORMULATION
In this paper, we aim to optimize the trajectory of the UAV
swarm and the power allocation to maximize the system
throughput. The optimization problem can be formulated as
follows:

P1 max
p,w

N∑
n=1

Un∑
u=1

G∑
g=1

K∑
k=1

log(1+
hn,u,g,kpn,u,g,k

k−1∑
l=1

hn,u,g,lpn,u,g,l + σ 2

)

(8)

s.t.
Un∑
u=1

K∑
k=1

G∑
g=1

hn,i,kpn,u,g,k ≤ Imax ,∀n,∀i (9)

c
ηk

N∑
n=1

Un∑
u=1

G∑
g=1

pn,u,g,kT + Zξ ≤ Ek ,∀k (10)

Un∑
u=1

G∑
g=1

pn,u,g,k ≤ Pmax ,∀n,∀k (11)

pn,u,g,k ≥ 0,∀n, u, g, k (12)

where (9) is the interference constraint for the satellite users,
and Imax means the the interference temperature thresh-
old; (10) means the total energy constraint of the k-th
UAV; (11) is the maximum transmit power constraint for
each UAV.

Due to the combinatorial nature of the trajectory optimiza-
tion, problem P1 is a mixed integer nonlinear programming
problem which is extremely difficult to tackle. In the fol-
lowing, to decrease the computational complexity, we first
decompose P1 into two subproblems in terms of the trajec-
tory optimization and power allocation, respectively. Then,
we model the trajectory optimization as a TSP, and adopt
the PSO to optimize it. For the power allocation subproblem,
we propose a central algorithm based on the DC program-
ming method to solve it. Then, we propose a distributed
algorithm through introducing the auxiliary variables in order
to reduce the signaling overhead.
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III. TRAJECTORY OPTIMIZATION
The trajectory optimization problem can be modeled as
follows:

P2 min
w

Z =
N∑
i=1

N∑
j=1

dijwij (13)

s.t.
N∑
j=1

wij = 1,∀i ∈ V (14)

N∑
i=1

wij = 1,∀j ∈ V (15)∑
i∈S

∑
j∈S

wij ≤ |S| − 1,∀S ∈ V , 2 ≤ |S| ≤ n− 1

(16)

wij ∈ {0, 1},∀i,∀j (17)

where Z and V are the total distance and the set of the user
groups; S denotes a subset of V ; constraints (14) and (15) are
imposed to guarantee that each user group can be passed only
once in each cycle; constraint (16) is imposed to guarantee
that there is no sub loop solutions.

Problem P2 is a TSP, which has been proved as a NP-hard
problem, and the computational complexity will increase
exponentially with the increase of the number of the user
groups. In this paper, we adopt the PSO to optimize P2 since
the traditional deterministic algorithms are invalid. PSO is
one of the swarm intelligence algorithms with fast converge
speed, and it has a wide range of applications in science and
industry [30].

In this paper, we adopt the PSO framework for solving TSP
in [31]. The ith particle can be expressed as:

Xi = [xi1, xi2, · · · , xiN ] (18)

which means that the UAVsmove following the path: xi1 −→
xi2 −→ · · · −→ xiN , and xin is a integer from 1 to N , and it
represents the n-th user group the UAVs passed.
Then, we introduce the evolutionary operator of the PSO

for TSP. Firstly, the swap operator SO(i1, i2) is defined,
which means that the orders of xi1 and xi2 are switched. For
example, if X = [1, 2, 5, 3, 6, 4], and the swap operator is
SO(2, 6), then X + SO(2, 6) = [1, 6, 5, 3, 2, 4]. The ordered
set of the swap operators is denoted by swap sequence, such
as S = (SO1, · · · , SOk ). The swap sequence acting on
one solution represents that all the swap operators of the
swap sequence act on the solution in order, which can be
expressed as:

X + (SO1, · · · , SOk ) = ((X + SO1)+ SO2)+ · · · + SOk
(19)

Define ⊕ as the merging operator. For example,
X + (SO1 ⊕ SO2) is equivalent to that SO1 and SO2 act on
solution X in order.

