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ABSTRACT As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers
study recommender systems that take advantage of interaction data to keep students interested and boost their
performance. In a typical roadmap, courses and videos are recommended using a graph model, but this does
not take into account the user’s learning needs with some particular subjects. However, all existing graph
models degrade performances either by ignoring the data sparsity issue caused by a large number of concepts,
which may lead to biased recommendations, or by constructing improper contrasting pairs, which may
result in graph noise. To overcome both challenges, we propose a gRaph cOntrastive Multi-view framEwork
(ROME) from hyperbolic angular space to learn user and concept representations based on user-user and
concept-concept relationships. The first step is to use hyperbolic and Euclidean space representations as
different views of graph and maximize the mutual information between them. Furthermore, we maximize
the angular decision margin in graph contrastive training objects to enhance pairwise discriminative power.
Our experiments on a large-scale real-world MOOC dataset show that the proposed approach outperforms
several baselines and state-of-the-art methods for predicting and recommending concepts of interest to users.

INDEX TERMS Recommender system, graph contrastive learning, manifold learning.

I. INTRODUCTION
In recent years, deep neural networks have been widely
applied to recommendation systems, especially the graph
neural networks (GNNs) in recent [1], [2], [3], [4]. As for
online education, recommendation systems based on GNNs
that recommend courses or videos to users have also been
studied and deployed to keep users’ interest in MOOCs.
The overall graph relationship is shown in Figure 1.
Nevertheless, recommending courses and videos on a wide
range of knowledge concepts ignores user interests and
the learning needs associated with some specific knowl-
edge concepts. Therefore, increasing attention has been
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paid to recommending knowledge concepts of interest to
users [5], [6].

Traditional graph recommender systems only consider the
simple user-concept interaction data to predict or recommend
the concepts of the user interest. Typically, a collaborative
filtering system [7], [8] learns user interest and estimates
preferences from collected user behavior data, which is
a popular framework for building recommender systems.
Despite their intuitive nature and excellent explanation, these
methods cannot effectively deal with graph relationship,
resulting in a unpromising effect. Another famous road-map
is to utilize the matrix factorization, which can relieve the
sparsity to some extent. This kind of methods obtains the
implicit vectors of users and courses on the basis of co-
occurrence matrix [8], [9], [10]. A predicted score and a
list of recommended courses are calculated from the implicit
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FIGURE 1. An example of the heterogeneity in MOOCs. MOOCs have different types of entities and relationships between them. Each dashed circle
portrays an identity of a course with many concepts. And each rectangle represents an online video. In the case of student A, the concept is of interest
if the student has previously learned it or will learn it in the near future.

vectors when recommending courses to users. Users, courses,
and contexts cannot be easily added, so additional valid
information can’t be changed.

Recently, GNNs have been proposed to solve the draw-
backs of the traditional recommender systems and the
performance of the recommendation system is greatly
improved. Although these methods usually achieve state-
of-the-art recommendation performance, there still exist
some deficiencies that can be improved. Firstly, the spar-
sity problem of user-concept interactions. As it is shown
in [5], it assumes that the relationship on MOOCs platform
corresponds to a homogeneous graph that can be used to
learn the representations of the users and the concepts
with respect to the chosen path, as a result, traditional
GNNs can be implemented on the graph to learn the
representations/embeddings of users and concepts. As there
are a high number of resources and increasing variety of
data, as well as an equally high number of knowledge
concepts in existence, the data sparsity problem degrades the
performance inevitably.

Secondly, over-fitting on the noise injected into the
graph view. In the vanilla recommender system community,
the recent state-of-the-art attempts have been made to
use contrastive learning in order to solve the sparsity
problem related to the user-item data [11]. It optimizes the
contrastive loss InfoNCE [12] to learn more uniform user-
item representations, which discards the graph augmentations
and instead adds uniform noises to the embedding space
for creating contrastive views. This operation indeed avoids
the challenges on the construction of proper contrasting
pair. However, noise injection inevitably causes over-fitting
on the graph topology relationship, which interferes with
the learning performance of the recommender system.
Different from the existing recommender system methods,
we abandon the noisy contrastive pair construction and

utilize the representation from dual spaces as the contrastive
expressiveness to boost the performance.

