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ABSTRACT The study of signals, processes, and systems has motivated the development of different
representations that can be used to analyze and understand them. Classical ways of studying the behavior
of signals are the time domain and frequency domain representations. For the analysis of non-stationary
signals, time-frequency representations have become an essential tool to understand how the frequency
content of signals changes with time. A common time-frequency technique employed in the literature is
the wavelet transform. Nevertheless, selecting an adequate mother wavelet to perform the wavelet transform
has become challenging due to the diverse available wavelet families. This paper reviews the applications
and uses of a particular class of wavelet basis known as the Generalized Morse Wavelets. This class of
wavelet family provides a systematic framework to choose and generate a wavelet for general-purpose use.
This study reviews the application of Generalized Morse Wavelets in biomedical engineering, dynamical
systems analysis, electrical engineering, geophysics, and communication systems. Moreover, the parameters
of the Generalized Morse Wavelets used in each study are presented. The results of this study reveal that
Generalized Morse Wavelets have proven helpful in studying signals, systems, and processes in areas ranging
from biomedical engineering to geophysics. Nonetheless, the parameters of the Generalized Morse Wavelets
are yet to be chosen through a rigorous methodology and argumentation. Therefore, there is an opportunity to
generate methods for selecting the parameters of the Generalized Morse Wavelets based on the characteristics
of the signals, systems, or processes under research.

INDEX TERMS Generalized Morse wavelets, mother wavelet selection, continuous wavelet transform,
applications, time-frequency analysis.

I. INTRODUCTION

The analysis of signals can be performed in three general
frameworks, the time domain, the frequency domain, and the
so-called time-frequency domain. The time domain analysis
studies the signal’s amplitude that changes over time. On the
other hand, frequency analysis is concerned with the spectral
content of the signal obtained through the Fourier trans-
form. In the case of time-frequency analysis, this framework
is interested in the signal processing methods, techniques,
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and algorithms that help quantify a signal’s spectral content
over time. In the framework of time-frequency analysis, the
natural variables known as time (#) and frequency (f) are
used concurrently [1]. Contrary to classical signal processing
techniques like the Fourier transform, where the frequency
is analyzed independently of time or a signal defined in the
time domain does not provide information about its frequency
content.

In this way, time-frequency analysis provides a set of
methods to capture a signal’s time and frequency content
through a 2D representation that simultaneously provides
both time and frequency localization. Thus, this paradigm
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constitutes a crucial tool for studying non-stationary signals
(i.e., signals whose statistics change with time [2]). As a
result, the study of non-stationary signals has developed tech-
niques such as the Short-Time Fourier Transform (STFT)
or Gabor Transform, Wigner—Ville Distribution (WVD),
Hilbert-Huang Transform (HHT) and Wavelet Transform
(WT) [3]. Particularly, the WT can be understood as a gen-
eralization of the Fourier transform; the main difference is
that in the case of the Fourier transform, the decomposition
is made through complex exponentials, and in the case of the
WT, the decomposition is performed through the so-called
wavelet functions [4].

This set of techniques has gained popularity in diverse
fields such as mechanics, geophysics, electrical engineering,
communication systems, medical, and compression tasks [5],
[6], [7]. More recently, time-frequency methods have been
used as signal representation techniques in combination with
machine learning or deep learning techniques to solve clas-
sification problems in a diverse set of applications [8]. For
example, biomedical signal processing has been one of the
fields that have adopted extensively time-frequency analysis
techniques for health monitoring applications or to perform
diagnosis [9], [10]. Furthermore, in the case of power sys-
tems, time-frequency methods have also been used to monitor
or detect faults in electrical components such as batteries,
motors, capacitors, or power inverters [11], [12].

Despite the widespread use of time-frequency methods
in different areas, one of the main challenges that time-
frequency analysis imposes is selecting an appropriate tool
to represent the time and frequency content of the signal
correctly. This is because there is yet to be an exact method
to verify that the obtained representation is adequate for a
particular signal or problem [1]. The above is also influenced
due to Heisenberg’s uncertainty principle, also known as the
Heisenberg-Gabor uncertainty principle or Gabor Limit [13].
This principle states that a function cannot simultaneously be
arbitrarily compact in time and frequency [14].

The above implies that it is challenging to localize
finite oscillations transients simultaneously in time and
frequency [13]. For instance, the STFT provides a time-
frequency representation but with a fixed resolution in the
time and frequency domains since the transform depends on
the setting of a fixed window length [15]. In the case of
the WT, this challenge is related to determining an adequate
type of mother wavelet that will be used to decompose the
signal [16].

Different mother wavelets have been proposed in the litera-
ture, such as the Morlet, Daubechies, Derivative of Gaussian,
Bessel, Mexican Hat, Meyer, and Shannon wavelets [17],
[18], [19]. Nevertheless, these diverse sets of wavelet types
and the various time-frequency methods have imposed the
challenge of selecting one for a particular application.
Therefore, a common approach in the literature is to test
different wavelet types to choose one for a specific prob-
lem [18]. Moreover, according to the review presented by
Guo et al. [19], a systematic method that allows the selection
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of an optimal wavelet basis and its evaluation is still
required to convey applications based on the WT and derived
techniques.

The above challenges motivated the work of Lilly et al.
[18], which introduced the Generalized Morse Wavelets
(GMWs), a superfamily of analytic wavelets that provides
a systematic and unified framework to understand the ana-
lytic wavelet functions and their properties. Daubechies and
Paul initially presented GMWs in [20] as eigenfunctions of
a time-frequency operator and were further studied in [21].
GMWs unify in single-family different families of wavelets
such as lognormal wavelets, Airy wavelets, Cauchy wavelets,
the Shannon wavelet, and even complex exponentials. These
characteristics make GMWs a recommended starting point
for general-purpose use [18].

Recent studies have presented literature reviews on the use
of the WT and its applications. These studies either investi-
gate the applications of the WT in a diverse set of fields or for
particular applications. For instance, the study of Rhif et al.
[16] showed the applications of the WT and derived tech-
niques in the fields of geosciences and geophysics, engineer-
ing, hydrology, finance, medicine, and remote sensing for
analyzing vegetation. Furthermore, Wang et al. [22] presented
a study focused on the HHT and WT applications in the struc-
tural engineering field. In [23], the Tunable Q-factor Wavelet
Transform (TQWT) implementations related to fault diagno-
sis on rolling element bearing were reviewed. Camussi et al.
[24] presented the uses of the WT in aeroacoustics, empha-
sizing the study of compressible jets. Rinoshika et al. [25]
showed the implementations of multi-dimensional orthogo-
nal WT in fluid mechanics, particularly turbulent wakes and
turbulent boundary layer flows were reviewed. Nevertheless,
few studies have analyzed the particular use of certain wavelet
families or mother wavelets and how they have been used and
parameterized for particular signals, systems, and processes.

This paper presents a review of the applications of GMWs.
This study aims to provide an overview and discussion on
the uses of GMWs in different fields and how they have
been parameterized for particular signals, systems, and pro-
cesses. Furthermore, the implications of the parametriza-
tions selected for each application are also explored and
discussed. The applications were divided into the following
fields: medical and biomedical engineering, fluid dynamics,
vibrations analysis, systems analysis, electrical engineering,
geophysics, and communications systems. Fig. 1 presents a
general overview of the structure of this study. The main
contributions of this study are outlined as follows.

o A summary of the Generalized Morse Wavelets appli-
cations is presented related to biomedical engineering,
dynamical systems analysis, electrical engineering, geo-
physics, and communication systems.

e The parametrizations of the Generalized Morse
Wavelets employed for analyzing or performing each
reviewed application and field are summarized.

o A detailed analysis and discussion of the values of
the parameters that have been used to perform the
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FIGURE 1. The outline of the structure of this review concentrated on the applications of the Generalized Morse Wavelets. First, the
theoretical background of the wavelet transform and Generalized Morse Wavelets is presented. The review of the applications of Morse
wavelets in medical and biomedical engineering, fluid dynamics, vibration analysis, systems analysis, electrical engineering, geophysics,
and communications systems is presented. The last section of this study corresponds to the analysis and discussion of the results.

continuous wavelet transform through the Generalized
Morse Wavelets are presented.

The remainder of this study is organized as follows.
Section II explains the search strategy and selection criteria
for developing this review. Section III presents an overview of
the theoretical background of the WT and GMWs. Section IV
shows a summary of the applications of the GMWs with their
corresponding parametrizations and analyzed signal, system,
or process. The discussion is presented in Section V while
Section VI explains the limitations of this review. Finally,
Section VII presents the conclusions and future research
directions related to utilizing GMWs.

Il. SEARCH STRATEGY AND SELECTION CRITERIA
The journal and conference articles were searched for this
review from 2013 to 2022. This search was primarily based
on the Web of Science and Scopus databases. The main
keywords used to perform the search in this study are listed
below.

« Time-Frequency Analysis;

o Wavelet Transform;

o Continuous Wavelet Transform;

o Generalized Morse Wavelets;

« Applications.

The inclusion of articles was based on the use of GMWs.
The articles were discarded if the GMWs were only men-
tioned but not used in the referred study or its methodology.
Based on these criteria, the selected articles were classified
into the following fields; mainly biomedical engineering,
dynamical systems analysis (i.e., fluid dynamics, vibration
analysis, and general use in systems analysis), electrical
engineering, geophysics, and communication systems. The
critical information extracted from each publication was the
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author’s name, year of publication, parametrization of the
GMWs used in the study, type of analyzed processes, signals
or systems studied via the CWT and GMWs, and the overall
application performed in the study that was selected. Contrary
to previous reviews that have focused on the WT applications
in different fields such as the one presented by Guo et al. [19],
this study mainly focuses on the applications of WT and CWT
generated through the so-called GMWs and their parameters.