Then, we introduce the difference between two solutions:
S = X1 − X2, where S is a swap sequence, and it can be
regarded as the velocity in PSO. Indeed, S = X1 − X2 is
equivalent to X1 = X2 + S. For example, there are two
solutions: X1 = [5, 1, 3, 2, 4, 6], and X2 = [2, 5, 1, 3, 6, 4].
Since X1(1) = X2(2), the first swap operator can be given as
SO1(1, 2). We can obtain X1

2 = X2+ SO1 = [5, 2, 1, 3, 6, 4].
Since X1(2) = X1

2 (3), the second swap operator is SO2(2, 3),
and there is X2

2 = X1
2 + SO2(2, 3) = [5, 1, 2, 3, 6, 4].

Repeating the above steps, we can obtain the third swap
operator SO3(3, 4) and the fourth swap operator SO4(5, 6).
Then, the difference between X1 and X2 can be expressed as
S = (SO1, SO2, SO3, SO4) = X1 − X2. The multiplication of
the real number and swap sequence cV is defined as that [c]
V s are added, and then the first [(c − [c])k] swap operators
of V are added, where k is the number of the swap operators
of V , and [·] represents the rounding operation.
The model of the PSO for TSP can be described as:

V ′i = Vi ⊕ c1r1(Pi − Xi)⊕ c2r2(Pg − Xi) (20)

X ′i = Xi + V ′i (21)

where c1, r1, c2, and r2 are the learning coefficients. Pi is
the best solution that this particle has reached, and Pg is the
global best solution of all the particles. The PSO for trajectory
optimization is shown in Algorithm 1, and Fig.2 shows the
trajectory optimization results obtained by the exhaustive
search, PSO, and random search, respectively.
As mentioned above, TSP is a combinatorial optimiza-

tion problem. For the exhaustive search, if there are N
groups, there are N choices in the first step, and (N − 1)
choices in the second step. Followed by analogy, the com-
plexity of the exhaustive search is O(N !). In Algorithm 1,
the computational complexity of the difference between
two solutions is O(N (N+1)

2 ), and the computational com-
plexity of the swap operator is linear. Therefore, for each
iteration of Algorithm 1, the computational complexity is
O(N (N+1)

2 + N ). Assuming the total number of iterations
is t , the total computational complexity of Algorithm 1 is
O(t(N (N+1)

2 + N )), which is much lower than O(N !).

IV. POWER ALLOCATION OPTIMIZATION
In the above section, the trajectory optimization problem has
been solved using the PSO. Then, there remain the power
allocation variables in problem P1. Problem P1 can be refor-
mulated as:

P3 max
p

N∑
n=1

Un∑
u=1

G∑
g=1

K∑
k=1

log(1+
hn,u,g,kpn,u,g,k

k−1∑
l=1

hn,u,g,lpn,u,g,l + σ 2

)

(22)

s.t.
c
ηk

N∑
n=1

Un∑
u=1

G∑
g=1

pn,u,g,k + Z∗τ ≤ Ek ,∀k

(9), (11), (12) (23)
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FIGURE 2. Optimized trajectory by the exhaustive search, PSO, and
random search, respectively.

Algorithm 1 PSO for Trajectory Optimization
1: Initialization the particle swarm, and each particle is allo-

cated an initial solution, and a random velocity, namely,
a swap sequence;

2: For each particle Xi, computing its next position accord-
ing to (20) and (21):
Computing A = Pi−Xi, and B = Pg−Xi, where both A
and B are the swap sequences.
Computing the velocityV ′i according to (20), and the new
position X ′i can be obtained in accordance with (21).
If X ′i is better than Pi, Pi is updated as X ′i .

3: If there is a new particle X is better than Pg, the global
best solution Pg is updated as X .

4: If the best global solution Pg meets the preset condition,
output the global best solution.