In this paper, to remedy above issues, we propose a gRaph
cOntrastiveMulti-view framEwork (ROME) from hyperbolic
angular space to learn user and concept representations based
on user-user and concept-concept relationships. In order to
address both the sparsity problem of user-concept interactions
as well as the noise generation issue, we propose to
implement the graph representation on hyperbolic space,
based on the recent progression of geometric graph mining
in hyperbolic spaces [13], [14]. And our graph contrastive
targets maps the representations to the angular space for more
discriminative ability. As a multi-view framework, using
a hyperbolic view and an Euclidean view as embedding
spaces, we generate multiple views of the input graph
by taking advantage of their greater expressiveness. The
hyperbolic space has two major advantages. First, hyperbolic
embeddings have greater expressiveness than their Euclidean
counterparts, since hyperbolic spaces require less space to
accommodate graphs with complex structures. Hyperbolic
space expands exponentially in contrast to Euclidean space,
which expands polynomially. This will lead to purer, com-
pact, but powerful embedding spaces if we combine it with
much lower dimensional embeddings. Second, hyperbolic
space is more suitable for capturing hierarchical structures in
graph data, which makes hyperbolic space suitable for graph
contrastive learning paradigms as a special view.

Furthermore, we propose an approach to enhance pairwise
discrimination power by maximising the decision margin
for the contrastive learning target in the angular space.
It is well known that most of the targets focus only on
constructing positive and negative representation pairs and
are not concerned with the training objective, such as
NT-Xent [15], [16], which is not sufficient for achieving
discrimination and cannot handle partial semantic ordering.
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According to our experiments using the real-world MOOCs
dataset, our proposed approach outperforms several baselines
and existing methods for predicting and recommending
concepts of interest to users. The main contribution of this
paper is summarized as follows:

• Wepropose a novel graph contrastivemulti-view Frame-
work from hyperbolic angular space named ROME for
MOOCs recommendation.

• Our ROME firstly uses hyperbolic and Euclidean
space representations as different views of graph and
maximize the mutual information between them. Fur-
thermore, we maximize the angular decision margin in
graph contrastive training objects to enhance pairwise
discriminative power.

• Extensive experiments on the large-scale real-world
MOOC datasets fully validate the effectiveness of our
ROME beyond existing baselines for predicting and
recommending concepts of interest to users.

The remaining part of this study is structured as follows:
Section II introduces the relatedwork on the graph contrastive
learning and the recommender system. Section III covers
the background knowledge of this study. Section IV is the
key part of our research method ROME with its details.
Section V shows the performance evaluation of the proposed
ROME, including the experimental setting, data description,
model comparison and discussion. Section VI summarizes
the experimental results and provides appropriate suggestions
for future research content.

II. RELATED WORK
A. GRAPH CONTRASTIVE LEARNING
As for contrastive learning in graph-related tasks, it works in
a self-supervised manner [17] and it is inherently a possible
solution to the data sparsity issue in recommender systems,
especially with the development of GNNs [18]. DGI’s [19]
and InfoGraph’s [20] are among the early works that apply
the concept of local-global contrastive objectives [21] to
node and graph representation learning by contrasting pairs
of node/graph elements. After that, MVGRL [22] is used
to generate views of the original graph by utilizing fixed
diffusion operations such as heat kernels [23] and Personal
PageRank [24]. As a result of adopting the local-global
contrastive objective, the MVGRL achieves state-of-the-art
performance both on the node classification task as well
as on the graph classification task. Inspired by MoCo,
GCC [25] generates node views through sub-graph sampling
with random walks, where the different sub-graphs are
taken as negatives. However, all of the methods above are
confused by constructing high-quality contrastive pairs in
graph.

