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ABSTRACT Understanding where proteins are located within the cells is essential for proteomics research.
Knowledge of protein subcellular location aids in early disease detection and drug targeting treatments.
Incorrect localization of proteins can interfere with the functioning of cells and leads to illnesses like cancer.
Technological advances have enabled computational methods to detect protein’s subcellular location in living
organisms. The advent of high-quality microscopy has led to the development of image-based prediction
algorithms for protein subcellular localization. Confocal microscopy, which is used by the Human Protein
Atlas (HPA), is a great tool for locating proteins. HPA database comprises millions of images which have
been procured using confocal microscopy and are annotated with single as well as multi-labels. However,
the multi-instance nature of the classification task and the low quality of the images make image-based
prediction an extremely difficult problem. There are probably just a few algorithms for automatically
predicting protein localization, and most of them are limited to single-label classification. Therefore, it is
important to develop a satisfactory automatic multi-label HPA recognition system. The aim of this research
is to design a model based on deep learning for automatic recognition system for classifying multi-label
HPA. Specifically, a novel Convolutional Neural Network design for classifying protein distribution across
28 subcellular compartments has been presented in this paper. Extensive experiments have been done on the
proposedmodel to achieve the best results formultilabel classification.With the proposedCNN framework as
F1-score of 0.77 was achieved which outperformed the latest approaches.

INDEX TERMS Deep learning, convolutional neural network, biomedical image analysis, protein subcel-
lular localization prediction, proteomics.

I. INTRODUCTION
Acell’s internal structure is complex but highly organized and
can be separated into many subcellular sections or organelles.
Different regions or organelles are dispersed throughout the
cellular area and perform distinct activities. These organelles
are also known as subcellular compartments. They are the
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essential components of the cell’s complicated structure and
serve as the chief executive officers of cellular processes.

A vital part of the cells within living organisms is protein.
Understanding all of the functions of proteins is currently a
major objective in the realm of biological sciences. This gives
important information regarding the function of proteins both
inside and outside the cell [1]. It is generally agreed that
subcellular localization is the most important feature of pro-
teins. The term ‘‘protein subcellular localization’’ describes
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the process by which a gene product or protein is delivered
to a certain compartment of the cell. It provides significant
insight into the structural, dynamic, and functional properties
of a variety of proteins [2]. Knowing where in the cell a
certain protein is located can shed light on its many roles [3].
For instance, knowing where proteins are located within the
cell might shed light on how cells respond in certain condi-
tions. Furthermore, understanding the precise localization of
proteins could aid in testing the efficacy of drugs [4], [5], [6].
And also, by accurately finding where proteins are in cells,
it might be possible to diagnose diseases early and treat them
successfully [7].

Due to technological advancements, researchers now have
access to massive medical image databases for study [1].
Fluorescence microscopy is a popular tool in the biological
sciences for visualizing protein localization within cells. Typ-
ically, conventional methods of analysis are used to classify
these images. Traditional methods, however, are laborious,
pricey, and prone to mistakes [1], [8]. Conclusions regard-
ing the subcellular localization of proteins could be made
that were inaccurate and ambiguous. On the other hand,
automated classification algorithms can often outperform
human inspections [9]. Therefore, automated classification
techniques are required to predict protein localization [7]
accurately.

Through antibody labelling and microscopy, the Human
Protein Atlas (HPA) has created an image-based atlas that
specifies the localization of proteins in human tissues and
cells. [10]. Eukaryotic cells rely on subcellular compart-
mentalization as a fundamental organizing principle since
it allows for the simultaneous execution of many cellular
processes. Utilizing tens of thousands of high-resolution
confocal immunofluorescent images, HPA is creating a
proteome-scale map of subcellular location of protein [11].
Researchers can use this map to learn more about protein
roles, networks, cellular biology, and even how disease orig-
inates. Since the HPA Cell Atlas is constantly collecting
images, a thorough study of the data will necessitate a huge
number of precise image classifications.