Ill. WAVELET TRANSFORM AND GENERALIZED MORSE
WAVELETS

This section presents a brief overview of the WT and GMWs.
This is done to provide the general theoretical background
that defines the methods reviewed in this literature review.

A. WAVELET TRANSFORM

The concept of the WT was first formalized by the work
of Morlet et al. [5] while analyzing seismic data, and the
wavelets’ mathematical support was described in [26]. The
WT expands the concept of the Fourier transform to a
general class of orthogonal basis and partially overcomes
Heisenberg’s uncertainty principle by performing a multi-
resolution decomposition as appreciated in Fig. 2 [4]. This
multi-resolution method allows obtaining various temporal
and frequency resolutions in different frequency bands, which
help break down complicated signals produced by multi-
scale processes. Fig. 2a illustrates the resolution of the time
domain representation, while Fig. 2b shows the frequency
domain resolution. Fig. 2¢ shows the resolution of the STFT’s
spectrogram. Notice that this resolution is fixed according to
the window’s length despite having a resolution in the time
and frequency domains. The WT counters this problem by
allowing multiple window lengths as illustrated in Fig. 2d.
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FIGURE 2. lllustration of resolution limitations and uncertainty in the time domain, frequency domain, Short-Time Fourier
Transform or spectrogram, and multi-resolution analysis performed through the Wavelet Transform. a) Shows the time
domain resolution, b) Shows the frequency domain resolution, c) Shows the spectrogram resolution, d) Shows the
multi-resolution decomposition computed through the wavelet transform.

The WT decomposes a signal with the usage of translated
and dilated wavelets. A wavelet is a square-integrable func-
tion (¥ € L2(R)) that has zero mean as shown in (1) [27].

/ Y(t)dt =0 ey

Moreover, this wavelet function is normalized (||| = 1)
and centered at t = 0.

Additionally, the wavelet must satisfy the admissibility
condition, as shown in (2). The term W (w) is the Fourier
transform of the wavelet v (¢).

oo

2
/ Mda) < 0 2)

|l
—00
The admissibility criterion allows obtaining an invertible
and stable transform [28]. Moreover, this condition shows
that the wavelet must oscillate and decay. To assure that the
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integral presented in (2) is finite, the mean of the function
must be zero as presented in (1). The above explains why a
wavelet must have a zero mean.

By translating and scaling the wavelet function by factors
(u) and (s), respectively, a dictionary (D) of wavelet functions
is obtained as shown in (3) [27].

r—u

(€)

)}
uek,seRt

1
D= {Wu,s(t) = ﬁw(
The term ls normalizes the energy of the decomposition

across the scales (s).

These wavelets remain normalized ||y, | = 1. Conse-
quently, the WT of a square-integrable function (f € L*(R))
at time («#) and scale (s) is given in (4) [27]. The asterisk
indicates the complex conjugate.

o 1 _
Wf(u, s) = (f @), Yus(0) ) = /f(t)—lﬁ*(t—u)df “)
S s
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The coefficients computed through (4), also named wavelet
coefficients, represent the degree of similarity or correlation
between f'(t) and the wavelet v, ;(¢) at a particular translation
(1) and a specific scale (s). Furthermore, the WT can be
expressed as a convolution product as shown in (5) [27].

o0 1 _ .
WF(u, 5) = / FOp = f T 5
A s

with
1
Vs

Moreover, the Fourier transform of Ws(t) is expressed
in (7).

Vi) = w*%t) ©)

o~

V(@) = V/sP*(sw) 7

The above suggests that the WT exhibits a linear filter-
ing operation on the function f(¢) for each frequency scale.
Since ¥(0) = [T w(dt = 0, it seems that ¥ is equiv-
alent to the transfer function of band-pass filters. Thus, the
filters generated by scaling ¥, also known as the mother
wavelet, are bandpass filters. Therefore, the convolution of
the WT computes the transformation with dilated bandpass
filters. The information at different scales is obtained by
scaling the mother wavelet and convolving the scaled wavelet
with the analyzed signal. The mother wavelet captures the
highest frequency from the signal, while the scaled wavelets
will capture the information at lower frequencies [27].

Moreover, the WT will exhibit a better time resolution at
high frequencies but a lower frequency resolution. Otherwise,
at lower frequencies, the wavelet will have a better frequency
resolution but a lower time resolution. The above is illustrated
in Fig. 2d.

The term continuous wavelet transform (CWT) refers that
the scale (s), and translation (#) parameters shown in (5) are
varied continuously rather than to a continuous time function.
Otherwise, the discrete wavelet transform employs what is
called dyadic sampling to choose the values of the scale and
translation parameters. The dyadic sampling process involves
selecting values equal to the powers of two. The above can be
expressed as shown in (8) where j is the scale parameter, and
k is the shift parameter, both of which are integers.

1 1/f(t — k2
NN

In addition, with the adequate selection of a wavelet, the
discrete wavelet transform could produce an orthogonal basis
(e.g., Meyer wavelet or Daubechies wavelets). The above
makes the discrete wavelet transform a common choice for
audio or image compression tasks [27]. In this case, the
GMWs are mostly used through the CWT rather than the
discrete wavelet transform. This wavelet family will be intro-
duced in the following section.

Vi) = ) (8)
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B. GENERALIZED MORSE WAVELETS

This section presents a general overview of the theoretical
background of GMWs and their properties. Nevertheless,
a deeper explanation of this wavelet family can be found in
[18], [21], and [30].

GMWs are time-frequency localized filters with vanishing
support at negative frequencies, making them analytical func-
tions. Although an analytical function must necessarily be
complex, they are entirely characterized by its real part. Ana-
lytical wavelets are preferred to analyze the oscillatory behav-
ior of signals or time evolution of frequency transients [27].
The above is achieved by decoupling the amplitude and phase
of the signal through complex functions. On the other hand,
real or non-analytical wavelets are better suited to localized
discontinuities or sharp signal transitions [18], [27]. GMWs
are expressed in the frequency domain as shown in (9).

o0
Vg, = / lpﬂ,y(t)e_iw’dt = U(a))aﬂg},a)ﬁe_wy 9)

—00
where Wg ,, is the frequency domain representation of the
GMWs, g ,,(¢) is the time domain wavelet function, ag , is
anormalization constant, U (w) represents a unit step function
defined in the frequency domain, § and y are the parameters
that control the wavelet form. The parameters 8 and y control
the wavelet function’s time and frequency domain decay,
respectively. To be a valid wavelet, the gamma and beta must
be greater than zero (y > 0,8 > 0). The normalization
constant is equivalent to ag, = 2(ey/ B)PY with e being
Euler’s number [30]. In addition, the frequency domain rep-
resentation of the GMWs achieved their maximum value at
the peak frequency wg , = (g)l/ Y. This is the frequency at

which the derivative of Wg ,, (w) with respect to w becomes
zero [31].

GMWs receive their name since, by considering y = 1,
this family of wavelets is equivalent to a solution of the
Schrédinger equation studied by Morse in [32]. Furthermore,
the selection of a wavelet is reduced to selecting the values of
B and y in this super-family of wavelets.

The parameter space of the GMWs can be set based on
the Heisenberg Area, a measurement of the time-frequency
concentration and energy localization of a wavelet. The
Heisenberg area is defined as shown in (10). Where o;
and o, are the standard deviation of the wavelet in the
time and frequency domains, respectively. Hence, the setting
of f and y provides a way to control the wavelet func-
tion’s form in time and frequency. For fixed values of y
and increasing values of B, Heisenberg’s area of GMWs
decreases [18].

Ay = 004 (10)

Furthermore, based on Heisenberg’s uncertainty principle,
it is known that Heisenberg’s area is at least one-half as
expressed in (11) [27].

1
010w Z 5 (11)
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FIGURE 3. Time and frequency domain representations of the Generalized Morse Wavelets for different values of gamma and beta. The left
section shows the time domain representation of the Generalized Morse Wavelets. The blue function represents the real part of the wavelet, the
orange function is the imaginary part of the wavelet, and the yellow function represents the magnitude of the wavelet function. The right section
shows the magnitude of the Fourier transform of the Generalized Morse Wavelets. This image was adapted from [18] with the help of the

software package provided in [29].

This lower-bound is achieved by Gaussian functions of the
form shown in (12) for « > 0, and p is a constant [33].

w(t) — pe—a(I—[())z-‘rjw()t (12)

In the case of GMWs, Heisenberg’s area lower-bound is
achieved for y = 3, which is equivalent to the so-called Airy
wavelets. These wavelets are the most symmetrical and most
nearly Gaussian [18]. Besides, the Heisenberg area is unde-
fined for 8 < % Additionally, the dimensionless duration of
the wavelet in the time domain or inverse bandwidth can be
defined in terms of 8 and y as shown in (13). The Pg ,, term
allows controlling the number of oscillations of the wavelet

in the time domain.
P By = By

GMWs can be expressed in terms of the duration Pg ,,
which leads to the expression shown in (14):

(13)

o
) p?
p, = / Yp, (e dt = U(w)ap 07 e (14)

—0o0
The expression shown in (13) when expressed as shown in
(15) receives the name of the time-bandwidth product.