B. GRAPH-BASED RECOMMENDATION SYSTEM
Generally, recommender systems are designed to predict
whether a user will interact with an item, for example,
by clicking on it, rating it, or purchasing it. As such,

collaborative filtering (CF), which focuses on exploiting the
past user-item interactions to achieve the prediction, remains
to be a fundamental task towards effective personalized
recommendation [26], [27], [28]. With the development
of GNNs, the powerful representation ability of graph
topology boosts the development of recommender. Our
work is inspired by several recent efforts that provide deep
insights into GNNs. Specifically, [29] suggests that GCN
is overcomplicated and presents the SGCN model, which
eliminates non-linearities and collapses multiple weight
matrices into one. There is a significant difference between
LightGCN [30] and SGCN, the main reason being that
they are developed for different tasks, and the rationale
for simplifying models is therefore different. LightGCN,
on the other hand, is based on collaborative filtering (CF),
where each node only has an ID feature. In terms of node
classification accuracy, SGCN is on par with (sometimes
weaker than) GCN. When it comes to the accuracy of
CF, LightGCN outperforms GCN by a considerable margin
(an improvement of over 15 percent over NGCF). Thus,
how to leverage the graph representations to boost the
recommender system attracts more and more attention in this
community.

III. PRELIMINARY
A. DEFINITION OF META-PATH
Using a set of learned concepts, course information, videos,
and other contextual information, we predict and recommend
concepts that a student might be interested in based on their
watching history. Given n users U = {u1, . . . , un} and m
concepts C = {c1, . . . , cm}, we define an implicit feedback
matrix R ∈ Rn×m with each entry ru,c = 1 if u has
learned c and ru,c = 0 otherwise following [5]. In order to
approach the problem, it may be useful to frame it in terms
of the heterogeneous graph, which is denoted as G = {V, E}
including a object set V and a link set E . Furthermore, the
heterogeneous graph is associated with a mapping function
for the object type φ : V → O and a mapping function
for the link type ψ : E → R. According to [31],
R indicates predefined types of objects and links, where
|O| + |R| > 2.

We can represent the MOOC database in our study as a
heterogeneous graph. User, concept, video, course, school,
and teacher are among the six common types of entities
in the heterogeneous graph. Those entities are also linked
together through links that describe their relationships to form
the graph. A network schema describes a network’s meta-
structure in addition to its heterogeneous graph definition as:
S = (R,O). As a result of the network schema, we are
able to extract semantic meta-paths between two entities. The
following is a formal definition of a meta-path [32]: MP is
defined on a network schema and is denoted as a path in the

form of O1
R1
−→ O2

R2
−→ . . .

Rl
−→ Ol+1. It describes a

composite relation R = R1 ∗ R2 ∗ . . . ∗ Rl between object
Ol and Ol+1, where ∗ denotes the composition operator on
relations.
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FIGURE 2. The framework of our proposed approach ROME.

B. POINCARÉ BALL MODEL
In the presence of constant negative curvature, the Poincaré
ball model resembles the Riemannian manifold (B, gBx ) [33],
where B = {x ∈ Rn

: ||x|| < 1 } is an open unit ball.
Its metric tensor is gBx = λ2xg

E , where λx = 2
1−||x||2

is the

conformal factor and gE is the Euclidean metric tensor (when
gE = In).With a constant negative curvature−c, the Poincaré
ball model has the following domain:

D = {(x1, . . . , xn) : x21 + . . .+ x
2
n <

1
c
} (1)

where x is a n-dimensional open ball in Rn. Geodesics in the
Poincaré ball correspond to straight lines in Euclidean space.
As can be seen, the hyperbolic metric tensor is conformal to
the Euclidean metric tensor. The induced distance between
two points x, y ∈ Dn is known to be given by:

dD(x, y) = cosh−1(1+ 2
||x − y||2

(1− ||x||2)(1− ||y||2)
) (2)

when the constant negative curvature is−1, where || · || is the
Euclidean norm and cosh−1 is the inverse hyperbolic cosine
function. In the Poincaré ball, there is only one center, which
is the origin. The origin is regarded as the root node, and leaf
nodes spread out layer by layer, capturing information about
the tree topology and hierarchical structure of the graph [33].