A high throughput microscope screen requires automated
processing of the data collected. Common steps include
adjusting the brightness and contrast of images, detecting
and segmenting cells, obtaining features, and analyzing the
data. However, while segmentation and normalization can be
conducted in a somewhat consistent fashion to yield protein
abundances, but feature extraction for a particular problem
and statistical analysis are required for mapping subcellular
localizations. Calculating more abstract features from raw
pixels and selecting the most useful ones is a crucial step
in any image analysis pipeline if the results are to have any
practical significance [3], [12]. Defining the right features can
be tedious and prone to mistakes, and the default numbers
generated by existing tools may be irrelevant outside the
domain for which they were designed [13], [14].

Due to its ability to solve the issue of feature selec-
tion, deep neural networks have recently gained traction in

image analysis. Models trained with deep learning techniques
already outperform humans at many tasks, including object
detection [15], semantic segmentation [16], and image cap-
tioning [17]. These techniques have also been successfully
applied to biological domains [18], [19], [20], including regu-
latory genomics [21], [22], [23] and electron microscopy [3],
[24]. Briefly, deep networks are trained to predict observed
labels by running images through multiple layers of process-
ing units that quantify progressively more complex patterns
in the data. One of their primary selling points is that, with
a sufficiently big training set, they may learn, on their own,
which features are most effective in resolving a given classi-
fication problem.

Therefore, in this research, a neural network model, specif-
ically a CNN trained from scratch, has been proposed to
learn the patterns of proteins in the cell and accurately predict
protein location in subcellular compartments. Following are
the main contributions to this paper.

1. A convolutional neural network trained from scratch
has been presented to predict the protein localiza-
tion in 28 subcellular compartments using confocal
microscopy images procured from Human Protein
Atlas database.

2. Rigorous testing is done on the proposed model with
different filter sizes and different input image sizes to
achieve the best results.

3. The model is evaluated based on recall, precision
and F1-score and also comparison is made with the
state-of-art.

The rest of the paper is presented as: In section 2, related
work has been given in the paper related to machine learn-
ing and deep learning techniques. Section 3 starts with the
description of the dataset used in this research, followed by
the proposed CNN model. Experimental setup used for this
study has also been explained in this section. Section 4 covers
the results obtained from the model on different filter sizes
and different input image sizes. This is followed by the
visualization of results in the form of incorrect and correct
predictions. Finally, the paper concludes with a conclusion
and the future scope of the research.

II. RELATED WORK
Researchers have used various algorithms based on deep
learning and machine learning to determine the subcellular
localization and distribution of proteins in the human cells.
Over the past decade, numerous machine learning-based
approaches have been developed [25], [26] to assess the local-
ization of proteins in cultured cells by combining imaging
and pattern recognition. These techniques use microscopic
pictures to extract subcellular location features, which are
subsequently examined for patterns [6]. Not only do SLFs
account for morphological details, but they also provide a
quantitative description of proteins’ subcellular localization.
Therefore, once the protein patterns have been extracted from
the images, SLFs can be used to teach classifiers to differen-
tiate between them.
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TABLE 1. Summary of literature review.

The problem of PSL prediction has been efficiently tackled
by machine learning methods, although obtaining features
from images is laborious. Because deep learning enables the
system to learn visual information on its own, it is no longer
necessary to extract these features beforehand. Recently,
CNN-based techniques have been effectively employed to
classify protein subcellular localization.