P? = By

Other families of wavelets that can be obtained by chang-
ing the values of y are the Derivative of Gaussian family for
y = 2 and the Cauchy family for y 1. As mentioned
before, when y 3, the GMWs are equivalent to the

Airy Wavelets, which are approximately equal to the Mor-
let Wavelets. Nevertheless, Morlet Wavelets are not strictly

(15)
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analytical as presented in [18]. Therefore, GMWs, by being
analytical, avoid problems associated with non-analytical
wavelets, such as the introduction of artifacts and interference
in the time-frequency plane, which yields erroneous ampli-
tude and phase estimates [31].

In addition, as stated in [30], GMWs only have a finite time
spread for 8 > % Having a very long time decay is useless in
practice. Thus, a lower-bound can be set at § = 1 for useful
values of § as explained by Lilly et al. [30]. On the other
hand, the smallest value of the duration parameters Pg , is at
Pg , = 1; this implies that y = 1. The above suggests that
the wavelet completes a full cycle within its central window.

Finally, Fig. 3 shows the behavior of the GMWs in the
time (see Fig. 3 left) and frequency (see Fig. 3 right) domains
for different values of y and B. In general, by examining
Fig. 3 it is possible to notice that by increasing the value of
B and fixing the value of y, the number of oscillations and
thus the time duration of the wavelet increases. On the other
hand, when the value of y increases or decreases and the
values of B remain constant, the symmetry of the frequency
representation changes. By increasing y, the skewness of
the frequency representation becomes negative. Otherwise,
by decreasing y, the skewness becomes positive [18].

C. SOFTWARE IMPLEMENTATIONS OF THE GENERALIZED
MORSE WAVELETS

The software implementation of GMWs is provided by
Lilly et al. [29] in the data analysis package for MATLAB
named jLab. Specifically, the jWavelet module of the jLab
package provides functions to compute the CWT, the
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FIGURE 4. Heisenberg area of the parameter space of the Generalized
Morse Wavelets. The darker tones correspond to a higher Heisenberg
Area, while the whiter colors refer to a lower Heisenberg area. It is
essential to highlight that the value of the Heisenberg area has a
lower-bound of one-half; therefore, the color scale has a lower-bound of
0.5. The vertical red line denotes the gamma value of 3, where the
Generalized Morse Wavelets approximate the lower-bound of the
Heisenberg Area.

Heisenberg area and Heisenberg box of the GMWs, the fre-
quency domain derivatives of GMWs, and the Morlet wavelet
can be computed for comparison with the GMWs. On the
other hand, the MATLAB implementation of the CWT uses
the GMW family to compute the WT coefficients. The param-
eterization used in the MATLAB implementation is equiva-
lent to the one shown in (14); thus, two parameters are set
gamma (y) and the time-bandwidth product (P?). The default
value of gamma is y = 3, while the default value of the
time-bandwidth product is P> = 60. Notice that the value of
gamma is not set arbitrarily in the MATLAB implementation
since, as mentioned in the previous Section, GMWs exhibit a
zero skewness for y = 3 and achieve the lower-bound of the
Heisenberg’s area presented in (11).

Fig. 4 shows Heisenberg’s area of the GMWs computed
through the help of the jLab package provided in [29]. The
Heisenberg’s area shown in Fig. 4 was concentrated in values
of beta greater than one-half since the area is under-defined
for values smaller or equal to one-half. Hence, the beta values
are from the range of 1 to 64. Otherwise, the values of
gamma were between one-half and 64. The darker colors
shown in Fig. 4 correspond to a greater Heisenberg area,
while the whiter colors correspond to a lower Heisenberg
area. As explained in the previous Section, the lower-bound
of the Heisenberg area is 0.5. Therefore, the vertical red line
denotes the value of y = 3, where GMWs approximates
Heisenberg’s area lower-bound.

IV. APPLICATIONS OF THE GENERALIZED MORSE
WAVELETS

A. MEDICAL AND BIOMEDICAL ENGINEERING
APPLICATIONS

Time-frequency analysis has been applied extensively to ana-
lyze and classify physiological signals. Electrocardiography
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(ECG), electromyography (EMG), photoplethysmography
(PPQG), electrooculography (EOG), and electroencephalogra-
phy (EEG) are examples of physiological signals that have
been studied in biomedical and medical engineering appli-
cations. The above is done since physiological signals are
considered non-stationary phenomena [34], [35], [36], [37],
[38]. Within the literature, the applications of GMWs have
been focused on two main applications, disease detection or
physiological signal classification. Table 1 shows a summary
of the studies and the parametrizations of the GMWs used
in medical and biomedical engineering applications. The
parameters of the GMWs under parenthesis in Table 1 were
estimated based on the expression shown in (13); neverthe-
less, they were not initially reported by the authors of the
respective study.

One recent example of the use of GMWs in the field of
biomedical engineering and disease detection is the work of
Yan et al. [34], where low dimensional spectro-temporal fea-
tures were used for seizure detection. The spectro-temporal
features were derived from EEG data through the CWT.
The mother wavelet was a Morse wavelet with the default
parameters available in the MATLAB implementation, which
takes a gamma value of ¥ = 3 and a time-bandwidth product
of P? = 60. In addition, this representation used the mean-
standard deviation of the WT coefficients as features. Finally,
the detection was performed with a 1D convolutional neural
network (CNN).

Likewise, Mohanto et al. [46] proposed using the CWT and
Morse wavelet for arrhythmia detection performed through a
2D CNN. The trained model was used to detect five types
of heartbeats by processing ECG data: normal, left bundle
branch block, right bundle branch block, atrial premature, and
premature ventricular contraction. However, the parameters
of the Morse wavelet were not specified by the authors.
Furthermore, in [45], GMWs were used for abnormal heart
sound classification in combination with CNNs. Neverthe-
less, similar to Mohanto’s study, the parameters of the Morse
wavelet were not conveyed.

Alafeef et al. [39] proposed a gait analysis system to diag-
nose idiopathic Parkinson’s disease. The methodology con-
sisted in computing the CWT of the vertical ground reaction
force through a Morse wavelet and plotting the real value
and imaginary part of the CWT coefficients. Based on the
generated plot, the area of the generated ellipse shape was
estimated and used as a feature, along with the CWT’s mean
and peak energy. The classification was performed through
the use of an artificial neural network. This work set gamma
to 3, and the time-bandwidth product was designated to 60.
These values coincide with the default values established by
the MATLAB implementation of the GMWs and the CWT.

GMWs have also been used on physiological signals for
the analysis of stress. For instance, in [47], the skin poten-
tial response (SPR) signals measured from the hands of the
drivers and the ECG were used to evaluate the presence of
stress intervals in traffic and nontraffic scenarios. In partic-
ular, the CWT performed with the help of a Morse wavelet
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TABLE 1. Summary of the parametrizations used for Generalized Morse Wavelets in medical and biomedical engineer applications.

Analyzed signal, system, or L.
Author Year | Parameters of GMWs Application of the GMW
process
y=38=8 . . . .
. EMG signal Isolation of relevant features from EMG in muscle
‘Wachowiak et al. [37] (P2 =24)
2018 3 1 bursts while skating and assessing heart
V=38= ECG signal variability through ECG.
(P?2 =12)
v=3,P?2=60 . ‘ . o . , ,
Alafeef et al. [39] 2019 (8 = 20) Vertical Ground Reaction Force Diagnosis of idiopathic Parkinson’s disease.
y=3,P?=60 . . .
Byeon et al. [40] 2019 (8 = 20) ECG signal Biometric identification through ECG.
~v=3,P%2 =60 . Analysis of heart rate variability and estimation of
Cartas-Rosado et al. [41] | 2020 ECG signal
(B = 20) the autonomic cardiac regulation.
=3,8=5 . . .
Smarr et al. [42] 2020 W(P 5 615) Temperature time series data Analysis of temperature data through the CWT.
Data related to high frequency
3.8=5 distal body temperature,
Grant et al. [43] 2020 K }_) 5 ’ 1;) the sleeping heart rate, Prediction of the preovulatory luteinizing hormone.
P = the sleeping heart rate variability,
and the sleep timing.
X v=3,8=1.58174 L Filtering of frequencies related to
Wiklendt et al. [44] 2020 Synthetic signals and EMG data ) L .
(P? = 4.74522) the shape of action potentials in electrophysiology.
. . Classification of abnormal heart sounds
Malik et al. [45] 2020 Not reported Heart sound audio data
through CNNs.
Imagined speech recognition performed through
Agarwal et al. [36] 2022 Not reported EEG data
CWT and CNN
~v=3,P2=60 . Extraction of spectro-temporal features for
Yan et al. [34] 2022 EEG signal
(B =20) Seizure detection.
. Arrhythmia classification through
Mohonta et al. [46] 2022 Not reported ECG signal
CWT and CNNs.
v=23, P2 =60, . . . Stress interval analysis by measuring SPR
Zontone et al. [47] 2022 Skin Potential Response signals
(B = 20) and employing the CWT.
. . . Analysis of the epidemic evolution of COVID-19
Campi et al. [48] 2022 Not reported Daily deaths and RIC-index data
through daily deaths and RIC-index data.
. ~v=3,P%2 =60 Estimation of the root-mean-square gamma power
Davila et al. [49] 2022 EEG data
(B =20) through a CWT filter bank.

was used to analyze the SPR signals and identify patterns that
show intervals of stress. The ECG and EMG were also inves-
tigated in [37] by applying the GMWs. These wavelets were
used to isolate relevant features from EMG in muscle bursts
while skating and assess heart variability in the ECG. The
parameters of the Morse wavelet to generate the scalogram
for the EMG signal were 8 = 8, and y = 3, and for the
ECG signal, were 8 = 4, and y = 3. Another example of the
analysis of ECG data through Morse wavelets and the CWT
is the one presented by Cartas-Rosado et al. [41], in which
the ECG was sampled to analyze the heart rate variability
and consequently estimated the automatic cardiac regulation.
The CWT was used to extract the frequency bands of the
ECG into three sub-bands labeled as high frequency, low

674

frequency, and very low frequency. The parameterization of
gamma was y = 3, and the time-bandwidth product was set
as P? = 60.