C. SPACE PROJECTION
Since hyperbolic space has a different gradient than
Euclidean space, we cannot directly apply Euclidean gradient
optimization methods to it. In other words, existing graph
representation learning methods are incompatible with graph
representation learning methods in hyperbolic space. The
hyperbolic embeddings can be mapped to Euclidean embed-
dings in order to leverage existingmethods for graph learning.
In this article, we describe the mechanism by which such
mappings operate.

There are two mappings, which are called exponential
mapping and logarithmic mapping [14], respectively. For
any point x ∈ B, the mapping from tangent space TxBc
to the hyperbolic space Bc with the constant negative

curvature −c is the exponential mapping, and the mapping
from hyperbolic space Bc to tangent space TxBc is logarith-
mic mapping. With v ∈ TxBc and u ∈ Bc, the exponential
mapping expcx : TxBc → Bc, and the logarithmic mapping
logcx : Bc→ TxBc are defined as:

expcx(v) = tanh(
√
c||v||)

v
√
c||v||

(3)

logcx(u) = artanh(
√
c||u||)

u
√
c||u||

(4)

Hyperbolic embeddings can be mapped to Euclidean space
by using the two mapping functions above. A neural network
model typically embeds data by multiplying matrixes, adding
biases, and activating the layers: h = σ (W · u + b).
Hyperbolic embeddings cannot be directly processed with
weight matrices and biases that are defined in Euclidean
space. It is necessary first to translate hyperbolic embeddings
into Euclidean embeddings in order to achieve this. For
hyperbolic matrix multiplication, we haveW ⊗u = expcx(W ·
logcx(u)). For hyperbolic bias addition, we have u ⊕ b =
expcx(log

c
x(u)+b). Thus, the final formalization can be written

as:

h = expcx(σ (log
c
x(W ⊗ u⊕ b))) (5)

In order to solve graph learning problems in hyperbolic space,
we can leverage the transformations mentioned above to
utilize the existing graph learning methods in the Euclidean
space.

IV. METHOD
In this section, we introduce our proposed approach ROME
based on meta-paths in the heterogeneous graph in the
MOOCs dataset. We utilize the graph contrastive framework
in hyperbolic and Euclidean space to model the matrix
factorization for user-user and concept-concept relationships.
The final prediction is ŷu,c, which denotes the predicted
preference score of concept c with respect to user u,
respectively. As shown in Figure 2, our approach consists of
four components, meta-path selection, graph representation,
graph contrastive learning, and recommendation prediction.
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We will discuss each component in more detail in the
following paragraphs.

A. META-PATH SELECTION
It is well known that meta-paths are capable of establishing
entity-entity relationships. Similar to previous studies
[5], [34], In this paper, we examine user-user and
concept-concept relationships in the context of different
meta-paths. To fairly compare with [5], [34], our study is
based on the same meta-paths used in that study. There are
six meta-paths used for MOOCs dataset where four paths
for users, including user → concept → user , user →
course→ user , user → video→ user , user → course→
teacher → course → user , and two for concepts including
concept → user → cpncept , and concept → course →
concept . As a result of extracting a homogeneous graph
based on users (concepts), a corresponding adjacency matrix
may be created for each meta-path in Figure 2. If two users
(concepts) are connected via a meta-path, the adjacency
matrix entry for that meta-path will be one, otherwise it will
be zero. GNNs are then used to learn user representations
(concepts) for each meta-path.

