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ABSTRACT Pervasive new era applications are expected to involve massive amount of data to implement
intelligent distributed frameworks based on machine learning, supported by sixth generation (6G) networks
technology to offer fast and reliable communications. Federated Learning (FL) is rapidly emerging as
promising privacy-preserving solution to train machine learning models in a distributed fashion. However,
users are often not too inclined to take part in the learning process without receiving compensation. Hence,
to overcome this drawback, the functional integration of a proper devices incentive mechanism with an
efficient approach for the devices selection in a same FL framework becomes essential. In this regard, this
paper proposes a FL framework involving a one-side matching theory-based incentive mechanism to select
and encourage users to take part of the process with the aim at minimizing the FL process convergence
time and maximizing the users profit. Furthermore, this paper faces with the possibility to overcome bad
communication link conditions by resorting to device-to-device communications among users in order to
lower the energy wasted and improve the convergence time of the FL process. In particular, an echo-
state-network, running in local at each user site, has been considered to forecast channel conditions in
a reliable manner. Performance evaluation has highlighted the improvements in convergence time and
energy consumption of the proposed FL framework in comparison with conventional approaches, hence,
highlighting its suitability for applications in the upcoming 6G networks.

INDEX TERMS Federated learning, terahertz communications, machine learning.

I. INTRODUCTION
The efforts towards the progressive standardization of
6G networks are focusing on enabling different types of
network services and new era applications guaranteeing high-
performance ubiquitous and intelligent connectivity, preserv-
ing data privacy and security [1], [2]. The upcoming 6G
networks will be empowered by artificial intelligence capa-
bilities, in order to providing efficient and effective strategies
to transmit, collect, merge, manipulate and interpret large
amount of data, anytime and anywhere, to support disruptive
applications and intelligent services, shifting the develop-
ment of wireless communications from ‘‘connected things’’
to ‘‘connected intelligence’’ [1], [2]. Recent years have seen
the unprecedented involvement of data science, machine and
deep learning solutions into a wide plethora of applications.
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Nevertheless, the machine learning (ML), together with the
6G network technology, is promising to boost the new gen-
eration systems. Nowadays, there exist two major obstacles
in making the ML oriented solutions a concrete reality [3]:
i) data are typically private by some legal concern or by
the general data protection regulation (GDPR), making users
the exclusive owner of their data. In fact, traditional ML
solutions, implemented on a central server, give rise to several
privacy and security issues. Moreover, centralized solutions
suffer also of severe communication, processing and aggre-
gation overhead, making infeasible their application to large-
scale scenarios; ii) the rapidness with which terahertz (THz)
channel conditions vary over time, typically due to blockage
events, capturing the phenomenon in which the Line-on-
Sight (LoS) signal between the considered user and its corre-
sponding base station is interrupted [4]. All these difficulties
represent critical aspects which prevent the actual diffusion of
pervasive and secure intelligent frameworks supported by 6G
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networks [1]. Despite these drawbacks, decentralized learn-
ing paradigms are recently gaining momentum, representing
flexible solutions to keep private data locally at the origin
device, training there the MLmodel and reducing the amount
of information to send to the central server. In particular,
Federated Learning (FL) has emerged as promising learning
paradigm and as an efficient alternative to the centralized ML
solutions. The FL represents a collaborative decentralized
learning framework, in which devices and a central server
mutually interact to train a shared model [5], [6]. The shared
model is downloaded from the central server by devices
which train the model with local data, and then upload to
the server the results of their local computation. In this way
devices send to the central server only local model updates
instead of raw data [5], [6], realizing a cooperative training
for a group of users, whereas the obtained model can be
exploited by any device belonging to the network [7]. Finally,
it is important to highlight the fact that devices are typically
energy constrained, hence, a FL deployment that lowers the
energy waste is of paramount importance and a main chal-
lenge here.

Despite a large part of the literature on this subject is based
on the hypothesis that once the devices have been selected
to take part to the FL framework they have unconditionally
participate to it, this cannot be longer considered now as
a practical assumption in real-world application scenarios.
In particular, from a user’s perspective, commitment of
resources and the intention to be involved in the FL process
have to be both considered.1 Within this picture, an incen-
tive mechanism is proposed here in order to induce users
to participate to the FL framework. More specifically, this
paper focuses on a 6G network in which a combined ML
and matching theory (MT) framework has been developed to
incentive users to take part in the learning process. Further-
more, a suitable users selection criteria based on the channel
conditions forecasting to all users has been proposed. Hence,
the salient contributions of the paper can be summarized as
follows

• Usage of an echo state network (ESN), located at each
user site, to forecast the channel propagation conditions,
aiming at lowering the negative impact of bad channel
propagation conditions on the FL process both in terms
of convergence time and energy wasted.

