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ABSTRACT Building upon the recent advances and successes in the application of deep learning to the
medical field, we propose in this work a new approach to detect and classify early-stage Alzheimer patients
using online handwriting (HW) loop patterns. To cope with the lack of training data prevalent in the tasks of
classification of neuro-degenerative diseases from behavioral data, we investigate several data augmentation
techniques. In this respect, compared to the traditional data augmentation techniques proposed for HW-based
Parkinson detection, we investigate a variant of Generative Adversarial Networks (GANs), DoppelGANger,
especially tailored for times series and hence suitable for synthesizing realistic online handwriting sequences.
Based on a 1D-Convolutional Neural Network (1D-CNN) to perform Alzheimer classification, we show,
on a real dataset related to HW and Alzheimer, that our DoppelGANger-based augmentation model allow the
CNN to significantly outperform both the current state of the art and the other data augmentation techniques.

INDEX TERMS Alzheimer disease, DoppelGANger, online handwriting, 1D-convolution neural networks.

I. INTRODUCTION
Alzheimer’s Disease (AD), a progressive neuro-degenerative
disorder, is the cause of memory loss as well as a decline
in cognitive functioning [1]. It is the most common type
of dementia, affecting typically people of advanced ages.
Currently there is no cure to reverse its symptoms, and only
medications to delay the progression are available. As a
matter of fact, the earlier the patient is diagnosed, the more
likely the treatment will be effective.

Because people with AD are significantly impacted by
episodic memory impairment, it comes as no surprise that
a large number of studies have focused on language disor-
ders involving spelling, grammatical, syntactic or semantic
errors, etc. [2], [3]. It has been shown, however, that AD
can be predicted by non-cognitive symptoms, in particular by
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motor impairment [4]. In this respect, several studies have
assessed gait impairment, mild parkinsonian signs, fatigue
and frailty [5], [6], [7], [8]. Other studies have investigated
finemotor impairment, especially handwriting (HW) changes
due to AD [9], [10], [11]. Such studies make sense given
that AD induces cognitive and visuospatial impairment that
makes the physical act of writing difficult, thereby triggering
HW impairment [12].

As a result, there have been numerous studies and
researches into applying machine learning methods to build
a system that can reliably detect Alzheimer at an early stage,
so that the patient can receive a timely and successful treat-
ment. These researches work with a wide range of input data
recorded from medical experiments and examinations, with
handwriting and graphical gestures being ones of the most
prominent sources. Traditionally, research on handwriting
analysis applies either statistical tests or traditional classifi-
cation models. Only recently have deep learning approaches
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been explored, albeit these were mostly for the detection
of Parkinson and not Alzheimer. The goal of our work is
to fill this gap and to explore this approach by building a
deep learning model that can classify whether a subject is
an Alzheimer patient, using online handwriting data. We also
look to address one of the most prominent problems in
deep learning medical applications, the lack of training data,
by investigating the latest data augmentation techniques.
Concretely, we introduce, in this work, the following key
contributions:

• Application of deep learning architecture for Alzheimer
detection from online handwriting. We show how our
models achieves a new state-of-the-art result on the
proposed real dataset. This is the first deep learning
based model applied for Alzheimer’s disease classifica-
tion from handwriting in the context of a very limited
training dataset.

• Implementation of both traditional and recent data aug-
mentation methods for time series. Especially, we pro-
pose a variant of Generative Adversarial Networks
(GANs), DoppelGANger, specifically tailored for times
series and hence suitable for generating synthetic
online handwriting data. Our DoppelGANger-based
data augmentation scheme outperforms classical data
augmentation methods proposed for Parkinson’s disease
classification, and lead to new state of the art results for
Alzheimer’s classification, that are dramatically above
previous state of the art.