The above optimization problem is still difficult to tackle
since it is a nonconvex optimization problem. In this paper,
we adopt the DC programmingmethod [32] to optimize prob-
lem P3. Firstly, the objective function of P3 can be rewritten
as the difference of two convex functions as follows:

R =
N∑
n=1

Un∑
u=1

G∑
g=1

K∑
k=1

(log(
k∑
l=1

hn,u,g,lpn,u,g,l + σ 2)

−log(
k−1∑
l=1

hn,u,g,lpn,u,g,l + σ 2)) (24)

We denote H (p) = log(
k−1∑
l=1

hn,u,g,lpn,u,g,l + σ 2), and then

H (p) can be expanded by the first order Taylor expansion:

H (p) = H (pv)+ [∇H (pv)]T (p− pv) (25)

where p = [pn,u,g,1, · · · , pn,u,g,k−1], and ∇H (pv) denotes
the gradient of function H at the point p, and [·]T means the
transpose of the vector.

Then, substituting (25) into (24), (24) can be rewritten as:

R(p;pv) =
N∑
n=1

Un∑
u=1

G∑
g=1

K∑
k=1

(log(
k∑
l=1

hn,u,g,lpn,u,g,l + σ 2)

−H (pv)− [∇H (pv)]T (p− pv)) (26)

Obviously, (26) is a concave function.
Thus, problem P3 can be rewritten as:

P4 max
p

R(p;pv)

s.t. (9), (11), (12), (23) (27)

Problem P4 is a convex optimization, since its objective is
concave, and all of the constraints of P4 are affine. Therefore,
P4 can be solved by the convex optimization technology.
We assume that p̂ is the optimal solution of problem P4,

and the iterative formula of pv can be expressed as:

pv+1 = pv + β (̂p− pv) (28)

where β ∈ (0, 1). The details of the power allocation algo-
rithm can be referred to the Algorithm 2.

Algorithm 2 The Power Allocation Optimization Using DC
Programming
1: Initialization
2: set v = 0.
3: Initialize the power allocation variables p0.
4: Updating
5: while pv – pv−1 � τthr do
6: v = v + 1;
7: Compute the optimal power allocation of P3 p̂ using

the convex optimization technology.
8: Updating power allocation pv according to (28);
9: end while

V. DISTRIBUTED ALGORITHM
The algorithm in the above section is centralized which
will consume a lot of signaling and computational overhead.
Indeed, the objective of problem P4 includes multiple nonad-
ditive coupling variables whichmakes the problem difficult to
be decomposed across the UAVs. In this section, we provide
a distributed implementation of Algorithm 2.

In order to decouple the nonadditive variables. we intro-
duce the auxiliary variables t = {tn,u,k}, where tn,u,k =

{tn,u,g,k}1×G, and setting 0 < tn,u,g,k ≤
k∑
l=1

hn,u,g,lpn,u,g,l .

Thus, problem P4 cab be rewritten as:

P5 max
t,p

R(t,p;pv)

=

N∑
n=1

Un∑
u=1

G∑
g=1

K∑
k=1

(log(tn,u,g,k + σ 2)

−H (pv)− [∇H (pv)]T (p− pv)) (29)
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s.t. 0 < tn,u,g,k ≤
k∑
l=1

hn,u,g,lpn,u,g,l,∀n, u, g, k

s.t. (9), (11), (12), (23) (30)

It can be observed that problem P5 and P4 are equivalent.

Indeed, in the case of tn,u,g,k =
k∑
l=1

hn,u,g,lpn,u,g,l , problemP5

is obviously equivalent to P4. If tn,u,g,k <
k∑
l=1

hn,u,g,lpn,u,g,l ,

the maximum objective value of problem P5 is less than that
of problem P4 due to the monotone increasing property of
logarithmic function.

log(tn,u,g,k + σ 2) is a ascending function with respect to
variable tn,u,g,k . Therefore, P5 can be transformed as the
epigraph form as follows:

P6 max
t, p,Rth

Rth

(31)

s.t. R(t,p;pv) ≥ Rth
s.t. (9), (11), (12), (23), (30) (32)