• Development of a matching game to suitably select the
devices to be involved in the FL process. In particular,
such a selection process is performed on the basis of
the channel predictions provided by the ESNs. In this
reference, it is important to point out that bad chan-
nels conditions suffered by the devices may drastically
impact the success of the FL procedure, resulting in slow
convergence time or unexpected delays. Note that, for
the best of authors’ knowledge, this is the first paper that
takes into account in the devices selection process the

1In what follows, with the aim at simplified notation, users and devices
will be used interchangeably.

quality of the 6G channel and considers the opportunity
to resort to a D2D communication mode, as an alterna-
tive, to counteract FL process degradations.

• In-depth performance analysis of the proposed frame-
work, in comparison to a vanilla approach, and to the
case where the auction-based incentive mechanism, pro-
posed in [8], has been considered as an alternative.

The rest of the paper is organized as follows. In Section II
an in-depth review of the related literature is provided.
Section III presents the system model description, while
Section IV proposes the ESN-based forecasting approach to
predict the channel conditions. Likewise, Section V deals
with the proposed matching theory approach. Performance
evaluations are presented in Section VI and, finally, our con-
clusions are drawn in Section VII.

II. RELATED WORKS
Many papers in recent literature have dealt with the FL
paradigm and highlighted its privacy advantages. Some
examples are represented by [9], [10], [11], [12], and [13].
In particular, in [9] the traffic classification problem was
addressed by proposing a secure federated transfer learning
model based on the deep learning paradigm and applying the
cross-silo horizontal technique to preserve privacy and secu-
rity. Furthermore, specific FL features were deeply analyzed
in [10], where a FL architecture was optimized, in order to
test and evaluate the effective potentials of the FL technology,
also in terms of privacy preservation. In [11] Deng et al. dis-
cussed the applicability of the blockchain technology to the
FL framework, proposing a trading platform in which users
are able to sell the personal data and the local computation
resources. In particular, authors in [11] provided a framework
demonstration taking into account the users authenticity ver-
ification, consistency of the model updates, and support to
scale the distributed applications. Paper [12] investigates the
application of the federated learning to blockchains, aiming at
minimizing the network load. Then, the resources-awareness
was the subject discussed in [13], where the devices resources
availability was considered, together with the users activities
monitoring, in order to perform FL on the basis of the realistic
world setting.Moreover, paper [13] proposed a discard policy
to exclude the untrustworthy users from the batch of users tak-
ing part to the learning process, whenever an incorrect model
was injected by users. The FL was also applied in [14] to
support the training needed to handle mobile reconfigurable
intelligent surfaces (RISs) and the users power allocation,
aiming at improving channel quality, spectrum efficiency and
users data rate. Non-orthogonal multiple access techniques
were exploited, and a deep-reinforcement learning strategy
was applied to optimize the performance. Differently, in [15]
the focus was on a hybrid learning environment, considering
both the centralized and the FL paradigms, in order to use the
most suitable learning modalities on the basis of the context.
Furthermore, in [16], a suitable formulation in terms of an
integer linear programming problem was proposed to mini-
mize social cost. In particular, it was highlighted in [16] that
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the corresponding complexity results to be NP-hard. Then,
a proper discipline was proposed in [16] to decide the devices
participating to the FL process, as well as how to schedule the
participation of winners and the number of global iterations.
The authors in [17] considered an edge computing scenario
arranged to support tasks offloading. Moreover, the FL was
applied to forecast the execution time of the edge server in
the asymmetrical information environment considered, on the
basis of which the delay energy product metric was optimized
performing proper offloading strategies. The problem of the
incentive users considering their contributions was addressed
in [18], where authors developed a framework based on the
Gale-Shapley value to allocate proper incentives to partici-
pants. Once participants contributions have been measured,
a users’ reputation-driven reward allocation policy starts to
distribute the incentive budget.

In [19] authors considered a multiaccess edge computing
environment, in which the problem of the optimal task-device
assignment in FL was addressed by resorting to a matching
game with incomplete preferences, aiming at minimizing
the resources cost. Similarly, paper [8] designed an auction
mechanism tomaximize the social welfare through the proper
devices selection to be involved in the FL process. The
strategy proposed is able to guarantee truthfulness, individ-
ual rationality and efficiency, also in terms of energy cost.
Authors in [20] developed an incentive mechanism for the
FL process to motivate edge nodes to take part in the model
training. The incentive mechanism proposed is based on the
exploitation of the deep reinforcement learning to identify the
optimal pricing strategy for both the server and edge nodes.
Paper [21] presented a privacy-preserving FL framework to
realize mobile crowdsensing, in which cooperative game the-
ory was applied tomodel the users marginal contributions and
to design an incentive mechanism. Then, in [22], a matching
theory based approachwas proposed to select devices in order
to minimize both the overall training time and the energy
consumption, aiming at simultaneously identify unreliable
devices, and integrating a reputation metric to guarantee reli-
ability and trustworthiness.