II. RELATED WORK
Traditionally, online handwritings are analyzed using statis-
tical tests such as ANOVA [9], [10], [11], [13], [14], [15],
[16]. Some works also implement classical classification
methods based on Linear Discriminant Analysis (LDA) [9],
[10], [13]. More recently, [17] propose a semi-supervised
learning approach to discover homogenuous cognitive pro-
files. This work addresses the problem of encoding spa-
tiotemporal dynamics with the full online handwriting tra-
jectory, by applying representation learning for the treatment
of sequential data, and shows how such encoding outper-
forms global or semi-global parameters. [18] follow a similar
approach, extracting loop-like patterns from handwriting and
modeling velocity trajectory through unsupervised learning.

With the rapid development of deep learning recently,
there have been a lot of research and experiments focused
on applying deep learning architectures, as they provide the
possibility to learn meaningful features and extract intricacies
by themselves just from the raw data, thereby eliminating the
need for extensive hand-crafting of features. For problems
similar to ours, that is, to deal with medical data that is limited
in available samples, and in the form of different channels of
long time series, specifically online handwriting, there have
been a lot of works on the popular dataset PaHaW [19] for
Parkinson detection, notably [20], [21], [22]. Another notable
work on Parkinson online handwriting is [23], in which the
authors experiment with different data augmentationmethods

and achieve significant improvement compared to using only
original data. For Alzheimer’s, however, there is no equiv-
alent publicly available dataset. For our work, we use the
same dataset presented in the study [18] based on K-medoids
clustering and Bayesian classifier. This work will serve at the
benchmark for our results.

III. METHODOLOGY
A. DATASET
The dataset, the same that was used in [18], was collected
at the Broca Hospital in Paris. It consists of 54 subjects, from
which 27 are patients who have early stage Alzheimer disease
(AD) and 27 healthy control (HC). The Alzheimer patients
are diagnosed based on DSM-5 criteria. The selected subjects
were all able to understand French fluently and agreed to sign
a consent form. The subjects perform multiple handwriting
tasks that are recorded on a WACOM Intuos Pro Large tablet
with an inking pen. The sampling rate that the tablet records
pen position is 125 Hz. The data are recorded in the form
of channels of time series, containing static and dynamic
information of the pen movement during which the subjects
perform the tasks. There are six channels in total: timestamps,
x coordinates, y coordinates, pressure, azimuth and altitude.

To compare with the results in [20] and [21], we focus in
this work on the task of drawing four series of repetitive llll
letters, as shown on the left of Figure 1.

B. LOOP SEGMENTATION
Because our dataset consists of only 54 subjects, it is neces-
sary to come up with a method that increases the number of
samples, especially for the training of deep learning models.
Inspired by [18], we notice the repetitive pattern of the l letter
loops that can thus be extracted into individual training sam-
ples. As we usually have 16 l letters for each subject, we first
split the sample into strokes and then keep only the 16 loops,
by discarding the ligatures between them, as illustrated on the
right of Figure 1. This gives us about 16 times more data to
train with as we now treat the loops and not the subjects as
individual training samples.

C. DATA PREPROCESSING
In order to achieve good performance on deep learning mod-
els, researches have shown that it is necessary to standardize
the input data. For this project we decide to standardize each
feature of each subject individually, so that they all have a
mean of 0 and standard deviation of 1.

As we choose to split the training samples into loops and
consider training based on individual loops, we also subtract
the timestamps of each loop by its first timestamps, so that
every loop’s first timestamp is 0.

To design an adequate CNN architecture that is well-
dimensioned for effective model training, it is necessary that
the loops have lengths that are not too scattered. We notice
in Figure 2 that the maximum length of the loops, i.e.
281 time-steps, is actually due to three loop outliers, while
the length of the remaining loops follows roughly a Gaussian
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FIGURE 1. Example of the task performed (left) and the extracted loops (right).

FIGURE 2. Length distribution of extracted loops.

distribution with a mean around 60 and a maximum value of
176. We set, therefore, the maximum loop length to 176, trim
the three outlier loops to this length and add zero-padding
to all the loops that are shorter than the defined maximum
length. This considerably reduces the amount of zero-padding
that would be created if the length was kept to the original
maximum (i.e. 281). This means the length of the feature
vector taken as input by the CNN is significantly optimized,
with minimal information loss.