B. GRAPH REPRESENTATIONS
As part of our framework, we support two kinds of graph
representation and encode the graph structure directly using
a neural network model g(X ,A), where X is a matrix of node
feature vectors and A is the adjacency matrix derived above.
The graph encoder includes a vanilla GNN gE on the common
Euclidean space and a hyperbolic GNN gH based on the
hyperbolic space. In terms of the graph encoder, we opt for
simplicity by adopting the commonly used graph convolution
network (GCN) [35], which is capable of learning the
node representation of a graph by inspecting its neighbors.
In order to learn user (concept) representations in relation to
a meta-path, we apply the linear formulation of layer-wise
propagation rule. We initialize Z (0)

= X if each node has a
set of features, or we can initialize and learn afterward. It can
be formulated as follows:

Z (l+1)
= σ (D̃−

1
2 ÃD̃−

1
2 Z (l)W (l)) (6)

Here, Ã = A + IN is the adjacency matrix of the graph
G with added self-connections. IN is the identity matrix,
Dii =

∑
j Ãij and W

(l) is a layer-specific trainable weight
matrix.σ (·) denotes an activation function, such as the ReLU.
Z (l) is the matrix of activation in the lth layer. User (concept)
representations can be derived from the output representation
of the last layer. For example, when l = 2, the representation
in Euclidean space of a user u for a meta-path MPi will be
eMPiu , which is the output of the last layer of gE for the meta-
pathMPi with respect to u.
We can represent the embeddings in Euclidean space and

hyperbolic space for user, respectively, as follows:

eMPiu = gE (X ,A) (7)

hMPiu = expcx(gH (X ,A)) (8)

And the embeddings in Euclidean space and hyperbolic space
for concept is derived as eMPic and hMPic , respectively

As a result of their strong representative ability, graph
embeddings are crucial to the whole framework. In the
next step, we will feed these components to the following
components.

In hierarchical, taxonomic, and entailment data, hyperbolic
representations are superior to Euclidean embeddings. As a
result of the negative curvature of the embedding space,
disconnected subtrees from the latent hierarchical structure
disentangle and cluster in the embedding space. Therefore,
sufficient semantics information can be acquired from
contrasting pairs in different spaces. In order to achieve this
advantage, we propose to construct contrastive learning by
constructing pairs from different spaces. Our goal is to obtain
informative semantics from different views of the input graph
in different spaces by conducting graph contrastive learning
between Euclidean embeddings and hyperbolic embeddings.
A direct comparison of embeddings in different spaces is not
possible without mapping one of them to another space in
which a different embedding exists. For a comparison of the
Euclidean embedding to the hyperbolic embedding, we must
first translate the graph embedding in Euclidean space into
hyperbolic space using an exponential function based on
knowledge in Section III:

e→ hMPiu = expcx(h
MPi
u ) (9)

The representations are then fed into a shared projection head
f , which is an MLP with two hidden layers and PReLU non-
linearity, resulting in the final graph representations hMPiu and
e→ hMPiu for user, and hMPic and e→ hMPic for concept.

C. GRAPH CONTRASTIVE LEARNING
Objective of self-supervised learning phase is graph con-
trastive learning between graph hyperbolic embedding hMPiu

and transformed graph Euclidean embedding e→ hMPiu in
the hyperbolic space. Traditional contrastive learning is a
method of training that attempts to bring representations
with similar semantics closer together and dissimilar ones
apart. Due to the fact that these two embeddings are different
views of the same input graph, they should be similar, which
indicates that there should be a small distance between the
two embeddings. In spite of this, these representations may
not be sufficiently discriminative and not very robust to
representations in generalized spaces, such as the hyperbolic
space. Therefore, we propose to implement the contrastive
loss in the angular space with a margin to make the loss more
discriminative. Let us denote angular θij as:

θuij = arccos(
hMPiu

T
e→ h

MPj
u

||hMPiu || · ||e→ h
MPj
u ||

) (10)

The lack of decision margin can lead to incorrect decisions
when a small perturbation occurs around the decision
boundary. By adding an additive angular margin m between
contrastive pairs, we propose a new training objective for
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graph representation learning between positive pairs hMPiu and

e→ hMPiu , which can be formulated as follows:

Lucontrast = −log
ecos(θ

u
ii∗+m)/τ

ecos(θ
u
ii∗+m)/τ +

∑
j6=i e

cos(θuij )/τ
(11)

And the contrastive loss for concept is:

Lccontrast = −log
ecos(θ

c
ii∗+m)/τ

ecos(θ
c
ii∗+m)/τ +

∑
j6=i e

cos(θcij)/τ
(12)