Different from previous literature, this paper deals with an
incentive mechanism without assuming ideal channel con-
ditions. In fact, an ESN located on each device has been
integrated in order to properly forecast the channel qual-
ity, integrating the possibility to perform device-to-device
(D2D) communications when adverse channel conditions
occur.

III. SYSTEM MODEL
As reference scenario, we consider a network having connec-
tivity compliant to the 6G technology at the THz frequencies
by means of a small base station (SBS). Then, we have
considered a set M of devices all able to be linked to the
SBS and the presence of an aggregator A, i.e., a central unit
responsible for merging, interpreting or storing the data stem-
ming from the network.Without loss of generality, to simplify
the discussion, in this paperA coincides with the SBS, and it

FIGURE 1. FL system model.

is assumed thatA has a computational module equipped with
a central processing unit (CPU) [23].

A. FEDERATED LEARNING MODELS
As illustrated in Figure 1, the FL process, according to [24],
[25], performs the training phase at the edge devices level.
In particular, the FL process is iterative and articulated in
global epochs, each of which consists of the following phases:
1) local computation; 2) model exchange; 3) central com-
putation. During the first step, devices perform the local
data training on the basis of a shared model download from
A. Each device i, belonging to the set N = {1, . . . ,N },
with N ⊂ M, involved in the FL process has a dataset
of individual data denoted with Di, typically derived from
the application usage of user i (for example the response
time of the device applications [26]). For each sample j in
Di, the objective is to find a model parameter w able to
minimize the loss function Lj(w). Therefore, each device i has
to solve the following minimization problem [26]

min
w

Li(w) =
1
|Di|

∑
j∈Di

Lj(w), (1)

Hence, the corresponding learning model results to be the
minimization of the following global loss function

min
w∈Re

L(w) =
N∑
i=1

|Di|∑N
i=1 |Di|

Li(w), (2)

where e denotes the input size. Consequently, during each
local computation round t of the FL framework, the device
i solve the local problem [26]

w(t)
i = argmin

wi∈Re
Fi(wi|w(t−1),∇L(t−1)), (3)

where Fi is the objective of user i, w(t−1) is the global
parameter produced during the previous iteration, and L(t−1)

is the global loss function at time (t − 1). Once completing
the local model training, each device i uploadswti toA during
the second step, in which A receives the devices weights.

VOLUME 11, 2023 109



R. Fantacci, B. Picano: D2D-Aided FL Scheme With Incentive Mechanism in 6G Networks

On the other side, A possesses the global model that, during
the step 3), is improved by performing the weighted average
of the local updates wti previously uploaded by devices.
Therefore, in phase 3),A aggregates the received informa-

tion and performs the following computations

w(t+1)
=

1
N

N∑
i=1

w(t)
i , (4)

and

∇L(t+1)
=

1
N

N∑
i=1

∇L(t)
i , (5)

Then, the iterative scheme is repeated, until a desired accu-
racy or the maximum number of iterations is achieved.
Finally, it is important to stress that, due to its distributed
nature, the FL process presents several advantages in terms of
device privacy since local training is performed exclusively at
the devices site.

B. COMPUTATION AND COMMUNICATION MODELS
In our case, considering each device i equipped with a CPU
having working frequency fi, given in number of CPU cycles
per unit time, we have that the total computational capacity of
device i results to be fi. Furthermore, let λi be the percentage
of occupied processing capacity,2 we have that the available
processing capacity results to be (1−λi)fi as in [7]. Likewise,
the time spent by the device i to perform the local model
computation results in

ti = log
(
1
εi

)
(1− λi)fiDi, (6)

in which log
(

1
εi

)
represents the number of local iterations

needed to achieve the local accuracy εi that device i can
provide [7], [19].