Recent publications have used convolutional neural
networks (CNNs) to analyse data from high-throughput
microscopy [27], [28], [29], [30]; however, the unique nature
of HTI data makes it difficult to use generic models, due
to its very high resolution. Consequently, most methods rely
on data pre-processing procedures and are limited to analyz-
ing single-cell crops, or segmented images of a single cell.
Xiang et al. [31] proposed a convolutional neural network
for multilabel classification of protein subcellular localiza-
tion in 28 compartments and achieved an F1-score of 0.823.
Immunofluorescence images from the HPA dataset were
classified using a two-pronged technique by Sullivan et al.
[32]. They began by holding a competition for image cat-
egorization through online video game, which yielded mil-
lions of annotations of protein locations. The data from
the competition was then used to train an automated soft-
ware called Loc-CAT, which then classified the protein sites
into 29 sub-compartments. To categorise protein patterns,
the two methods were combined and 0.72 F1-score of was
obtained with combinedmodel. To assess protein localization
in yeast, another CNN model with 11 yaers was built by
Kraus et al. [29] achieving an accuracy of 72.3% for proteins
localised to 10 subcellular locations. Liimatainen et al. [33]
have employed semantic segmentation networks for localis-
ing proteins, and they have established an F1-score of 0.51 as
the state-of-the-art for this endeavour. Overall, cell segmenta-
tion techniques and data pre-processing still play significant
roles in HTI analysis. Liimatainen et al. [34] presented two
novel CNN-based algorithms to predict protein localization

in 13 compartments achieving 0.696 and 0.676 F1-score. Li et
al. [35] developed a transfer learning method by using a fine-
tuned InceptionV3 architecture which gave 0.706 F1-score.
Microscopic images from the HPA database were classified
using two different methods by T.R. Shwetha et al. [36]. The
first approach involved extracting features and classifying
them with a Random Forests classifier. Another method used
two different transfer learning models namely Xception and
ResNet 50 for feature extraction and made predictions of
proptein in 15 classes. An F1-score of 0.69 was attained by
the Hybrid Xception model, which is superior to the F1-score
of 0.61 attained by the conventional method. Summary of
work done by various researchers for protein subcellular
localization is given in Table 1.

Although methods have been developed to determine
protein subcellular localization from microscopic images
automatically, current systems still fall short of human perfor-
mance. This study delves into the challenge of predicting pro-
tein distribution in human subcellular compartments. In this
study, we classified HPA images into 28 different phenotypes
based on the presence or absence of a specific protein. Hence,
this paper gives a quick and effective approach for classify-
ing human protein labels, with no requirement for laborious
feature extraction and selection.

III. MATERIALS AND METHODS
This section starts with a detailed description of the dataset
used for this study, followed by the pre-processing of the
dataset before feeding the data to the proposed model. Then
details about the proposed CNN model has been presented
followed by the experimental setup required to train the
model.

A. DATASET DESCRIPTION
Dataset utilized in his study has been acquired from a com-
petition named ‘‘Human Protein Atlas Image Classification’’
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FIGURE 1. An example image with four colour channels: (a) green channel represents the protein of interest, (b) red channel represents
microtubules, (c) blue channel represents nucleus, and (d) yellow channel representd endoplasmic reticulum.

FIGURE 2. Sample images of multi-label or single-label from HPA dataset. Labels present in each image are: (a) Cytosol, nuclear membrane,
plasma membrane, (b) Intermediate filaments, (c) Golgi apparatus, nucleoplasm, (d) Cytosol, plasma membrane, (e) Nucleoplasm, plasma
membrane, (f) Nuclear bodies, (g) Actin filaments, cytosol, nucleoplasm, (h) Nucleoli, (i) Nucleoplasm, cytosol and (j) Endoplasmic reticulum.

FIGURE 3. Sample augmented images after applying image transformations. Data augmentation has been done by applying transformations like random
rotations, zoom, random brightness, vertical and horizontal flip.

held on Kaggle in 2019 [37]. This dataset contains 31,072
samples obtained using confocal microscopy.

The dataset, however, contains 27 different cell types with
vastly diverse morphologies, which in turn affects the pattern
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TABLE 2. Number fo samples of each class in training and test set.

of proteins in the various organelles. All samples are four-
channel confocal images.

The immunofluorescence-labelled protein of interest is
shown to be localized with the green channel in the cor-
responding image. Three other reference channels are also
been given, like, the blue channel, which displays nuclei
counterstained with DAPI; the red channel, which displays
microtubules labelled with an antibody against tubulin; and
the yellow channel, which displays endoplasmic reticulum
(ER) [11].