In a similar study, Byeon et al. [40] worked with the
ECG signal for bio-metric identification performed by gen-
erating and scalogram of the ECG waveform through the
Morse wavelet and selecting the default parameters of the
MATLAB implementation. Additionally, Agarwal et al. [36]
presented a subject-independent brain-computer interface by
analyzing EEG data. This work aimed to measure imag-
ined speech through EEG data and classify the EEG signals
into four words (i.e., SOS, stop, medicine, wash-room) and
one phrase (i.e., come-here) by employing a long-short-term
memory. However, a comparison was performed with CNNs
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by transforming the EEG into a scalogram using the Morse
wavelet and feeding it to the CNN.

Furthermore, in the study of Smarr et al. [50], the CWT and
the GMWs were used to analyze temperature data of patients
with COVID-19 to identify patterns on the onset of fever.
The gamma parameter was 3, and the beta parameter was set
to 5. In previous studies presented by Smarr in [42], ultradian
frequencies of core body temperature were studied through
the CWT and used for the early detection and separation
of pregnancy by employing a mouse model. Similarly, the
parameters of the GMW were set as § = 5 and y = 3.
The WT has also been useful in the study of the epidemic
evolution of COVID-19. For example, Campi et al. [48] ana-
lyzed the daily deaths per million caused by the COVID-19
epidemic and SARS-CoV-2 contagiousness measure through
the RIC-index (i.e., the ratio of the time reproductive number
and the doubling time). The Morse wavelet was used to
generate the scalogram of the daily days data and RIC-index;
however, the authors did not report the values of y and .

As presented in [50] time-frequency analysis tools have
proven useful in analyzing patterns related to the onset of
symptoms. Similar work was performed by Grant et al. [43]
where the WT was used to analyze non-invasive measures
associated with the reproduction system of women, such
as the high-frequency distal body temperature, the sleeping
heart rate, the sleeping heart rate variability, and the sleep
timing to predict the preovulatory luteinizing hormone and
provide a non-invasive method for fertility assessment. The
WT analysis was performed using GMWs and establishing
beta and gamma values to five and three, respectively.

Another common use of the WT is for filtering or denoising
purposes. The above is crucial in physiological signal pro-
cessing since the noise, or specific frequency bands, can alter
the sampled signals, and their analysis [51]. For instance, the
study of Wiklendt et al. [44] presented a technique that allows
for the retention of frequencies that encode the periodicity of
spike trains in EMG signals while filtering out frequencies
that contribute to the morphologies of action potentials by
employing the CWT. Similar to other studies presented in
this study, the gamma parameter was set to 3, while the beta
parameter was established as 1.58174. The value of B8 was
determined heuristically.

Although it is widely used for time series data or 1D
signals, the concept of the WT transform can be used for
image and video processing. For example, in [52], the CWT
was proposed to eliminate the distortions from remote PPG
signal acquired from RGB videos to improve the estimation
of non-contact pulse rate. Similar to other works, the gamma
was set to 3 while the beta was selected based on the window
length of the processed video. These window lengths were 32,
64, 128, and 256 frames. However, the authors did not report
the exact values of the beta parameter for each window length.

Finally, the WT has also been implemented in closed-
loop control strategies. The study of Davila et al. [49]
sought to achieve a closed-loop modulation strategy of hip-
pocampal oscillatory activity. The analysis was centered on
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hippocampal gamma power, a signal that has a known rela-
tionship with episodic memory processing. It is a potentially
useful biomarker for manipulating memory performance.
A linear quadratic integral servo controller is used to control
the hippocampal gamma power. A wavelet filter bank per-
formed through GMWs was employed to estimate the instan-
taneous root-mean-square gamma power. Gamma and the
time-bandwidth product were equal to 3 and 60, respectively.

B. DYNAMICAL SYSTEMS ANALYSIS

GMWs have been used to study fluid dynamics, vibration
analysis, and systems analysis. These topics can be associated
with the field of dynamic systems analysis. This section
presents a brief review of studies related to the abovemen-
tioned areas. Table 2 shows a summary of the studies and the
parametrizations of the GMWs used in fluid dynamics, vibra-
tion analysis, and systems analysis. The parameters of the
GMWs that are under parenthesis in Table 2 were estimated
based on the expression shown in (13); nevertheless, they
were not originally reported by the authors of the respective
study.

1) FLUID DYNAMICS

The study of turbulent spots (i.e., concentrations of vortices
with high eddy strength) has been carried out using GMWs.
For example, Wang et al. [57] study the early emergence of
artificially induced turbulence patches across a flat plate in
a laminar boundary layer in a low-turbulence wind tunnel.
The GMWs were used to analyze the downstream variation in
the turbulence energy distribution within incipient turbulent
spots. Similarly to other works that have used the GMWs,
gamma and time-bandwidth product were set to 3 and 60,
respectively. Besides, in a recent investigation of the authors
mentioned above presented in [58], GMWs were used to
study the downstream variation in the turbulence energy dis-
tribution within incipient turbulent spots. The set of param-
eters of the GMWs remains the same. However, the study
focused on applying opposition control of artificially initiated
turbulent spots.

On the other hand, Riches et al. [53] utilized proper orthog-
onal decomposition (POD) to study the wake-dynamics
of a low-mass ratio circular cylinder that is experiencing
upper and initial branch vortex-induced vibrations. In par-
ticular, the CWT and GWWSs were employed to generate
a time-frequency representation that clarifies how differ-
ent POD mode pairs interact. This study tested different
beta and gamma values; nevertheless, the authors reported
that the results were insensitive to different values of the
time-bandwidth product parameter. The final setting of the
GMWs parameters were § = 120 and y = 3. Otherwise,
Liu et al. [54] studied the temporal and spatial evolution of
sand ripples and waves in a turbulent boundary layer airflow.
The CWT and the GMWs were used to analyze the time series
of the sand bed height fluctuations in separate streamwise
positions. Yates et al. [55] used the CWT and the Morse
wavelets to determine the spatial wavenumber distributions
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TABLE 2. Summary of the parametrizations used for Generalized Morse Wavelets in fluid dynamics, vibration analysis, and systems analysis.

Analyzed signal, system,

Author Year | Parameters of GMWs Application of the GMW
or process
Fluid Dynamics
Riches et al. [53] 2018 vy = 1;, B =120 Interaction ot." 1')r0per orthogonal A.nalysis of' the wake dynamics of a lo.w-mass re.ltio '
(P* = 360) decomposition mode pairs circular cylinder under branch vortex-induced vibrations.
Liu et al, [54] 2020 Not reported Time s'eries of the éand bed énalysis of the ten'lporal and spatial evolution of 'sand
height fluctuations ripples and waves in a turbulent boundary layer airflow.
Yates et al. [55] 2020 ~v=3,P2=60 Heat-flux profiles Deterr.nination of the spatial wavenumber distributions
(B8 = 20) of stationary cross-flow waves.
Analysis of st ar-inertial wave signals at the bas
Lelong et al. [56] 2020 Not reported Wave signal Hatysts 0_ strong near ere 1 vx./avc signa’s at the base
of the semipermanent anticyclonic Cyprus Eddy.
— 3 P2 — g0 Analysis of the downstream Study the early emergence of artificially induced
Wang et al. [57] 2021 v _(5’* 20_) variation in the turbulence turbulence patches across a flat plate in a laminar
o energy distribution boundary layer in a low-turbulence wind tunnel.
Analysis of the
Wang et al. [58] 2022 ~=3,P2 =60 dolwnstrcam variation {\?Plication of opposition control of artificially
(B = 20) in the turbulence initiated turbulent spots.
energy distribution
Vibration Analysis
) ~v=3,P2=60 o ) o
Abuhamdia et al. [59] | 2018 (8 = 20) Mechanical vibrations Decoupling modes of mechanical vibrations.
Baldini et al. [60] 2020 Not reported Vibration signal Classification of road surface anomalies through CNNs.
=3,P%2=60 . Fault di is of a shaft-disk system through th
Khan et al. [61] 2021 v Vibration signal au't cragnosis of a shall-cisi system fhrough the
(B =20) CWT and CNNs.
Garro et al. [62] 2021 Not reported Vibroacoustic Analysis of the auto'motive door latch acoustic
response of latch door response when closing.
Civera et al. [63] 2022 v = 2, B =20 o Gearb'ox ' Estimatior'l of the. iflstar?taneou% spectral entropy
(P* = 60) vibrations of wind turbines for fault diagnosis in wind turbines.
=3,8=20 L Detection of sudden d -related to structural
Civera et al. [64] 2022 v 5 A Vibration signal election o ,Sl'l en damage re' a\e O structura
(P = 60) changes of civil structures and infrastructures.
Systems Analysis
Three degree of
freedom hypothetical system, Model er identification th h th
odel parameter identification throu e
Mabhato et al. [65] 2019 Not reported Building under P &
L. synchrosqueezed wavelet transform.
earthquake excitation,
Thin beam with lumped masses
Non-linear assemble Nondi tem identificati f dth b
on-linear system identification performed throu
Jin et al. [66] 2019 Not reported structures Y P ¢
i i . Morse wavelets.
system identification
=3,6=27 L. Identificati f structural time- i t
Wang et al. [67] 2020 v 5 A Civil structures entification of strue ura} n.ne VAryIng parameters
(P* =81) for structural health monitoring.
. . . Approximation of slow and fast dynamics from
.. y=3,=20 Time series of iron . . . .
Magriri et al. [] 2020 5 . . time series that is characterized by local scales
(P* = 60) electrodissolution . . X
in the time domain.
Dynamic Reproduction of
Projectiles in Ballistic . L .
Yan et al. [68] 2020 Not reported . Real-time state estimation for high-rate systems.
Environments for
Advanced Research testbed
Zhu et al. [69] 2021 vy=3,=31 Bridge weight-in-motion Monitoring of the vehicle bridge weight-in-motion
(P? =9.3) system system through the CWT and CNNs.
Mitra et al. [70] 2002 ~v=3,P2=60 ‘ Contr(?l of a Freguency-dependent gain scheduling for optimal
(B8 = 20) wind turbine tower tuning based on the WT.
=3,P2=60 . Calibration of t f structural syst through
Lanning et al. [71] 2022 v Nonlinear structural systems anbration of parameters of structurat systems froug
(B =20) CWT and CNNs.
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of stationary cross-flow waves from experimental data. The
parameters of the Morse wavelet, similar to other studies
presented, were 3 for the value of gamma and 60 for the time-
bandwidth product.