Then, we introduce a feasible S = {pv,Rvth, t
v
}, and any

τRth , τp, and τt > 0. P6 can be approximated as:

P7 max
t, p,Rth

Rth−
τRth

2
(Rth−Rvth)

2
−
τp

2
‖p−pv‖22−

τt

2
‖t−tv‖22

(33)

s.t. R(t,p;pv) ≥ Rth
s.t. (9), (11), (12), (23), (30) (34)

where the terms of
τRth
2 (Rth−Rvth)

2, τp2 ‖p−p
v
‖
2
2, and

τt
2 ‖t−t

v
‖
2
2 are

imposed to improve the convexity of the objective function.
Let S = (t,p,Rth), and the Lagrangian function of problem

P7 can be written as:

L(S, ρ, θ ,λ,µ;Sv)=LRth (Rth, ρ;Rvth)+Lp(p, ρ, θ ,λ,µ;pv)

+Lt(t, ρ, θ; tv) (35)

where λ, η, µ, θ and ρ are the Lagrangian multipliers with
respect to the constraints (9), (11), (23), (30), and (34).
LRth (Rth, ρ;Rvth), Lp(p, ρ, θ ,λ,µ;pv) and Lt(t, ρ, θ; tv) are
given in (36), (37), and (38), as shown at the bottom of the
page, respectively.

Then, we can obtain the closed form solution of Rth, p, and
t as follows.

R∗th = [
1− ρ
τRth

+ Rvth]
+ (39)

t∗n,u,g,k = [
9tn,u,g,k

2τtn,u,g,k
]+ (40)

p∗n,u,g,k = [
9pn,u,g,k

τpn,u,g,k
+ pvn,u,g,k ]

+ (41)

where

9tn,u,g,k

= −(τtn,u,g,kN0 − τtn,u,g,k t
v
+ θ )

+

√
(τtn,u,g,kN0−τtn,u,g,k tv+θ )2+4τtn,u,g,k (τtn,u,g,k tv+ρ−θN0),

and 9pn,u,g,k = −(λn,ihn,i,k + µk+ηk+ρ∇pn,u,g,kH (pvn,u,g,k )).
The details of the distributed dual algorithm can be referred
to the Algorithm 3.

VI. SIMULATION RESULTS
In this section, we intend to evaluate the performance of the
proposed joint trajectory design and power allocation scheme
for the cell-free CSUN. In simulation, we assume that the
sensor distribution area is a square with area of 1 Km ×
1 Km, and there is one satellite in the considered cell-free
CSUN. All the satellite users and UAV users are distributed
in 12 regions. The number of the satellite users is set as 12,
and each region includes one satellite user. The number of
the UAV users is in the range from 60 to 300, and the flight
altitude of the UAVs is set as 100 m. The the interference
temperature threshold is set as−77dBm. The transmit power
of the UAV is set as 30dBm, and the total energy carried by

LRth (Rth, ρ;Rvth) =
τRth

2
(Rth − R2th)

2
− Rth + ρRth (36)

Lp(p,λ,µ, η, θ , ρ;pv) =
τp

2
‖p−pv‖22 +

N∑
n=1

I∑
i=1

λn,i

Un∑
u=1

K∑
k=1

G∑
g=1

hn,i,kpn,u,g,k −
N∑
n=1

I∑
i=1

Imax+
K∑
k=1

µk

N∑
n=1

Un∑
u=1

G∑
g=1

pn,u,g,k

+

K∑
k=1

µk (Z∗ξ−Ek )+
N∑
n=1

K∑
k=1

ηk

Un∑
u=1

G∑
g=1

pn,u,g,k −
N∑
n=1

Un∑
u=1

G∑
g=1

K∑
k=1

θn,u,g,k

k−1∑
l=1

hn,u,g,lpn,u,g,l

−

N∑
n=1

K∑
k=1

ηkPmax+ρ
N∑
n=1

Un∑
u=1

G∑
g=1

K∑
k=1

H (pvn,u,g,k )+ρ
N∑
n=1

Un∑
u=1

G∑
g=1

K∑
k=1

[∇H (pvn,u,g,k )
T ](pn,u,g,k − pvn,u,g,k )