The four channels of an image sample are shown in
Figure 1. For this study, out of the four channels available,
only three channels were used to make an RGB image The
distribution of proteins is categorized into 28 primary cellular
organelles. The name of classes along with an assigned class
number are given in Table 2. The number of image samples
belonging to each class is shown in Table 2. It can be seen
from this table that there is a huge data imbalance in the
dataset. For class 0 there are as high as 12,885 image samples,
while for class 27 there are as low as 27 image samples.
Such a huge data imbalance hampers the performance of the
model, as the model gets biased more towards the majority
classes. Another issue due to data imbalance occurs when
data splitting is done in train and test. The remedy for this has
been discussed under data pre-processing in the subsequent
section.

Another important aspect of the dataset to keep in mind
for this study is that it is a multi-label classification problem.

Multilabel means that each sample image may contain the
protein location in more than one subcellular compartment.
Figure 2 shows the sample RGB images obtained after con-
catenation of blue, green and red filters for every sample
given in the dataset having multiple as well as single labels.

B. DATASET PRE-PROCESSING
The dataset was provided with JPEG images with a high-
resolution size of 512 × 512. To check the effect of image
scaling on the proposed convolutional neural network, the
image size was resized to 128 × 128 and 256 × 256 as well.
For faster training of the model, images were normalized first
by dividing each pixel by 255. The pre-processed samples
were then randomly split into a training (80%) and a test
(20%) set. For an imbalanced dataset, it is recommended to
use iterative stratification for data splitting.

Iterative stratification guarantees that the percentage of
samples from each target class remains roughly the same in
both the train and test sets. Data has been split using iterative
stratification into the train (80%) and test (20%) data as
shown in Table 2. The distribution of samples for each class
in the training and test set is presented in Table 2.

C. DATA AUGMENTATION
To increase the size of the dataset, data augmentation is
done by applying random transformation on the train images.
It becomes necessary to add more images corresponding to
minority classes in order to make model learn effectively
for unbiased predictions because the dataset used is highly
imbalanced. Increase in size of dataset, doesn’t mean adding
more samples to the dataset, perhaps applying random trans-
formations on the images to make the proposed model gen-
eralizable. The following transformations have been applied
on the dataset: random rotation in the range 0 to 270 degrees,
zoom of 0.2, random brightness in range of 0 to 0.5, vertical
flip and horizontal flip. Transformations applied on sample
images are shown in Figure 3.

D. PROPOSED CNN MODEL
The use of CNN based architectures has been done to help
advance biotechnology. For blood cancer identification, for
instance, Liang et al. [38] combined a deep convolutional
neural network with a recurrent neural network (RNN).

To classify images of HEp-2 cells, Gao et al. [39] created a
model based on CNN and obtained the desired generalizabil-
ity across datasets. In this paper, we present a convolutional
neural network that can handle high-resolution images and,
as a result, can learn from fine visual structures without
having to downscale them.

A two-step process has accomplished this. In the initial
phase, a four-block convolution encoder was utilized. In each
convolutional block there are 2 convolutional layers and a
max-pooling layer to discover abstract features at various
spatial resolutions. The number of filters in each convolution
block has been increased, such that the first convolution block
generates 32 feature maps, the second generates 64 feature
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FIGURE 4. Architecture of proposed CNN model.

maps, and so on. The architecture of the proposed CNN
model is given in Figure 5.

In the second stage, the feature maps created from the max
pooling layer of each convolution block were shrunk to a size
of one pixel using global average pooling. Global average
pooling provides extreme dimension reduction and aids in
preventingmodel overfitting. This pooling procedure can also
reduce the impact of weak labels. The features generated from
average global pooling layers were concatenated to form a
feature vector. The resultant feature vector, which represents
various spatial resolutions, is then fed to a fully connected
network comprising of 2 dense layers for the final prediction.
The first hidden layer consists of 512 neurons followed by
the second hidden layer with 256 neurons. The output layer
consists of 28 neurons, each neuron representing one output
class. Since in multilabel classification, each label is treated

as a binary classifier, therefore sigmoid function has been
used to obtain the probabilities corresponding to each label.
Additionally, batch normalization was carried out between
each convolutional and activation layer and the Dense and
Activation layer. The performance of the neural network can
be enhanced by using this method, which involves normalis-
ing the inputs at each layer so that the output activation has a
mean of 0 and a standard deviation of 1. The model summary
of the proposed CNN architecture is given in Table 3.