Finally, Lelong et al. [56] investigated how near-
inertial/eddy interactions affect energy removal from
the mixed layer by analyzing observations from strong
near-inertial wave signals at the base of the semipermanent
anticyclonic Cyprus Eddy. A hybrid temporal-spatial decom-
position was proposed to study the flow dynamics of the eddy.
The CWT and the GMWSs were used to analyze the wave
signal. However, the parametrization of the Morse wavelet
was not reported in the study.

2) VIBRATION ANALYSIS
Mechanical vibration analysis performed through time-
frequency analysis methods has also been carried out with
the help of GMWs. An instance of this was reported by
Abuhamdia et al. [59]; this study introduced the theory of the
so-called Laplace Wavelet Transform to analyze the decou-
pling modes of mechanical vibrations; the results were com-
pared with the results obtained through the GMWs. Like other
studies mentioned in this review, gamma was established
as 3, while the time-bandwidth product was set at 60. More-
over, the classification of vibration signals for road surface
assessment applied through GMWs was proposed by Baldini
et al. [60]. The previous study compared the spectrogram of
the STFT and the scalogram of the WT generated by a Morse
wavelet to classify road surface anomalies through the pro-
cessing of accelerometer signals. Nevertheless, the authors
did not report the setting of the Morse wavelet parameters.
In [61], fault diagnosis of a shaft-disk system was performed
through transfer learning and pre-trained CNNs. The input
to this CNN model was the scalogram of the vibration signal
sensed in the rotor system. The time-frequency representation
was generated via the GMWs by utilizing the default values
of its parameters of the MATLAB implementation.
Vibroacoustic responses have also been studied using the
WT and GMWs. For example, Garro et al. [62] studied the
primary influence of an automotive door latch’s acoustic
response when closing. Three door latch components’ tran-
sient sound pressure level responses were collected and ana-
lyzed. The spectral decomposition of the acoustic response
was investigated using the CWT, but the authors did not
disclose the Morse wavelet parameters. Finally, Civera et al.
[64] proposed to employ the instantaneous spectral entropy
and CWT to analyze the gearbox vibrations of wind turbines
for anomaly detection and defect diagnostics. This is one
of the few studies in which an extensive explanation and
analysis of different values of gamma and beta were presented
while establishing the parameters to compute the CWT and
performing a sensitivity analysis of the instantaneous spectral
entropy estimation. The above led the authors to conclude
that the optimal values of gamma and beta for this particular
application were y = 3 and 8 = 20. The authors used
the same values of beta and gamma in [63] to estimate
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the instantaneous spectral entropy of vibration signals for
detecting sudden damage related to structural changes of civil
structures and infrastructures.

3) SYSTEMS ANALYSIS

As mentioned in the previous sections, the CWT and the
GMWs have been used to analyze fluids and vibrations. This
section presents a summary of the application of this wavelet
function for analyzing dynamical systems. Magrini et al. [72]
presented a methodology based on the CWT for approximat-
ing slow and fast dynamics from time series characterized by
local scales in the time domain. In this study, the values of
gamma and beta of the GMWs were chosen to be 3 and 20,
respectively. The methodology was tested on a time series of
iron electrodissolution characterized by slow chaotic dynam-
ics and irregular spiking. Parameter identification of time-
varying systems has been performed with the help of the
WT. In [67], it was proposed to identify the structural time-
varying parameters with the combination of variational mode
decomposition and GMWs for structural health monitoring.
The parameters y and B were set as 3 and 27, respectively.

Similarly, Lanning et al. [71] examine the use of machine
learning to calibrate the parameters of analytical models of
nonlinear structural systems due to the lack of data in this
area. The chosen machine learning architecture were CNNss,
whose inputs were scalograms obtained through the CWT
and GMWs. Similar to other works presented in this review,
the values of the gamma and the time-bandwidth product
were 3 and 60, respectively.

Another example of parameter identification is shown by
Mabhato et al. [65], where the synchrosqueezed WT was pro-
posed for this purpose. The GMWs were selected to compute
the synchrosqueezed WT. The method was tested on differ-
ent systems, such as a three-degree-of-freedom hypothetical
system, a building under earthquake excitation, and a thin
beam with lumped masses. Furthermore, employing time-
frequency representations and wavelets has also approached
nonlinear system identification. For example, Jin et al. [66]
proposed to identify assembled nonlinear structures systems
by comparing the STFT, Hilbert transform, zero-crossing,
restoring force surface, restoring force, neural networks, and
Morse wavelets.

As can be appreciated from the previous studies, the analy-
sis of structural systems has been performed through GMWs.
Another example of this is shown in [73], where a wireless
large-area strain sensor (WLASS) was used to measure large-
area strain fatigue cracks of steel bridge structures under
traffic loading. The CWT was used to analyze the WLASS
data by setting the parameters of GMWs as follows y = 1.5,
and P2 = 3.

Moreover, GMWs have also been utilized for control engi-
neering strategies. For example, Mitra et al. [70] presented a
control strategy based on the WT for a wind turbine tower
with an onshore horizontal axis vibration. The WT is used
to perform a frequency-dependent gain scheduling for opti-
mal tuning. Besides, the WT was used to transform the
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controller’s input and feedback to remodel a linear quadratic
regulator in the time-frequency domain. The authors of this
study employed the default values of the parameters of the
GMWs available in MATLAB.

Automatic vehicle system monitoring methods have also
been conceived through the CWT. For example, Zhu et al.
[69] provided a procedure for vehicle monitoring of a bridge
weigh-in-motion system based on acceleration and employ-
ing deep learning and the WT. The CWT was used to generate
scalograms to train a CNN for detecting a valid sequence from
the acceleration data and for valid axle localization performed
with an adaptive wavelet method. The mother wavelet used to
develop this system was a GMWs with y = 3 and 8 = 3.1.
Finally, Yan et al. [68] compare time-frequency methods such
as the WT, the STFT, WVD, synchrosqueezed transform, and
multi-synchrosqueezed transform to perform real-time state
estimation for high-rate systems. In particular, the authors
selected the Morse wavelet to compute the WT. The study
used the experimental data from the Dynamic Reproduc-
tion of Projectiles in Ballistic Environments for Advanced
Research testbed [74].

C. ELECTRICAL ENGINEERING

The analysis of electrical power systems refers to the network
of electrical devices constructed to provide, transmit, and
use electrical energy. This section presents the application of
the GMWs and the CWT related to electrical power systems
and electrical engineering. Table 3 shows a summary of the
investigations and the parametrizations of the GMWs used in
electrical engineering. The parameters of the GMWs under
parenthesis in Table 3 were estimated based on the expression
shown in (13). Nevertheless, they were not initially conveyed
by the authors of the respective study.

In this context, Allan et al. [76] proposed an islanding
detection method for renewable-based distributed energy
resources. The proposed algorithm was based on a CNN
that used as input the scalogram of the voltage islanding
signal generated with the help of GMWs. Besides, Seyedi
et al. [77] studied the post-fault transient response in hybrid
AC/DC microgrids by performing a time-frequency decom-
position using the CWT. The CWT was applied to data from
simulations of electromagnetic transients in grid-connected
and islanded modes of operation. The Morse wavelet was
parametrized with gamma equal to 3 and a time-bandwidth
product of 120. Furthermore, Abedini-Livari et al. [75] used
phase-resolved partial discharge patterns to examine the
effects of contaminated layer and housing-erosion on partial
discharges at the insulator surface. The CWT and GMWs
were used on the partial discharge signals to identify polluted
insulators used on power grids.

The condition of elements used in power systems has also
been studied with GMWs. For instance, in [78], the health of
a dc-link capacitor inside a three-phase inverter was moni-
tored through the CWT and machine learning. The CWT was
used to analyze the conducted electromagnetic interference,
and the classification was performed with a support vector
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machine. Similar to other research works presented in this
study, the parameters of the Morse wavelet were established
as follows, the gamma parameter was equal to 3, the time-
bandwidth product was 60, and the voices or wavelets per
octave were established to be 10. Fault diagnosis of induction
motors has also been studied with the help of Morse wavelets
and the CWT. For instance, Pasqualotto et al. [11] employed
the CWT on the signal of the stator current during the startup
of an induction motor to generate a scalogram that could
be used as input to a 2D CNN to detect faults related to
broken bars in induction motors. The authors did not detail the
parameters of the GMWSs. However, the analyzed frequency
range was reported to be from 5 to 60 Hz, and the decompo-
sition level of the CWT was 36.