Consequently, denoting with pi the power consumption of
the i-th CPU, the associated energy consumption is

Eti = pi log
(
1
εi

)
(1− λi)fiDi = piti. (7)

Due to the local parameters uploading and to the global
parameter broadcasting, communication cost has to be con-
sidered. Nevertheless, the uplink channel from the devices to
A is exploited to transmit local parameters, in the downlink
channel the global FL model is sent. In this paper, as in [8],
we exclusively consider the uplink channel due to the rela-
tion of the uplink with the cost that user experiences during
learning a global model. Moreover, we assume that each user
has an individual access opportunity to the linked SBS (i.e.,
A) with a negligible interference with all the others. Hence,
in accordance with [4], [27], and [28], we have assumed an

2λi represents the computational capacity occupied by background pro-
cesses or other activities such as the ESN described in the next section.

equal transmission power P for all user and an equal data rate
towards A given by:

RA =W log2

(
1+ SNRt

)
(8)

where SNRt denotes the lowest signal-to-noise ratio at the
SBS site that assures a reliable data detection. Due to the high
susceptibility of the THz channels to blockage phenomena,
molecular absorption effects, and communication range, the
quality of the communication channel conditions may have
deep variations over time. As a consequence, we have here
that whenever the instantaneous SNR at the SBS site falls
below the SNRt a reliable data detection is denied. Within
this picture, it will be highlighted later that the prediction
of the communication channel conditions represents a useful
tool to optimize the FL framework, lowering the possibility
of data transmission failures due to communication channel
conditions impairment.

Differently from previous solutions, in our case, when-
ever bad channel conditions are foreseen by the local ESN
(Sec.IV), the interested user i activates a D2D link towards an
appropriate neighboring device properly selected as outlined
in Sec. V-B using the same channel assigned to i to commu-
nicate withA. Moreover, a power level PD is used in order to
allow a D2D data rate equal3 to RA.

Consequently, denoting with vi the local parameter size
expressed in bits for user i, each communication round
exhibits a cost in time defined as

τi =
vi
RA

(xA + 2(1− xA)) (9)

in which xA is a binary variable equal to 1 if device i uses
the direct link toward the aggregatorA, i.e., the cellular link,
zero otherwise. From (9) follows that the energy consumption
needed to transmit vi is

Eτi = P
vi
RA

xA +
(
PD

vi
RA
+ P

vi
RA

)
(1− xA), (10)

where P is the power transmitted by users. Note that, without
loss of generality, we assumed the same power P for all users.
Therefore, considering the i-th device, the total amount of
time spent in deriving the local updating vi and to send out
it to A, results in

Ti = ti + τi. (11)

Likewise, the overall energy consumption is given by

ETi = Eti + Eτi . (12)

C. USERS’ REVENUE MODEL
From the aggregator point of view, in order to incentive users
in taking part in the training process, a payment mechanism
has to be included, aiming at encouraging the users involve-
ment. To this regard, a concrete application example can be
represented by the Google Keyboard [8]. Massive local data

3In order to simplify the discussion of the problem, we have assumed the
same data rate for both the direct device to A and D2D communications.
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are generated by users interacting with the keyboard app on
their smartphones. Considering the Google server perspec-
tive, training a next-word prediction model based on users’
data can be desirable. Consequently, the server can encourage
the users’ participation through advertisement pop-ups in the
corresponding mobile phone app. When the user manifests
an interest in the learning project sponsored by the Google
Keyboard, the app will display an interface to submit the
corresponding parameter and calculate the expected utility.
Then, if the user confirms her/his interest in taking part in the
project, she/he will download the dedicated app and a par-
ticipation application will be submitted. Once the aggregator
receives all proposals in a certain time, the aggregator will
start the selection of the devices and then the training process
by broadcasting an initial global model to all the winning
users. After finishing the model training project, the aggre-
gator will give users rewards (e.g., money) based on the bid
it wins.

In this reference, we have assume here that each device i
has a given cost χi which varies on the basis of the availability
of its hardware resources as the accuracy provided4

χi = Kti, (13)

in which K is the parameter which rules the amount of
the user cost, that is the same for all the participants. As a
consequence, the overall cost that aggregator A has to pay is∑

i χi. From the other hand, each user has a cost µi = Eti ,
in taking part to the process, which implies that the utility of
user i is

ζi =

(
δχi − µi

)
. (14)

Therefore, the corresponding overall utility is given by

U =
N∑
i=1

ζibi, (15)

where bi = 1 if user i is selected to take part in the FL
framework, zero otherwise. In addition, δ (J/sec) is a weight
modeling an additional energy cost as in [26].

D. PROBLEM FORMULATION
The optimization of the FL framework, is a multi-objective
problem. In fact, if on the one hand the minimization of
the mean time spent to converge,5 i.e., the time needed to
complete the model training, is crucial, also the maximization
of the mean users’ satisfaction in participating to the FL
process is equally important, as discussed in [26]. Therefore,
a proper trade-off between the convergence time and the
users’ satisfaction in participating to the FL process, must

4From a theoretical perspective, a more accurate functional cost may
include the quality and the type of the channel exploited. In authors’ opinion,
this a priori knowledge is not a reasonable hypothesis considering practical
applications.