E. EXPERIMENTAL SETUP
The specifics of the training process, in addition to the
network architecture, are crucial for comprehending imple-
mentation and evaluating performance of the mofdel. Here,
we outline the parameter selections made when the proposed
CNN model was being trained. 27,965 samples were used to
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TABLE 3. Model summary of proposed CNN.

train the model. Without utilizing transfer learning from pre-
viously trained models, the network was trained from scratch.
The training hyperparameters were adjusted by experimen-
tation. The model was tested with different optimizers like
Adagrad, Adam, SGD and Adam. Different batch sizes of 8,
6 and 32were used to test the performance of the model.
Maximum batch size that could be taken was 32 because
of the out of memory allocation error by 12 GB GPU. The
following options were ultimately selected for use in training
the model. Glorot initialization was used to set the model
weights initially. To train the models, Adam optimizer was
used. The default parmeters of original Adam paper were
used. 0.001was set as the initial learning rate.When therewas
no decrease in validation loss, the learning rate was reduced
by 0.1 after a patience of 3 epochs. Due to the presence
of many labels in the data, the binary cross-entropy was
selected as the loss function. The batch size of 32 employed

in the batch normalization process was the maximum that
could be accommodated by a graphics processing unit (GPU)
with 12 GB of memory. The model was written in Python
using the Keras module and the Tensorflow backend, and
training was expedited utilising graphics processing units.
CNN’s confidence values are the model’s raw outputs. The
final layer’s sigmoid activation function ensures that the out-
put is always a positive number. For each class, the optimal
confidence threshold was determined empirically by testing
various values and seeing which one yielded the highest
F1-score on the training data. The threshold values were
tested at a resolution of 0.01. The hyperparameter settings for
the proposed model are shown in Table 4.

IV. RESULTS AND DISCUSSIONS
The metrics used to evaluate the performance of the model
and discussions about results obtained with the proposed
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FIGURE 5. Accuracy and loss plots obtained during training of the proposed CNN model when applied with different input image sizes (a) Training
accuracy, (b) Training loss, (c) Testing accuracy and (d) Testing loss. Maximum accuracy and minimum loss have been obtained when the network was fed
with image size of 512 × 512.

CNN model on various configurations is presented in this
section.

A. PERFORMANCE METRICS
The model was evaluated on three main performance metrics:
recall, precision and F1-score. These are calculated using
4 parameters namely, TP (True Positive), FP (False Positive),
TN (True negative) and FN (False Negative).

1) PRECISION
Precision is defined as the out of all predicted positives,
how many samples are true positives. Its formula is given by
equation 1.

Precision =
TP

TP+ FP
(1)

2) RECALL
Recall defines the true positives out of actual positives. Its
formula is given by equation 2.

Recall =
TP

TP+ FN
(2)

TABLE 4. Hyperparameter configurations.

3) F1-SCORE
Precision and recall are averaged to form the F1-score. and
its formula is given by Equation 3.

F1− score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(3)

Due to the extreme asymmetry of the training data utilised
in this study, the sample sizes assigned to each label must be
taken into account when calculating average recall, precision
and F1-score. As a result, as shown in Figures 6 and 8,
we computed a weighted average of the recall, precision and
F1-score. Additionally, though the model’s performance has
mainly been evaluated using F1-score, recall and precision,
there are some other performance criteria too which can be
calculated for multilabel image classification.
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FIGURE 6. Performance of the model based on the basis of different input shapes.
Maximum recall, precision and f1-score has been obtained when the model was fed
with input image size of 512 × 512.

TABLE 5. Performance metrics of each label on different input shape.

4) SPECIFICITY
Specificity defines how accurately has the model predicted
true negatives. The formula gives it in quation 4.