(37)

Lt(t, ρ, θ; tv) =
τt

2
‖t−tv‖22−ρ

N∑
n=1

Un∑
u=1

G∑
g=1

K∑
k=1

log(tn,u,g,k+N0)+
N∑
n=1

Un∑
u=1

G∑
g=1

K∑
k=1

θn,u,g,k tn,u,g,k (38)
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Algorithm 3 Distributed Dual Algorithm

1: Input λ0 � 0, µ0
� 0, η0 � 0, and θ0 � 0, and ρ0 ≥ 0;

Sv = (pv,Rvth, t
v); Let �0

= (λ0,µ0, η0, θ0, ρ0, ); Set
v = 0.

2: Set the convergence threshold τthr .
3: Updating
4: while �v – �v−1

� τthr do
5: v = v + 1;
6: Compute the R∗th, p

∗, and t∗ according to (39)-(41).
7: Update λ,µ, η, θ and ρ according to subgradient

method:

λv+1n,i = λ
v
n,i + l

v(Imax −
Un∑
n=1

K∑
k=1

G∑
g=1

hn,i,kp∗n,u,g,k )

µv+1k = µvk + l
j((Ek − Z∗ξ )−

N∑
n=1

Un∑
u=1

G∑
g=1

p∗n,u,g,k )

ηv+1k = ηv+1k + lv(Pmax −
Un∑
u=1

G∑
g=1

p∗n,u,g,k )

θv+1n,u,g,k = θ
v
n,u,g,k + l

v(
k∑
l=1

hn,u,g,lp∗n,u,g,l − t
∗
n,u,g,k )

ρv+1 = ρv + lv(R(t∗,p∗;pv)− R∗th)
8: end while
9: output S∗ = Sv+1

FIGURE 3. Sum rate for the exhaustive search, proposed trajectory
optimization algorithm and random search with the increase of the
number of UAVs.

the UAVbattery is 2.7×104 J. The energy consumed for flight
is set as 9 J per meter.

Fig.3 and Fig.4 evaluate the performance of the pro-
posed trajectory optimization scheme using the PSO, and
we compare the the performance of the proposed trajectory
optimization scheme with that of the exhaustive search and
random search. From Fig.3, it can be observed that the sys-
tem throughput increases with the increase of the number
of UAVs, and the slope of the curve becomes smaller with
the increase of the number of UAVs. Furthermore, we can
observe that the performance of the proposed trajectory opti-
mization scheme using the PSO is slightly worse than that

FIGURE 4. Sum rate for the exhaustive search, proposed trajectory
optimization algorithm and random search with the increase of the
number of UAVs.

of the exhaustive search. This result can be explained that
the UAVs have to use more energy for flight for the tra-
jectory obtained by the PSO, and the energy for the signal
transmission is limited. In addition, we can also observe
that the performance of the proposed trajectory optimization
scheme outperforms that of the random search significantly.
Indeed, the total distances of the trajectory obtained by the
random search is too large, and the UAVs can not serve
all the user groups in this case due to the limited on-board
energy.

Fig.4 depicts the performance of the proposed trajectory
optimization scheme with the increase of the number of UAV
users. It can be observed from Fig.4 that the performance of
the proposed trajectory optimization scheme increases with
the increase of the number of UAV users, and this result
can be explained by the multi-user diversity gain. Similarly
with Fig.3, the performance of the proposed trajectory opti-
mization scheme outperforms the random search, and the
exhausted search has better performance than the proposed
trajectory optimization scheme.

In the following, we evaluate the performance of the
proposed joint trajectory optimization and power allocation
scheme. Firstly, we introduce some benchmarks as follows.

1) Random trajectory optimization (RTO): In this bench-
mark, we adopt the random trajectory optimization, and
the power allocation uses the proposed power alloca-
tion algorithm.

2) No power allocation (NPA): In this benchmark, the
power allocation is fixed, and the proposed trajectory
optimization scheme is adopted.