5Note that byminimizing the convergence time, even the energy consump-
tion is indirectly lowered due to the energy saving in both transmission and
computation.

FIGURE 2. ESN architecture.

be guaranteed in order to properly perform the FL process.
Therefore, the optimization problem under consideration has
to jointly reach the following two objectives:

• minimization of the overall convergence time;
• maximization of the overall users’ utility.

In formal terms, we have

min
0,X

1
N

N∑
i=1

Ti AND max
0,X

1
N
U (16)

s.t.
∑
i

χibi ≤ BA, (17)

N+1∑
j=1

xi,j = 1, ∀i ∈ N (18)

N∑
i=1

γi ≤ N , (19)

in which 0 ∈ {0, 1}N is the vector whose generic element
is1 if device i participates to the FL process, zero otherwise.
Then, matrix X ∈ {0, 1}N×N+1 represents the link selection
matrix. Considering i, j ∈ {1, . . . ,N }, i 6= j, we have that
the xi,j element of X is equal to 1 when device i exploits the
D2D interface to transmit towards the device j, or to zero,
otherwise. In particular, we have xi,N+1 = 1 whenever the
device i communicates towards A throughout the direct link,
hence, xi,N+1 = 1 means xA = 1 in (10) and (9). Further-
more, constraint (17) imposes that the overall cost payed by
aggregator cannot exceed a given maximum available value
BA. Similarly, constraint (18) points out that each user can
enable only one communication interface, i.e., a direct link
or a D2D interface. Finally, (19) denotes that the maximum
number of users involved in the FL framework cannot exceed
the actual number of users in the network.

IV. ECHO STATE NETWORK FOR CHANNEL FORECASTING
The power of the ESN resides in the fact that it represents an
instance of the Reservoir Computing concept, inheriting the
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FIGURE 3. Devices selection flow.

benefits of recurrent neural network (RNN), such as the abil-
ity in processing inputs exhibiting time dependencies [29],
without incurring in the typical problems affecting the train-
ing of RNNs, as the vanishing gradient issue, for example.
Therefore, due to the low-complexity nature of the ESN, its
implementation on board of devices belonging toM does not
impact drastically the corresponding devices battery lifetime.
In this paper, we have considered the impact of the ESN on
the overall device activity as included in the percentage of
occupied processing capacity expressed by λi. More in detail,
as represented in Figure 2, the salient components of the ESN
is given by the following four crucial aspects [29]
• neurons randomly connected;
• sparse connection links;
• large number of neurons;
• low in energy and time demand.

In accordance to [29], the ESN consists of three components:
the input weight matrix I , the reservoir weight matrix R, and
the output weight matrix W . We denote with xq×1 the input
vector, assuming as reservoir weight matrix updating rule the
following equation [29]

us×1(q) = tanh(Ws×q
in xq×1(q)+Ws×1

r (q− 1)), (20)

in which us×1 represents a vector of internal units in the reser-
voir part, and Ws×q

in is the weights matrix associated to the
connections existing between the input layer and the reservoir
level. Then, theWs×1

u (q− 1) is the recurrent weights matrix.
Denoting with v(q) the output vector and Wq×s

out the weight
matrix associated to the connection between the reservoir and
the output layer, the relationship between the reservoir and the
output level can be described as

v(q) =Wq×s
out u

s×1(q). (21)

Consequently, the ESN acts exploiting the historical channel
samples I , to forecast the upcoming channel condition for
each device i ∈ N . Due to the temporal correlations between
consecutive samples, the ESN may represent a significantly
useful tool to predict channel conditions, due to its ability in
catching temporal relationship among samples.

V. MATCHING THEORY FOR DEVICES SELECTION
Matching theory (MT) is a powerful mathematical technique
to match together elements belonging to two opposite sets,
taking into consideration, during the assignment process, the
satisfaction of each participant in being matched to each
element of the opposite set and vice-versa, giving rise to
an effective trade-off between the preferences exhibited by
elements. In addition, another key advantage of the MT is
its distributed nature, due to the fact that the matching pro-
cess exclusively consider local utility metrics on the basis
of which the individual preferences are built. Consequently,
MT algorithms represent a valuable approach for distributed
scenarios, such as the environment object of the analysis of
this paper.