Specificity =
TN

FP+ TN
(4)

5) FALSE POSITIVE RATE (FPR)
False Positive Rate returns the percentage of true negative
samples which were predicted as false positives. FPR can be
calculated using equation 5.

FPR =
FP

FP+ TN
(5)
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FIGURE 7. Accuracy and loss plots for different filter size (a) Training accuracy, (b) Training loss, (c) Testing accuracy and (d) Testing
loss. Maximum accuracy and minimum loss have been achieved when filter size of 3 × 3 was used in convolutional layers of the
proposed model.

FIGURE 8. Performance of the model based on different Filter Size. Maximum recall, precision
and f1-score have been achieved when filter size of 3 × 3 was used in convolutional layers of
the proposed model.

6) FALSE NEGATIVE RATE (FNR)
False negative returns the percentage of true positive samples
which were predicted as false negatives. The formula to
calculate FNR is given in equation 6.

FNR =
FN

TP+ FN
(6)

7) AUC-ROC SCORE
AUC-ROC curve is another useful indicator for assessing a
model’s efficacy. The model’s efficacy at varying thresholds
is depicted graphically by the plot between sensitivity and
False Positive Rate. Threshold values were taken in the range
of 0 to 1 at interval of 0.01. A higher AUC indicates better
model performance.
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TABLE 6. Performance metrics of each label on different filter size.

B. EVALUATION OF THE PROPOSED MODEL WITH
DIFFERENT INPUT IMAGE SIZES
To gauge the efficacy of the model, a series of tests were
run using input images of varying sizes (512 × 512 pixels,
256× 256 pixels, and 128× 128). The results of these studies
are shown in Figure 5 in the form of loss and accuracy plots.
With a 512-by-512-pixel input image, a maximum training
accuracy of 97.72% was achieved as shown in figure 5(a)
and maximum test accuracy of 97.03% was achieved as
shown in Figure 5(c). Training and testing losses for the
512 × 512 input shape dropped to 0.061 and 0.084, respec-
tively, as illustrated in Figures 5(b) and 5(d). Table 5 and
Figure 6 show each label’s average values of recall, F1-score
and precision on different input image sizes, respectively.
From Figure 6, we can deduce that a 0.74 F1-score
was achieved with an input image size of 512 pixels by
512 pixels.

C. EVALTUATION OF THE PROPOSED MODEL WITH
DIFFERENT FILTER SIZES
In order to demonstrate the efficacy of the proposed CNN
model and to examine the model’s performance on micro-
scopic images, experiments were also conductedwith varying
filter sizes. For these tests, 512-by-512-pixel images were
used. Three different sizes of filter were used to measure the
model’s effectiveness The chosen filter sizes were: 3 × 3,
5 × 5 and 7 × 7. Plots of loss and accuracy on different
filter sizes are shown in Figure 7. Based on the results shown
in Figure 7, it is evident that 3 × 3 filter size yielded the
best results across the board. The effectiveness of the model
degrades as the filter size grows larger. Comparison of the
average recall, precision and F1-score for three distinct filter
sizes is shown in Figure 8. Table 6 provides the perfor-
mance metrics achieved using different filter sizes for each
label.
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FIGURE 9. ROC Curve for the proposed CNN model.

This shows that the proposed model was able to classify
true negatives at an excellent rate. Similarly, False Positive
Rate is also very low which implies that there were very rare
true negatives that were classified as true positives. In other
words, we can say that the absence of protein in a subcel-
lular compartment has been predicted with high accuracy.
In comparison to that, there are some labels for which the
false negative rate is somewhat on the higher side. Like from
Table 7 it can be seen that the cytokinetic bridge and mitotic
spindle shows a very high false negative rate. This implies that
the presence of proteins in these compartments has not been
recognized by the model very effectively. Figure 9 shows the
ROC curve for each label. AUC score of each label is given in
Table 7. The higher the AUC score better is the performance
of the model. Table 6 shows that the AUC score of almost all
the labels is excellent. This shows our model can efficiently
locate the proteins in the correct subcellular compartments.