In the loss function, the decision boundary for hMPiu is θuii∗+m.
By increasing the compactness of graph representations with
the same semantics and enlarging the discrepancy between
different semantic representations, it further pushed hMPiu
toward the area where θuii∗ gets smaller and θuij gets larger,
compared to the traditional contrastive loss. The alignment
and uniformity properties are two important measures of
representation quality related to contrastive learning, which
indicate how well the embeddings are distributed uniformly
and how close they are to positive pair embeddings. The final
contrastive loss can be formulated as:

Lcontrast = Lccontrast + Lucontrast (13)

D. RECOMMENDATION PREDICTION
We first aggregate the user features and the concepts features
in the Euclidean space of each meta-path for the final predic-
tion as follows: eu =

∑
j∈|MP| e

MPj
u , and ec =

∑
j∈|MP| e

MPj
c .

By the same token, we aggregate the features in hyperbolic
space, hu =

∑
j∈|MP| h

MPj
u , and hc =

∑
j∈|MP| h

MPj
c .

Based on the acquired representations/embeddings of the
users and concepts eu, hu, and ec, hc. By utilizing the
matrix factorization framework, it is possible to calculate the
preference score of a concept c for a user u as follows:

ŷu,c = eTu2eec + α · hTu2hhc (14)

where ŷu,c is the preference score, 2e and 2h are trainable
matrices to let user representation in the same space with
concept representation. α is a trainable parameter for the
trade-off between the prediction scores from two different
views.

For customized ranking we use the Bayesian Personalized
Ranking (BPR) [36] which is derived from a Bayesian
analysis. According to BPR, a learned concept should be
ranked higher (with a higher score) than a random one in a
list of concepts with which the user has not interacted, which
can be expressed as follows:

Lrank =
∑

u,i,j,i6=j

−ln(σ (ŷu,i − ŷu,j))+ γ ||2||2 (15)

where u, i, j refers to a triplet relationship including a user
u, an interacted concept i and an unknown concept j for the
user. An interacted concept is preferred over an unknown
concept in the former item of the loss, with σ represents
a sigmoid active function. γ is the regularization parameter

for the L2 norm, and 2 denotes the set of parameters to be
learned.

The final loss function of our proposed ROME can be
formulated as:

L = Lcontrast + βLrank (16)

where β is a coefficient for multi-task learning.

V. EXPERIMENTS
A. DATASETS AND IMPLEMENTATION
MOOCCube [37] is an open source large-scale data ware-
house that serves research related to MOOCs. In comparison
with existing databases of similar educational resources, it is
large, rich, and diverse. These records include very detailed
information about the student’s behavior. This includes the
amount of time spent learning, the number of times spent
learning, and the intervals between learning videos. A total
of nearly 5 million students recorded video viewing for
learning purposes, including nearly 200,000 students. As a
whole, the dataset consists of 2,005 users, 21,037 concepts,
600 courses, 22,403 videos, 137 schools, 138 teachers, and
their relationships. Overall, there are 930,553 interactions
between users and concepts, of which 858,072 are in the
training set and 72,481 in the test set. Table 1 presents the
overall statistics of the dataset. We selected 706 courses and
approximately 40,000 videos for processing, and we can
actually use this part of the data to model user behavior
and make recommendations in this regard. The final step in
establishing the interconnection between the entities, which
is the MOOCCube Dataset, is to connect students’ behavior
and the content of the course with knowledge.

TABLE 1. Details of the MOOCCube dataset for our MOOCs
recommendation.

All our experiments are implemented with a single
NVIDIAA100GPUusing PyTorch.We optimize the network
using mini-batch Adam [38] with momentum. The batch size
is set to 1024, and the learning rate is fixed at 0.01. The
regularization parameter in Eq. 15 is set as 1e−8, and the
dimension of latent features for user (concept) embeddings
are set as 30 and 100 respectively as in [5].