A. DEVICES SELECTION
At the beginning of the proposed FL framework all the
devices belonging to M send to A the channel predictions
acquired by means of the local ESN as detailed below. Let
Eh,i be the set of predicted channel state information coeffi-
cients considering as time horizon the instant h, i.e., Eh,i =
{e1,i, . . . , eh,i}, in which ey,i is a binary term related to the y-
th forecast sample ahead from the end of the training set used
by the ESN on device i at the step y, assuming the value 1 if
the foreseen SNR at the SBS site is greater or equal to SNRt
or 0, otherwise. As illustrated in Figure 4, for each device
i, Eh,i is sent to A. Then, a threshold mechanism is applied
to determine the number of times, before h, in which the
channel has good state conditions. Such a counting procedure
is articulated as follows. In formal terms, for each device
i ∈M, A creates the following set

Bi,h = {ey,i ∈ Eh,i|ey,i = 1}. (22)

Then, devices are collected and sorted in list 1, according to
the number of ones belonging to sets Bi,h, ∀ device i ∈ M.
At this point the one-side matching game algorithm [30] is
applied between the set of devicesM, and the aggregatorA,
in order to select devices for the FL process advantageous
for all the players belonging to M and for A [30], [31].
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FIGURE 4. Devices selection scheme.

In this paper the preference lists ofA overM represents the
utility of the system in accepting the users for the federated
training, considering also the users revenue. Therefore, theA
preference list is build considering the following metric

HA(i) = ζi

(
N − rank(i,1)

)
, (23)

for all device i belonging to M, where rank(i,1) is the
position of i in list1. Consequently, themost preferred device
i∗ is given by

i∗ = argmax
i∈M

HA(i). (24)

The corresponding preference list is built sorting the devices
in descending order on the basis of the HA(i) value, ∀i ∈M.
Then, scrolling the preference list top-down,A accepts all the
device until BA is not zero.
Summarizing, as also reported in Figure 3, the algorithm

steps are the follows:

1) Each device i ∈M performs the prediction of the chan-
nel state information (CSI) of the direct link towards the
aggregator, h steps ahead, exploiting the local ESN and
sends this information to A. The set Ei,h is created;

2) For each user i∈M,A creates the setsBi,h, and creates
the list 1 sorting the Bi,h sets in descending order on
the basis of their cardinality;

3) A builds its preference list;
4) A selects the most preferred device i∗ from its prefer-

ence list to take part in the FL process;
5) A pays χi∗ to device i∗;
6) Update the available resources of A: BA −

∑
i χibi;

7) Delete i∗ from the preference list;
8) Repeat steps 5)-8) until BA −

∑
i χibi ≥ bi∗ and there

exists at least one device unselected.

Finally, to discuss the stability issue of the proposedmatching
approach, it is useful to refer to the following definition of the
matching game stability:

Definition 1: Amatching is stable when there is no player
having incentive to deviate from the assignment to which it
belongs to.

Moreover, we have to take into account that we have
formulated here a one-sided matching game [30] between
M and A. As a consequence, as it is well-known from
the literature [30], since the preference lists do not change
during algorithm execution and the matching game is a one-
sided matching, the final matching configuration has to be
necessarily stable.

B. COOPERATIVE D2D DEVICE SELECTION
Two cooperative D2D device selection procedures are pre-
sented below. As working hypothesis we have assumed that
the number of devices selected to participate in the FL process
is always lower than the total number of available devices.
However, the special case of a number of selected devices
equal to the overall available devices has been considered in
deriving our simulation results in order to take into account
its impact on the global FL delay and energy consumption.
• Ideal D2D selection scheme: Once the devices selection
has been performed, A communicates to the selected
devices their involvement in the FL process by a beacon
signal that marks the start of the FL process. Succes-
sively, at the beginning of each FL round each involved
device acquires an updated foreseen of the channel prop-
agation condition towardsA by the local ESN at the end
of the current FL processing round.Whenever a bad con-
dition is detected, the device starts the device discovery
procedure searching among its nearby devices that one
not involved in the FL process with no bad propagation
conditions towardsA. Hence, the interested device starts
a D2D communication to the selected device by making
use of the channel allocated for communications to A.
The selected device in its turn sends the received update
to the A on the same channel. In this way, no additional
channel allocation by the SBS is needed and D2D inter-
ferences are avoided. If for a given device, suffering of
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bad propagation conditions, the device discovery proce-
dure fails, i.e., no nearby device (if any) is able to support
a D2D communication phase, the interested device skips
the training step and, as a consequence, to transmit its
update toA, hence, avoiding an energy waste. Needless
to say that this D2D selection scheme is ideal for obvious
reasons that we avoid to discuss in detail here. However,
it is also evident that it represents an ideal upper bound
for the performance of the considered FL approach and,
as a consequence, it will be considered as a benchmark
in what follows.