D. VISUALIZATION OF PREDICTION RESULTS
Figure 10 shows the examples of correct predictions done
by the proposed model. In the left column of the image
are the sample images with true labels and the prediction
probabilities obtained for each layer from the output layer are
shown in the right column. The output layer of the proposed
CNN model consists of a sigmoid activation function as each
label has to be assigned 0 or 1 according to the predicted

probability value above or below the threshold. The model
performed best on the threshold value of 0.5. That means,
if the probability for a label is greater than 0.5, then it will be
assigned 1 otherwise label will be 0 for that particular sample.
As shown in Figure 10(a), the true labels of the image sample
are 0 and 23, and the corresponding probability graph also
shows that the predicted labels were also 0 and 23. It can
be observed in Figure 10, that the labels with the majority
of the image samples have been predicted mostly correctly.
Like labels 0 and 25 have been correctly classified in all of
the images.

Similarly, Figure 11 shows examples of incorrect classi-
fication. Again, the majority of classes have been predicted
by the model almost accurately in all the cases i.e., labels
0 and 25. There are some cases like Figure 11(b) where even
though there is no protein in the cytosol (label 25) in the
image sample, but still, the model has predicted the presence
of protein in 25. This shows that the major impact on the
performance of the model can be due to data imbalance.

E. COMPARISON WITH THE STATE-OF-ART
To validate the results obtained using proposed CNN
model, state-of-art comparison has been made in Table 8.
We have chosen F1-score as the performance parameter to be
compared as it takes into account both precision and recall.
It can be seen from the table, that the proposed model in
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FIGURE 10. Examples of correct classification by the proposed CNN Model. Left column represents the original image with true labels and
right column represents the predicted probabilities obtained from the model corresponding to the original image.
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FIGURE 11. Examples of incorrect classification by the proposed CNN model. Left column represents the original image with true labels and
right column represents the predicted probabilities obtained from the model corresponding to the original image.
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TABLE 7. Performance of the proposed model in terms of specificity, FPR, FNR and AUC score.

TABLE 8. Comparison of the proposed CNN model with the sate-of-art.

this research outperformed the other models by obtaining an
F1-score of 0.77. It can be seen from Table 8 that in [31],
F1-score obtained is 0.83 while the proposed model achieved
an F1-score of 0.77 for protein subcellular localization in
28 subcellular compartments. The reason for better result
obtained in [31] is that they have used a greater number of
samples i.e., 50,864 images.With a greater number of images,
class imbalance is low, leading to better results. Also, in this
paper the precision, recall and F1-score of individual labels
has not been given. Since our dataset is highly imbalanced,
if we calculate the average precision and recall of top-5
best predicted classes it comes out to be 0.93, 0.88 and
0.86 respectively.

V. CONCLUSION AND FUTURE SCOPE
We have shown that the proposed CNNmodel may be used to
automatically label protein positions in immunostained high
throughput imaging data, and we anticipate that it will even-
tually be used in routine clinical applications. It is a general-
purpose, dependable method for learning images from a large
range of heterogeneous cell lines, and it can handle images
of any size as input. While its present predictive performance
on a diverse dataset is 0.77, it has space to increase with the
inclusion of data from fresh stains and cell lines.

Our findings demonstrate that the class imbalance sig-
nificantly impacted the outcomes. It is well-known that
deep learning-based algorithms perform well when there is
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abundant data, therefore it is reasonable to assume that the
low amount of samples in some classesmakes themodelmore
prone to misclassifications.

Like, despite their different locations, actin filaments are
sometimes mislabeled as the nucleus. It can be seen from the
results that misclassifications into the most common classes
in the training data—cytosol and nucleoplasm were very
common. So, the main limitation of this research work is the
highly imbalanced nature of dataset. In machine learning, the
class imbalance is prevalent, but it may be fixed in several
ways, including over- and under-sampling or creating fresh
data for the rare classes. But this is not so simple in the case of
a multi-label problem, because rare classes frequently coexist
with common classes, and so, oversampling minority classes
would also oversample the majority classes. So future work
entails the collection of more samples for the rare classes for
more effective prediction.
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