3) Random trajectory optimization and no power alloca-
tion (RTO & NPA): In this benchmark, the random
trajectory optimization is adopted, and the power allo-
cation is fixed.

4) Cell-free architecture with OMA access (CF-OMA):
In this benchmark, the cell-free network and OMA
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FIGURE 5. Sum rate for the exhaustive search, proposed trajectory
optimization algorithm and random search with the increase of the
number of UAVs.

FIGURE 6. Sum rate for the exhaustive search, proposed trajectory
optimization algorithm and random search with the increase of the
number of UAVs.

are used as the network architecture and the multiple
access, respectively.

5) Cell-centric architecture with NOMA access
(CC-NOMA): In this benchmark, the cell-centric
network is adopted, and the NOMA access is used as
the multiple access.

6) Cell-centric architecture with OMA access
(CC-OMA): In this benchmark, the cell-centric net-
work is adopted, and the OMA access is used as the
multiple access.

In Fig.5 and Fig.6, we compare the performance of the
proposed joint trajectory optimization and power allocation
scheme with that of the RTO benchmark, NPA benchmark,
and RTO & NPA benchmark. From Fig.5, the performances
of the proposed joint trajectory optimization and power
allocation scheme and these benchmarks increase with the
increase of the size of UAVs swarm, and the proposed joint

FIGURE 7. Sum rate for the exhaustive search, proposed trajectory
optimization algorithm and random search with the increase of the
number of UAVs.

FIGURE 8. Sum rate for the exhaustive search, proposed trajectory
optimization algorithm and random search with the increase of the
number of UAVs.

trajectory optimization and power allocation scheme outper-
forms all these three benchmarks. This result illustrates the
effectiveness of the proposed joint trajectory optimization and
power allocation scheme. In addition, it can also be observed
that the NPA benchmark has better performance than that of
the RTO benchmark and RTO&NPA benchmark. This result
shows that the trajectory optimization is more important than
power allocation. Indeed, for the UAVs, the energy consumed
for flight is the main part, and it is far more than the energy
consumed for the signal transmission. The trajectory opti-
mization can save more energy consumed for flight for the
UAVs to transmit signals. Fig.6 shows the similar results with
Fig.5, and it demonstrates the effectiveness of the proposed
joint trajectory optimization and power allocation scheme.
Fig.6 also depicts that the data transmission efficiency of the
cell-free CSUN increases with the increase of the number of
UAV users due to the multi-user diversity.
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Next, we concentrate on analyzing the effectiveness of
the user-centric networks and NOMA in Fig.7 and Fig.8.
We compare the performance of the proposed joint trajec-
tory optimization and power allocation scheme with that of
the CF-OMA, CC-NOMA and CC-OMA. As shown by the
curves, the data transmission efficiency of the network is
improved with the increase of both the size of UAVs swarm
and the number of UAV users due to the diversity gain. It can
be seen from Fig.7 and Fig.8 that a better performance is
achieved by the proposed joint trajectory optimization and
power allocation scheme, and this phenomenon indicates the
effectiveness of the cell-free networks and NOMA.

VII. CONCLUSION
In this paper, we consider a kind of cell-free CSUN to achieve
the massive access and wide-area coverage for the IoT. The
trajectory optimization and power allocation for the UAVs
have been investigated to reduce the energy consumption and
maximize the system throughput. The joint trajectory opti-
mization and power allocation for the cell-free CSUN is for-
mulated asMINPwith high computational complexity, where
the interference constraint for the satellite users is considered.
In order to reduce the computational complexity, the original
optimization problem is decomposed into two subproblems
in terms of the trajectory optimization and power allocation.
We formulate the trajectory optimization as a TSP, and the
PSO is adopted to solve it. The power allocation subproblem
is still difficult even through the trajectory optimization has
been tackled due to the nonconvexity and large-scale of the
problem. Firstly, we propose a centralized algorithm using the
DC method, and then a distributed algorithm is proposed to
reduce the signaling overhead.
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