B. BASELINE
To demonstrate the effectiveness of ROME, we compare it
with several state-of-the-art methods including
• CMF [39] is a method for decomposing the data matrix
of multiple behavior types at the same time.
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• Metapath2vec [40] combines meta-path-based random
walks with heterogeneous skip-gram models to con-
struct the heterogeneous neighborhood of a node.

• NMTR [26] utilizes a joint optimization technique
based on multitask learning to combine the advances of
NCF modeling.

• EHCF [27] is a model that models fine-grained user-
item relationships and efficiently learns model parame-
ters without creating negative samples.

• ACKRec [28] treats the problem as a rating prediction
problem where the rating of a concept is determined
by the number of interactions between the user and the
concept.

• LightGCN [30] simplifies the design of GCN to
make it easier to understand and more appropriate for
recommendation purposes.

• MOOCIR [5] predicts a user’s choice of concepts based
on those learned user and concept representations.

C. EVALUATION METRICS
The following widely used evaluation metrics are used to
evaluate top-k predictions of concepts for users: k is set
to 5, 10, 20, and 50. Using the test set, we calculate all
metrics for each set of 100 concepts (with one interacted
and 99 unknown). We generate a recommendation list for
each interacted concept with respect to a user u as: Ru =
{r1u , r

2
u , · · · r

k
u }, where r

i
u indicates concept ranked at the i th

position inRu based on the predicted scores of those concepts.
We apply three widely used metrics, Hit Ratio (HR) [41],

Normalized Discounted Cumulative Gain (NDCG) [42], and
Mean Reciprocal Rank (MRR) [43] are utilized to evaluate
the performance of each method. HR@k represents the
proportion of relevant concepts in the test set that are within
the top-k concepts of the recommendations as follows:

HR@k =
1
N

∑
u

I(|Ru ∩ Tu|) (17)

where N is the scale of testing dataset, I(x) is an indicator
function which equals one if x > 0 and equals zero
otherwise. Based on the rank positions of the relevant
concepts, NDCG@k can be calculated as follows:

NDCG@k =
1
Z

k∑
j=1

2I(|R
j
u∩Tu|) − 1

log2(j+ 1)
(18)

where Z denotes the score obtained by an ideal top-k ranking
which serves as a normalization factor. MRR is the average
of the reciprocal ranks of positive concepts when they are
expressed in reciprocal ranks, which can be expressed as
follows:

MRR =
1
N

N∑
1

1
ranki

(19)

It is important to note that ranki refers to the position in the
corresponding set of 100 concepts of the concept that was

interacted with the rest of the unknown concepts. As a recall-
based metric, HR measures whether the testing item is in the
top-k list, while NDCG is sensitive to position, which assigns
a higher score to hits at a higher position. It’s noticed that for a
user, our evaluation protocol ranks all unobserved items in the
training set and thus the obtained results are more persuasive
than ranking a random sampling subset.

D. RESULTS
Table 2 reports the HR, NDCG, and MRR scores of the
proposed ROME and the compared baselines. From the
table above, we have the following observations. First,
compared to similarity-based recommending methods (like
CMF, NMTR and EHCF), graph-based recommending
methods (such as LightGCN and MOOCIR) generally
outperform similarity-based methods. As a result, we infer
that efficient exploitation of graph semantic information
can result in discriminative abilities. Second, almost all
of the evaluation metrics show that our proposed ROME
performs significantly better than other baselines. Take the
Hit Ratio for example, ROME shows comparatively high
scores at 0.855 and 0.948 when k = 10, 50, which is
2.27%, and 0.96% over the best baseline. In regard to NDCG,
ROME achieves the obviously highest score when k =
5, 10, 20, 50with the improvements of 3.65%, 4.45%, 1.37%,
and 2.83%, respectively. As for MRR, ROME still achieves
the obviously highest score 0.497, which is 2.69% over the
best baseline MOOCIR. Our ROME is effective in two ways.
(i) Introduction of our multi-view contrastive learning on
graph representations, whichmakes full use of both capacities
of Euclidean and hyperbolic space. (ii) Introduction of
contrastive loss on angular space, which further increases the
model discrimination ability, which is further studied in the
part below.