• SBS-Assisted D2D selection scheme: differently form
the previous ideal scheme, in which the D2D selection is
performed runtime by each interested device during the
FL execution, this procedure provides an a priori device
selection performed by A after selection of the devices
involved in the FL framework. In accordance with the
proposed scheme, each device in M sends to A its set
Eh,i and its location information. After completion of the
matching game to select the devices taking part the FL
(named hereafter as FL selected devices), as detailed in
Section V-A, A searches for each FL selected device
the nearest device not involved in the FL process as
cooperatingD2Dhost, to be exploited in case of foreseen
bad quality conditions at the end of a FL round. In this
case the beacon signal that marks the beginning of the
FL process, in addition to the notification concerning
the involvement of the FL selected devices in the FL
process, carries also information about the possibility for
each selected device to activate the D2D procedure and,
in the positive case, the identification of the most suit-
able nearby device. Moreover, through the beacon signal
all the devices selected to support D2D communications
with the FL selected devices are informed about their
their task and on the communication channel to be used
for both the D2D communications and to send to A the
received updated model information. It is important to
note that each device can be elected as cooperating D2D
host only for a FL selected device.6Moreover, in the case
that no cooperating D2D hosts was found for a given
FL selected device, the D2D procedure for that device
is denied and the training step as well the update trans-
mission to A are skipped, in order to prevent an energy
waste. As for the ideal D2D selection scheme outlined
before, the D2D as well as the next selected cooperative
device toA data updated transmission are performed on
the same channel allocated to the interested FL involved
device.

C. SUMMARY OF THE PROPOSED SOLUTION
The aim of this subsection is to retrace the main steps of the
framework proposed, in order to reach a devices selection
procedure for the FL framework able to optimize the problem

6In the case of a multiple selection as D2D host by more than one device
involved in the FL process the choice is random.

FIGURE 5. CSI MSE values as a function of the prediction horizon h, i.e.,
the time on which the prediction occurs.

formulated in (16)-(19), considering the case of a 6G net-
work connectivity. Therefore, due to the high susceptibility of
the 6G channels to the surrounding environment, the ESNs,
available at each device site, are exploited to forecast the
communication channel conditions, by considering as fore-
casting horizon the period of time expected to complete the
FL process. Then, on the basis of predictions performed, and
considering the maximization of the system utility given in
(15) and exploited in (23), the devices selection is performed.
Specifically, the devices selection is realized through the for-
mulation of a matching game between the set of devices and
A. In fact,A selects the most preferred devices on the basis of
(23) and updates the associated available resources (see step
6 of devices selection algorithm). Once the devices taking
part in the FL process have been identified, the possibility to
use D2D communications instead of direct communication
is considered by each of them whenever on some slot bad
direct channel conditions are foreseen by the local ESN with
the main aim at avoiding energy waste in failure updating
parameters transmissions and do not worsen the FL process
convergence time.

VI. PERFORMANCE ANALYSIS
In this section we evaluate the performance of the proposed
solution by resorting to extensive computer simulations, and
Tensorflow environment. In addition to this, performance
comparisons with the vanilla version of the FL as baseline
alternative, is also provided to highlight the advantages of
the proposed approach. More specifically, in the considered
vanilla FL scheme, devices selection follows a random-batch
based policy [26]. Furthermore, any mechanism to incentive
and select devices is not provided as well as the possibility to
resort to the D2D mode. In order to accurately investigate the
system behavior, we have considering different values for the
number of devices, number of iterations, and time horizon
h. Then, we have assumed P = 600mW , PD = 200 mW,
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FIGURE 6. Global FL delay as a function of the number of iterations.

FIGURE 7. FL Model accuracy as a function of the number of iterations.

W = 13GHz, K (φ) = 0.0016m−1, vapor water percentage
equal to 1%, a carrier frequency equal to 1 THz as in [4], while
a range for discovering nearby devices equal to 3.86 m has
been considered in order to allowD2D communications at the
same rate of the direct link. Furthermore, εi = 0.1, the size of
the local model parameter vi, has been set to 5 MB and equal
for all the devices belonging to M, whereas the amount of
data for each device has been set asDi = 1000MB according
to [19]. Likewise, as in [19], the CPU frequency has been
randomly selected within the interval [10, 20] MHz. With the
aim at testing the accuracy of the ESN used in the paper for
the channel prediction, the mean squared error (MSE), given
below, has been adopted as error measure

MSE =
1
|Ei,h|

|Ei,h|∑
η=1

(ι̂Ei,h − ιEi,h )
2 (25)

In (25) ι̂Ei,h and ιEi,h are the predicted and the actual value,
respectively. In addition, in order to test the ESN accuracy,

FIGURE 8. System energy consumption as a function of the transmission
power.