The analysis of power sources, such as battery state health,
has also been studied through the CWT and GMWs. For
example, Nusev et al. [12] used a discrete random binary
sequence-based broadband electrochemical impedance spec-
troscopy to measure changes in the battery input to make less
intrusive the operation process of the battery and monitor
its condition. The impedance was analyzed by processing
current and voltage signals through the CWT and GMWs.
The value of gamma and beta were not mentioned in this
study.

D. GEOPHYSICS

As mentioned in Section III. The WT concept was first
introduced in the geophysics field by Morlet et al. [5] in the
early 1980s. More recently, GMWs have also been used to
analyze seismic data. This section presents a brief review
of research that has employed this wavelet family for geo-
physics analysis. Table 4 shows a summary of the studies and
the parametrizations of the GMWs used in geophysics. The
parameters of the GMWs under parenthesis in Table 4 were
estimated based on the expression shown in (13); neverthe-
less, they were not originally reported by the authors of the
respective study.

Wang et al. [79] presented an approach to estimate the
instantaneous frequency of seismic data through the wavelet
domain. The approach was compared with the instantaneous
frequency results obtained through the Hilbert transform.
According to the authors, the proposed method based on the
GMWs and the WT showed a higher precision and anti-noise
performance than the Hilbert transform. The setting of y and
B was set to 3 and 1, respectively. In [80], the same values for
y and B were used to perform a spectral decomposition of 3D
seismic data to detect fluvial channels with thickness around.
The above parametrization of GMWs was also compared with
the Morlet wavelet, where the GMWs demonstrated better
performance for time localization than the Morlet wavelet.

Witney et al. [81] examined GMWs to determine their
capacity to derive ground motion pulses from a collection of
acceleration samples. Different sets of values P and y were
tested. From the presented analysis, gamma was set equal
to 2 and the inverse bandwidth (P) equal to 4. Wang et al.
[82] worked with the GMWs to develop a machine-based
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TABLE 3. Summary of the parametrizations used for Generalized Morse Wavelets in electrical engineering applications.

Author Year | Parameters of GMWs Analyzed signal, system, or process Application
. L . Identification of contaminated insulators
Abedini-Livari et al. [75] | 2020 Not reported Partial discharge signals ]
used on power grids.
Islanding detection for renewable-based
Allan et al. [76] 2021 Not reported Voltage islanding signal distributed energy resources performed
through the CWT and CNNs.
5 . . . Study of the post-fault transient response
R v =3,P° =120 Electromagnetic transients in grid-connected | . . .
Seyedi et al. [77] 2021 ; . in hybrid AC/DC microgrids through the
(B = 40) and islanded modes of operation
CWT.
. . i Detection of faults related to broken bars
Pasqualotto et al. [11] 2021 Not reported Stator current signal of induction motor o ]
in induction motors.
Impedance analysis through current o .
Nusev et al. [12] 2021 Not reported ) Health monitoring of batteries.
and voltage signals
~v=3,P2=60 Electromagnetic interference of Monitoring the health of a
Mcgrew et al. [78] 2022 ) . )
(B = 20) three-phase inverters DC-link capacitor.
TABLE 4. Summary of the parametrizations used for Generalized Morse Wavelets in geophysics.
Author Year | Parameters of GMWs | Analyzed signal, system, or process Application
5.8=1 Estimation of instantaneous frequency
Wang et al. [79] 2013 v (;32’ ;) Seismic data from seismic data performed through
- the CWT.
y=3,8=1 o Detection of fluvial channels with
Wang et al. [80] 2016 3D Seismic data ]
(P?2=3) thickness around through the CWT.
=2
Whitney et al. [81] | 2019 ; Acceleration seismic data Derivation of ground motion pulses.
vy=3,68=1 L. Determination of the Sulige gas field’s
Wang et al. [82] 2020 Seismic data ] . ]
(P2 =3) tight-sand reservoir’s thickness.
Characterization of the time-frequency
Lurka et al. [83] 2021 Not reported Seismic data properties of the ground motions produced
by seismic sources.
. ~v=3,P2=60 Acoustic emission Determine the relative source
Moriya et al. [84] 2021 . .
(B =20) waveform location of seismic events.
Ground motion Image encoding of ground motion
Yuan et al. [85] 2021 Not reported . ) . ]
time series time series performed through the CWT.

system for seismic spectral attribute analysis to determine the
thickness of the Sulige gas field’s tight-sand reservoir. The
parameters of the Morse wavelets were selected based on a
three-layer wedge model whose rock parameters are from a
tight reservoir. The above led to choosing a value of beta equal
to 1 and gamma equal to 3. Furthermore, Lurka et al. [83]
employed the CWT and Morse wavelets to characterize the
time-frequency properties of the ground motions produced
by seismic sources in underground mines. Nonetheless, the
values of gamma and beta were not reported.

As can be appreciated, seismic data evaluation performed
through the WT is particularly interesting in the literature.
Moriya et al. [84] used the GMWs and the CWT to calculate
the phase-only correlation function to find similar acoustic
emission waveforms. These waveforms must be detected
to determine the relative source location of seismic events.
The detection of acoustic emission is crucial since acoustic
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emission provides information on fracture systems, like the
orientation of fractures in geothermal reservoirs. The setting
of the GMWs was P2 = 60 and y = 3.

Finally, Yuan et al. [85] proposed an image encoding tech-
nique performed through time series segmentation that trans-
forms acceleration, velocity, and displacement ground motion
time series into a three-channel image of the ground motion.
This image is used as input for a CNN for seismic damage
evaluation. The proposed encoding technique was compared
with traditional methods, such as the CWT computed through
Morse wavelets.

E. COMMUNICATIONS SYSTEMS

The processing and analysis of information employed in
communications systems have also been performed through
GMWs. Examples of its applications are described in this
section. Table 5 shows a summary of the studies along with
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TABLE 5. Summary of the parametrizations used for Generalized Morse Wavelets in communication systems.

Author Year | Parameters of GMWs | Analyzed signal, system, or process Application

Tahir et al. [86] 2019 Not reported Wireless Channel State Information | of Parkinson disease patients through

Classification of the freezing of gait

the CWT and CNNs.

o . Detection and characterization of radio
Digital video streams

not reported.

Ujan et al. [87] 2020 Not reported ) . frequency interference in wireless
as signal of interest T
communications networks.
. WiFi received signal strength Indoor localization performed through
Ssekidde et al. [88] 2021 Not reported
indicators data the CWT and CNNs.
P2 =120 Doppler’s frequency shift . o .
. . . Velocity estimation through WiFi
Niu et al. [89] 2022 Gamma value was in WiFi-based

. sensor systems.
contactless sensing systems

. v=3,8=40 Human activity recognition by
Kim et al. [90] 2022 Radar based system
(P? = 120) employing the CWT and CNNs.
v=27,8=27 CWT is used for feature extraction and
Walenczykowska et al. [91] | 2022 Radar waveforms
(P? =1729) radar signal recognition.

the parametrizations of the GMWs used in communication
systems. The parameters of the GMWSs under parenthesis
in Table 5 were estimated based on the expression shown
in (13); nevertheless, they were not reported by the authors
of the respective study.

The study presented by Tahir et al. [86] proposed to classify
the freezing of gait (i.e., episodic absence of forward move-
ment) of patients who have Parkinson’s disease by analyz-
ing the ambient 5G spectrum and processing the amplitude
changes of the wireless Channel State Information (CSI).
The CSI signal was processed with the help of the CWT
and GMWs to produce a scalogram of the 1D signal, which
was input into a CNN model for freezing of gait detection.
Nonetheless, the parameters of the Morse wavelet were not
reported by the authors.

In addition, Ssekidde et al. [88] tested the GMWs and
CWT to process and extract features from WiFi-received
signal strength indicators data to develop an algorithm for
indoor localization. The proposed CWT-based features were
tested with a CNN and compared with an artificial neural
network. In addition, a comparison with the features extracted
by computing the CWT with the Morlet wavelet was per-
formed. Similar to Tahir’s study, the authors did not specify
the parameters of the GMW. Similarly, Niu et al. [8§9] examine
how target locations and headings affect the velocity estima-
tion accuracy in WiFi-based sensor systems. The CWT and
the GMWs were used to determine the Doppler frequency
shift that is associated with the target velocity in WiFi-based
contactless sensing systems. The time-bandwidth product of
the GMWs was defined to be 120, the gamma parameter was
not reported, and the number of voices or wavelets per octave
was set to 10.

Furthermore, Ujan et al. [87] employed the transfer learn-
ing framework to detect and characterize radio frequency
interference in wireless communications networks [92]. The
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objective was to identify the signal nature and modulation
type of received signals. The CWT was applied through
GMWs on the received signals by considering digital video
streams as a signal of interest. The parameters of the Morse
wavelet were not mentioned in the study above. Likewise,
Kim et al. [90] presented a radar-based system for human
activity recognition by employing the CWT and GMWs. The
parameterization of the Morse wavelet was 8 = 40 and
y = 3. The CWT was used to generate range-time-Doppler
maps to train a CNN to classify human activities such as
walking, falling, sitting, standing up, picking an object from
the floor, and drinking water.