E. ABLATION STUDY
During this part, we examine four variants of our proposed
ROME in order to determine the effectiveness of different
components: (1) ROME\M removes the multi-view frame-
work by cutting off the branch of hyperbolic representations
and removes the contrastive learning. (2)ROME\A replaces
the contrastive loss in angular space with a margin by
the simple InfoNCE [12] loss. (3), ROME\V replaces the
hyperbolic representations in the multi-view framework with
the representations from the vanilla model in Euclidean
space. (4), ROME\P cuts off the feature learning of
hTu2hhc from hyperbolic space. (5), ROME\MA combines
the operations in ROME \M and ROME \A together;
ROME \VA combines the operations in ROME \V and
ROME \A together; ROME \AP combines the operations
inROME \A andROME \P together. Results of our ROME
and its variants under different evaluation settings are shown
in Table 3.

As a result of the results, we can draw the following
conclusions: (1) The multi-view representations for graph
contrastive learning adds extra semantic information for
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TABLE 2. The recommendation accuracies of different methods measured by HR, NDCG and MRR.

TABLE 3. Ablation study of our proposed ROME and its four variants under different evaluation metrics.

FIGURE 3. Sensitivity analysis of three important hyper-parameters.

representations and solves the challenges to the recommen-
dation system indeed. Specifically, the removal of hyperbolic
representations causes a drastic decrease on average on
each evaluation. (2) Our method outperforms ROME\A
about 0.59%, which demonstrates the effectiveness of the
further mapping on the angular space to make the contrastive
loss more discriminative based on the representations on
hyperbolic representations. (3) After considering the hyper-
bolic space for multi-view graph representation learning, our
method has gained improvement over ROME\V, indicating
the importance of exploring the geometry viewwhen learning
discriminative features. (4) The feature learning in the
hyperbolic space and the contrastive loss in angular space
with a margin is key to the performances, especially when
removing ROME \ AP. Then, replacing hyperbolic space
representations with Euclidean representations is worse than
removing the representations in the hyperbolic space. It can
be attributed that the contrastive loss can not be distinguished

by the representations from the same space for the multi-view
framework.

F. SENSITIVITY ANALYSIS
In this part, we study the impacts of three hyper-parameters,
including two balance coefficients α and β in Eq. 14 and
Eq. 16, and the margin of angular space m in Eq. 11 and
Eq. 12 respectively by conducting experiments evaluated by
HR. We first vary α from 0.1 to 0.9 with other parameters
fixed, which controls the influence of the representations
from the hyperbolic space. As it is shown in Fig. 3,
we can observe that when α is small, a higher coefficient
makes the recommendation results better, which improves
the representation ability of our ROME. We find that the
performance of our method is not sensitive to α in the range
of [0.6, 0.7]. Then, we fix all other hyper-parameters and
vary β from 0.1 to 0.9, which decides the coefficient between
two different optimization target. According to the results of
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the sensitivity study, the threshold is not sensitive when β is
around 0.5. As for the margin of the angular space, we vary
M with the stride 10 from 0 degree to 40. It is obvious that the
performances are stable in the range [10, 20], which directly
decides the discriminative ability. Towards the end, we set α,
β and M to 0.8, 0.3 and 20, respectively.

VI. CONCLUSION
The paper investigates the problem of online MOOCs
recommendation and present a novel approach named ROME
which simultaneously learn graph representations from two
views to solve this problem. We not only utilize the
representations from vanilla GNNs in Euclidean space,
but also utilize the GNNs model in hyperbolic space as
extraordinary semantic information. Then we integrate the
both views by mapping it to the same hyperbolic space
to implement contrastive learning framework with angular
margin for more discriminative target. Extensive experiments
on popular MOOCCube datasets verify the superiority of our
ROME compared with a range of state-of-the-art methods.
In future work, we will extend our proposed ROME to a range
of relevant fields such as semi-supervised recommendation
and more real-worlf scenes.
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