FIGURE 9. Revenue as a function of the number of devices.

we have resorted to actual 6G channel data measurements
released by [32].

To this regards, Figure 5 shows the accuracy behavior of
the CSI predictions provided by the considered ESN in terms
of resulting MSE values, given by (25), as a function of
the prediction time horizon h. As it can be easily to note
in this figure, as the time horizon grows, the resulting MSE
values get worse, i.e., the MSE values increase. This is an
expected trend due to the intrinsic complexity of predicting
long-term time series behavior. However, we highlight that
the achieved MSE values remain relatively low, even when
h is high. Figure 6 shows the global convergence time of
the proposed D2D-aided FL scheme as a function of the
iterations number, by considering, as alternatives, the two
D2D selection strategies outlined in Sec.V-B and assuming
a number of selected FL devices equal to the overall num-
ber of devices. In the same Figure the convergence time
of the considered vanilla version of the FL process is also
reported for comparison purposes. As expected, the use of
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FIGURE 10. Revenue as a function of the number of devices.

the ideal D2D selection scheme in the proposed FL approach
reaches better performance (upper bound) in comparison to
the SBS-assisted D2D selection scheme alternative. How-
ever, it is important to stress that the performance achieved
by the SBS-assisted D2D selection scheme are close to the
upper bound, thus certifying it as an efficient viable solution
for actual applications. Figure 6 validates the effectiveness of
integrating an incentive mechanism to boost the FL perfor-
mance in terms of global FL delay, i.e., the overall time spent
to complete the model training. Likewise, Figure 7, shows
that the FL model accuracy reaches higher values adopting
the proposed framework, in comparison to the vanilla alter-
native. It is evident in this figure, that the FL model accuracy
increases as the number of iterations grows. This is valid for
both the considered schemes, under the assumption of same
communications opportunity, due to the fact that in each of
them the learning process takes advantage by an increased
number of iterations. Note that the number of iterations rep-
resents the number of learning iterations required to reach
a desired level of accuracy. Furthermore, at the benefit of
the completeness of our analysis, Figure 8 illustrates the
advantages of the proposed solution also in term of energy
consumption. In particular, this Figure represents the system
energy consumption as a function of the power level used in
transmission by the FL selected devices to communicate with
the aggregator. It straightforward to note in this Figure that,
by increasing the power used in transmission, the energy
consumption grows. Despite this, the advantages in terms of
energy consumption of the proposed scheme in comparison
to the vanilla alternative are clearly evident in Figure 8. The
functional integration of a proper devices incentive mecha-
nism in the proposed D2D-aided FL scheme is highlighted
by the following Figures. Whit reference to this, Figure 9
depicts the revenue trend as a function of the number of
devices. Again, the proposed framework clearly outperforms
the vanilla scheme. In fact, the curves behavior highlight the
effectiveness of both the incentive and the selection strategy
to improve the federated learning performance. For the sake

of completeness of our analysis, Figure 10 illustrates the
revenue reached by the proposed framework in comparison
with the scheme in which the vanilla FL is applied and an
auction-based incentivemechanism as in [8] is used. Note that
the incentive mechanism proposed in [8] has been properly
modified to be adapted to the scenario considered in this
paper. Specifically, we have bypassed the transmission power
selection strategy that is out of the scope of this paper, and
we have considered as auction bids the users utility. Then,
in compliance with [8], we have applied the well-known
Vickrey-Clarke-Groves market mechanism. As it is evident
to note, the proposed framework outperforms the strategy
presented in [8], confirming once again the validity of the
scheme proposed. In conclusion, we can state that the pre-
sented results has clearly validate the proposed D2D-aided
FL scheme as an efficient approach to enable an effective
FL models integration in the new AI-empowered generation
networks.

VII. CONCLUSION
This paper has addressed the problem of devices selection
with incentive in a D2D-aided FL scheme for applications
in 6G based networks. Within this perspective, the paper
demonstrates the advantages of a joint application of ML and
MT approaches in a proper FL framework where users have
the possibility to forecast the channel communication condi-
tions towards the aggregator by mean of a local ESN. On the
basis of the predictions about the channel state, whenever
bad propagation conditions are detected, users can resort to
the cooperation of a nearby device (if any) activating a D2D
communication to send the local update to the aggregator.
Simulation results have been provided to highlight the advan-
tages of the proposed D2D-aided FL scheme with incentive
mechanism in a 6G environment in comparison with a vanilla
alternate in terms of a lower global FL delay and energy
consumption.
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