Finally, Walenczykowska et al. [91] proposed an algorithm
for radar signal recognition. The classified radar waveforms
included the near frequency modulated pulsed waveform, the
stepped frequency modulated pulsed waveform, the phase
coded pulsed waveform, frequency modulated continuous
wave, and the Phase Coded Continuous Waveform to provide
apotential use for Electronic Warfare. The data was processed
with the help of the CWT applied through the GMWs and
higher-order statistics for feature extraction. The classifica-
tion was performed with the use of an artificial neural net-
work. A throughout analysis was performed to determine the
appropriate values of the parameters of GMWs, which led to
select y = 27, and g = 27.

V. DISCUSSION

As presented in the previous sections, GMWSs have proven
helpful in analyzing diverse signals, systems, and processes,
including fields that go from medical or biomedical engineer-
ing to geophysics. The above sustain the claim of Lilly et al.
[18] related to the potential of GMWs for general-purpose
use. In addition, most of the reviewed literature using the
CWT and the GMWs pertains to biomedical or medical fields.
The above suggests the widespread acceptance of the WT in
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FIGURE 5. General architecture of a Convolutions Neural Network trained with the scalogram generated through the Continuous Wavelet
Transform and Generalized Morse Wavelets employed for detection and classification tasks. The scalogram is incorporated in the feature
extraction stage of the algorithm, serving as an image of the original 1D signal. The feature extraction is performed through the convolution and
pooling layers, while the classification is generally performed with a fully connected layer. The output can have N classes depending on the

characteristics of the classification problem.

biomedical or medical systems analysis. Other areas in which
the WT has been used extensively are analyzing complex
dynamical systems such as fluid dynamics, mechanical vibra-
tions, systems identification, and control engineering strate-
gies. Furthermore, electrical engineering, geophysics, and
communication systems are other areas that have employed
the Morse wavelet family.

The reviewed literature shows that a typical use of
GMWs is to employ the obtained scalogram produced by
these wavelets to perform classification tasks by employing
machine learning algorithms. Mainly, the algorithm that is
preferred are CNNs. The above is supported by the studies
presented in Section I'V. The general structure of this method-
ology is shown in Fig. 5. The scalogram of the CWT is used
as input for CNNs and performs the feature extraction on
this 2D image of the original 1D time series through the
convolution, and pooling layers [93]. The classification is
generally performed through a fully connected layer. Thus,
there is a trend in the overall literature to take advantage of
the time-frequency localization provided by the CWT and
GMWs of 1D signals or time series data and use it as input to
deep learning architectures to solve classification problems,
mainly through CNNS.

Furthermore, it is essential to remark that most of the
classification tasks performed through the use of the WT are
biomedical signals and communication systems. To a lesser
extent, other areas, such as vibration analysis, and electrical
engineering, as presented in Tables 2, 3, and 5 have performed
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classification through the GMWs. Although the WT can be
coupled with CNNs to perform detection and classification
tasks, one of the main drawbacks of this methodology is
the high computational power required to perform the CWT,
and the training of the CNNs [94]. Furthermore, the CWT
transform may require a high memory capacity since this
technique generates many coefficients. The redundancy could
be mitigated with the dyadic sampling strategy of the discrete
wavelet transform but applied through GMWs.

Another challenge of this approximation is that even
though the CWT and GMWs can provide a 2D represen-
tation of the 1D signal that could be used as input to
the CNN, the setting of an adequate architecture of this
CNN could be challenging, as reported by Pasqualotto et al.
[11]. One possible solution to this task is to used pre-
trained CNNs such as GoogleNet [95], AlexNet [96],
ResNets [97], or DenseNets [98], and apply the transfer
learning framework to fine-tune the architectures mentioned
above. Another potential advantage of transfer learning is
that it does not require a large sample size to perform
the training procedure [99]. For example, transfer learn-
ing applied through CNNs plus GMWs has been used by
Ujan et al. [87] for detecting radio frequency interference in
wireless communication networks and by Khan et al. [61]
for fault diagnosis of a shaft-disk system. Nonetheless,
if interpretability is sought for the classification algo-
rithms, CNNs may not be appropriate due to their black box
structure [100].
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In addition, most of the studies that employed the GMWs
used the MATLAB implementation to perform their anal-
ysis or the package provided by Lilly et al. [29]. One
of the drawbacks of the MATLAB implementation is the
need for a license, which can be unaffordable for research
centers, universities, and authors to perform their research.
Nevertheless, the MATLAB implementation has extensive
documentation, implementation examples, and a support
community. On the other hand, the jLab package provided
by Lilly et al. [29] has reduced documentation and examples
compared to MATLAB. The above suggests the opportunity
to implement this wavelet family and, consequently, the WT
in other software platforms such as R, Octave, or Julia.
In addition, it will be essential to generate a well-documented
implementation in the software mentioned above that help
to perform reproducible results within areas or applications.
Recently, Chu et al. [101] presented GhostiPy, a package for
Python that implements the GMWs; however, due to its recent
publication, this package has yet to be widely used to assess
the quality of the implementation.

One of the major drawbacks in the reviewed literature
is that certain studies that have used GMWs should have
reported the values of both gamma and beta that were selected
to perform the CWT analysis. The above was also depicted
in Tables 1, 2, 3, 4, and 5. This lack of reported informa-
tion in the studies introduces a problem of reproducibility
in the current literature. Besides, another crucial piece of
information that is often overlooked while computing the
CWT through Morse wavelets is the number of filters per
octave or the size of the filter bank that the authors used
to develop their analysis or applications. These parameters
could comprise the expected results since they need to be
determined based on the characteristics of the systems, signal,
or process being investigated. The above was also pointed out
by Civera et al. [64] while performing instantaneous spectral
entropy estimations using the GMWs.

On the other hand, concerning the articles that have
reported the values of gamma and beta. Regardless of its
applications, most authors have used the default parametriza-
tion set in MATLAB for GMWs, and the CWT. In those cases,
gamma was set to 3, and the time-bandwidth product was set
to 60. On the one hand, this suggests a typical value that could
be used for time-frequency analysis carried out using the
CWT for a diverse set of fields or applications, as depicted in
Section IV. On the other hand, it suggests the lack of a robust
argumentation and justification considered by the authors to
explain why a specific value of gamma or beta was selected.
The above could be critical for adequately representing a
function’s spectro-temporal content. Thus, further investi-
gation could be performed to determine an appropriate or
optimal value of gamma, beta, or the time-bandwidth product
for the applications reviewed in this study. Possible proposals
could explore the use of optimization algorithms to determine
the suitable values of gamma and beta or to carry out trial and
error tests and analyze the obtained scalogram under different
values of gamma and beta [102].
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Another aspect to remark on is that even among equal sig-
nal types analyzed through the GMWs, different parameteri-
zations have been considered. For instance, Wachowiak et al.
[37] set gamma equal to 3 and beta equal to 4 for analyzing
ECG signals, while on the other hand, Byeon et al. [40], and
Cartas-Rosado et al. [41] employed gamma equal to 3 and
beta equal to 20 for ECG signals. This difference in beta val-
ues could be related to the information the authors intended to
extract from the ECG signal through the WT or the applica-
tion they developed in their respective research. Nonetheless,
as explained previously, there needs to be a deeper argumen-
tation and discussion when selecting the parameters of Morse
wavelets.

As explained in the study of Tian et al. [103], an adequate
wavelet selection can influence the obtained results while
analyzing seismic data. Likewise, Walenczykowska et al.
[91] also studied the effects of Morse wavelet parameters
when analyzing radar waveforms. On the other hand, Riches
etal. [53] mentioned that the analysis of POD pairs performed
through the CWT and GMWs was insensitive to the values
of the time-bandwidth product. These studies highlight the
importance of adapting the values of gamma and beta based
on the type of signals or systems under investigation. Since,
in some applications, these values may influence the results.
Nevertheless, the effects of the Morse wavelet’s different
parametrizations for particular applications are yet to be per-
formed extensively.

On the other hand, by analyzing the reported values of
gamma and beta, it could be possible to study only the effect
of the beta parameter on the obtained scalogram since most of
the referred studies selected a value of y = 3. According to
Lilly etal. [18] and as explained in Section IIl when y = 3 the
GMWs get near the lower-bound of the Heisenberg area (i.e.,
Ay = 0.5). Thus, taking the values of the Heisenberg area
as a reference to fix the value of gamma to approximate
the Heisenberg area lower-bound, the analysis of the effect
of the beta parameter on the scalogram and time-frequency
resolution that is obtained can be studied with further detail.
Nevertheless, it is essential to remark that there are other
regions in the parameters space of the GMWs aside from
y = 3 that get close to this Heisenberg area lower-bound as
illustrated in Fig. 4. Thus, there is an opportunity to explore
the behavior of the GMWs in other regions of their parameter
space.

Otherwise, the GMWSs’ frequency resolution increases
when the beta value becomes bigger since the bandpass filter
becomes narrower (see Fig. 3). However, on the other hand,
the time resolution of the wavelet functions decreases. There-
fore, the effect of fixing gamma and increasing the beta value
can be understood in terms of the changes in the standard
deviation of the wavelet function in the time and frequency
domains.

The above is illustrated in Fig 6. Fig. 6a shows the behavior
of the time domain standard deviation of the GMWs for
increasing values of 8 and y = 3. Fig. 6b shows the behavior
of the frequency domain standard deviation of the GMWs
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FIGURE 6. The behavior of the standard deviation of the Generalized Morse Wavelets in the time and frequency domains and Heisenberg area
for increasing values of beta and a constant gamma with a fix value of three. a) Shows the behavior of the standard deviation in the time domain
of the Generalized Morse Wavelets for increasing values of beta depicted by the blue line; the vertical red line denotes the value of beta equal to

20, a typical selection employed in the literature along with gamma equal to 3. b) Shows the behavior of the st

dard deviation in the frequency

domain of the Generalized Morse Wavelets for increasing values of beta depicted by the blue line; the vertical red line denotes the value of beta
equal to 20, a typical selection employed in the literature along with gamma equal to 3. c) Shows the behavior of the Heisenberg area of the
Generalized Morse Wavelets for increasing values of beta displayed in blue. The vertical red line denotes the beta value equal to 20, a typical
selection of beta used in the literature in combination with gamma equal to 3.

for increasing values of B and y = 3. Finally, Fig. 6¢
illustrates the behavior of the Heisenberg area for increasing
values of 8 and y = 3. Notice that by growing the beta
value, the standard deviation in the time domain increases,
which impacts the time localization of the wavelet function.
Otherwise, the standard deviation of the frequency domain
function decreases. By comparing Fig. 6a and 6b, the mag-
nitude of the standard deviations had a notable difference in
their magnitudes, with the values of the standard deviation
of the frequency domain function being lower than 0.4, and
the standard deviation of the time domain function is greater
than 1. The above implies that most of the applications that
have used the GMWs by considering ¥y = 3 have better
frequency resolution but at the cost of having a lower reso-
lution in time.
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For the sake of completeness and to complement the infor-
mation presented in Fig. 6, the specific values of the standard
deviation of the time and frequency domain of GMWs are
presented in Table 6. In addition, the Heisenberg area for the
values of gamma and beta used in the literature are presented
in the same Table. Notice that for values of § greater than five,
the Heisenberg area is practically equal to 0.5; nonetheless,
in this part of the whole parameter space of the GMWs the
spread in the time domain is greater than in the frequency
domain as discussed earlier.

The vertical red line presented in Fig. 6 indicates the value
of B = 20. This value is a common choice in the literature
for using the GMWs, along with y = 3, as presented in
Section IV. This setting of gamma and beta leads to a time-
bandwidth product of P> = 60 based on the expression shown
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TABLE 6. Values of the standard deviation in the time and frequency domains and Heisenberg area of the Generalized Morse Wavelets for the shared

values of its parameters used in the reviewed literature.

Time domain | Frequency domain
Gamma Beta Time-Bandwidth Standard Standard Heisenberg

y) B Product Deviation Deviation Area

(P?) (Ay)

(o¢) (0w)

2 8 16 2.8752 0.1754 0.5044
3 1.58174 474522 1.6629 0.3056 0.5083
3 1 3 1.4298 0.3715 0.5312
3 3.1 9.3 2.2275 0.2251 0.5013
3 4 12 2.5093 0.1995 0.5007
3 5 15 2.7904 0.1793 0.5004
3 8 24 3.5031 0.1428 0.5001
3 20 60 5.5008 0.0909 0.5000
3 40 120 7.7624 0.0644 0.5000
3 27 81 6.3841 0.07843 0.5000
3 120 360 13.4258 0.0372 0.5000
27 27 729 19.1114 0.0288 0.5510

in (15). As discussed earlier, this is the default parametriza-
tion available in the MATLAB implementation of the CWT
and GMWs. This parametrization shows a standard devi-
ation in the time domain of 5.5008 and of 0.0909 in the
frequency domain. Furthermore, its Heisenberg area is close
to one-half, as shown in Table 6. Thus, this implies that the
studies that have chosen the default parametrization of the
MATLAB implementation of GMWs have a lower time res-
olution and a greater frequency solution when computing the
CWT. Nevertheless, the authors did not present an analysis
that expands on the implications of the time-frequency rep-
resentation obtained through this parametrization of GMWs
for the investigated signals, systems, or processes.

Finally, another parameter often overlooked when the use
of the CWT and GMWs is reported is the size of the filter
bank or the number of voices per octave the authors decided
to employ to perform the CWT. This parameter influences
the frequency resolution obtained when computing the CWT
since it allows controlling the discretization of the scales of
the CWT [104]. A higher value of voices per octave implies a
better scale resolution; however, the number of computations
increases. On the other hand, a lower number of voices per
octave is related to a lower scale resolution and a lower num-
ber of computations. Despite the importance of the voices
per octave in the scales resolution and the computations
involved in performing the CWT, a profound analysis of its
selection, implications, and interaction with the gamma and
beta parameters of GMWs has not been studied extensively.

VI. LIMITATIONS OF THE STUDY

This paper was mainly focused on the applications of the
GMWs and, consequently, the CWT. Thus, other wavelet
transformations were not considered since the GMWs are
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mainly used with the CWT rather than the discrete wavelet
transform, fractional wavelet transform, synchrosqueezed
WT, wavelet packet decomposition, or TQWT [16]. One
exception is the study of [65], where the synchrosqueezed
WT was computed with GMWs. However, the above implies
that there could be better options than the use of the GMWs
for analyzing the referred applications and that other wavelet
families or time-frequency representations could be more
efficient or effective in performing specific analyses or uses.
For instance, if the computational cost and sparsity are crucial
criteria to develop the study, the discrete wavelet transform,
and orthogonal wavelets could be better options for com-
pression tasks than the CWT and the GWMs. In addition,
as mentioned earlier, using the CWT in these studies could
outperform other time-frequency analysis techniques like the
HHT or even the STFT. Nevertheless, studies that conduct
these comparisons or analyses could be further developed or
searched within the existing literature.

Another limitation of the present study is the fields that
were reviewed. As presented previously, this literature review
organized the articles in the following areas: medical and
biomedical engineering, dynamical systems analysis, electri-
cal engineering, geophysics, and communications systems.
Nevertheless, there are other fields in which the GMWs have
also been used, such as physiology [105], image process-
ing [106], and signal processing theory [107], [108], [109].
Hence, there is an opportunity to present an analysis that
expands on other areas that have employed GMWs besides
the ones discussed in this paper.

Moreover, the sample size of articles found and reviewed
based on the search procedure is another limitation of
the present study. This study reviewed a greater number
of articles focused on biomedical engineering or medical
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applications since the presented search strategy led to a
greater sample of articles focused on that area. Nonetheless,
this does not imply that the concept of the WT or CWT has not
been used extensively in the other reviewed fields presented
in this study. The above highlights applications and fields
where GMWs could be used more extensively. Moreover,
studies that highlight the areas of opportunity of the GMWs
for specific applications or areas can be performed since this
paper was mainly centered on providing a general overview
of the use of GMWs in the literature and gaps related to their
parametrizations.

VII. CONCLUSION AND FUTURE WORK

This study presented a review of the applications of the
CWT generated through GMWs. This study’s findings reveal
that GMWs and the CWT have been used extensively in
medical and biomedical engineering applications to perform
physiological signal analysis and health monitoring tasks.
Furthermore, this signal decomposition technique has also
been useful in fluid dynamics, vibration, and systems anal-
ysis. Moreover, electrical engineering, geophysics, and com-
munication systems are other fields in which the GMWSs have
been used to a lesser extent. In addition, it was observed
that a frequent use of the CWT and GMWs is for signal
classification performed through CNNs, where the scalogram
of the CWT is used as input into the CNN. Nevertheless, one
of the major drawbacks related to the use of the GMWs is that
most of the reviewed studies did not report the values of the
parameters of the GMWs, which difficulties the reproduction
of the results and their respective analysis.

The parameters of the GMWs used for each field and
application were also reviewed and analyzed. It was observed
that a common choice for the gamma value is y = 3 since,
for this value, GMWs approximates the lower-bound of the
Heisenberg area (i.e., Ay, = 0.5). Thus, the current uses
of this wavelet family have been restricted to a particular
region of their parameter space. On the other hand, a reference
metric and argumentation related to the adequate selection of
beta or time-bandwidth product for a specific signal, system,
or process have yet to perform or discussed extensively.

Taking the above into account, the following points are
proposed as prospective future research advancements for the
use of GMWs and the WT:

o Explore and analyze other regions of the parameter
space of the GMWs where the lower-bound of the
Heisenberg area is approximated aside from y = 3 to
compute the CWT.

« A methodology or robust argumentation for the selection
of beta (B) or time-bandwidth product (P?) could be
proposed and implemented to determine its adequate
choice based on the characteristics of the signal, system,
or process that is analyzed.

o An analysis of the optimal selection of the number
of filters or voices per octave when computing the
CWT through the GMWs and its interaction with the
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parameters gamma and beta could be performed accord-
ing to the signal, system, or process characteristics that
is been studied.

o There is an opportunity of generating software imple-
mentations of the GMWs in other platforms besides
MATLAB, such as R, Octave, LabVIEW, or Julia, which
could facilitate the reproduction and comparison of the
results between different software platforms, applica-
tions, and fields.

o The GMWs have been mostly used under the paradigm
of the CWT; nevertheless, implementations of GMWs
by performing other types of WT-related techniques,
such as the discrete wavelet transform or TQWT, can be
developed.

e The CWT and GMWs have been primarily used to
solve classification tasks through CNNs. However, other
types of machine learning or deep learning techniques
that can be used with the CWT and GMWs for signal
classification problems could be explored. For instance,
using recurrent neural networks or generating features
from the CWT generated through the GMWs could be
employed to train classical machine learning techniques
without depending on complex black-box classifiers
based on deep learning.
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