D. VELOCITY FEATURES
Beside the available raw features directly provided by the
recording tablet, another approach is to create new features
that represents better the difference between how a healthy
subject and anAlzheimer patient performs the task. The result
from [18] shows that velocity features calculated from the
coordinates and timestamps are good indicators and can help
improve classification performance. Therefore, we create two
new channels: x-velocity (Vx(n)) and y-velocity (Vy(n)), with
Vx(n) =

a
x(n)/

a
t(n) ; Vy(n) =

a
y(n)/

a
t(n), wherea

x(n) = x(n+1)−x(n−1), and
a
t(n) = t(n+1)−t(n−1).

Combined with the six channels already available in the
dataset, we now have eight time series channels to represent
every loop as shown in Figure 3.

E. DATA AUGMENTATION FOR TIME SERIES
In addition to the segmentation of loops, it is also possible
to increase the amount of training data by generating new

synthetic samples. There are two principal ways with which a
new time series sample can be generated: slight random trans-
formation of real data (jittering, scaling, warping), and data
synthesis from the distribution of the real data (pattern mix-
ing, generative models, pattern decomposition methods) [24].

In this work, we experiment with both traditional augmen-
tation techniques as well as implement the latest innovations
in synthetic time series generation using Generative Adver-
sarial Networks.

1) TRADITIONAL AUGMENTATION METHODS
As our baseline, we consider different time series augmenta-
tion techniques as follows. For the cases of Jittering, Scaling
and Time Warping, the parameters are defined as suggested
in [25].

• Jittering: Addition of Gaussian noise to each time step,
with mean µ = 0 and standard deviation σ = 0.03.

• Scaling: Pattern-wise magnitude change by a scalar
value determined by a Gaussian distribution (µ = 1,
σ = 0.1)

• Time Warping: Time warping uses a smooth warping
path to deform the temporal location.

• Window Warping: Window warping [26] is a version
of time warping. It takes random windows of the time
series, then expands by 2 or contracts by 0.5.

• Suboptimal Warped Time Series Generator
(SPAWNER): SPAWNER [27], a pattern mixing
method, generates synthetic data through suboptimal
time warping of intra-class patterns.

2) TIME SERIES DATA AUGMENTATION WITH DoppelGANger
Generative Adversarial Networks (GANs) [28] are a type of
generative model that aim to train two neural networks — a
generator G and a discriminator D — using an adversarial
training workflow. The generator tries to create synthetic
samples that the discriminator is unable to distinguish from
real data. The goal of GANs is to create models that can
draw samples from the same distribution of the training
data.

While data augmentation techniques using GANs have
been actively researched for the application on images, they
are not as often considered for time series. Some notable
GANs architectures that have been developed for time series
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FIGURE 3. Example of an extracted and normalized loop (left) and the eight time series channels that represent it (right).

data augmentation are RCGAN [29], TimeGAN [30] and
DoppelGANger [31]. After experimentation, we decide to
implement DoppelGANger as our GAN model to generate
online handwriting time series, as it addresses the weaknesses
of the previous works [31].

DoppelGANger attempts to capture the relationship
between attributes Ai (metadata) and time series values T i

by using two separated generators, one to generate metadata
and one to generate time series conditioned on metadata:
P(Ai,T i) = P(Ai) · P(T i|Ai). For the metadata generator,
a multi-layer perceptron network is used. The time series
generator is a recurrent neural network (RNN). At every
time step the generated metadata Ai is added to the RNN
as input. In order to retain the long-term correlations within
time series, the RNN is combined with a novel idea called
batch generation. The goal of batch generation is to reduce
the number of RNN passes by generating S records for each
pass instead of one.

Furthermore, an auxiliary discriminator is also introduced
to discriminate only atributes. The final loss function is
a combination of the losses from the two discriminators,
with a weighting parameter α: minGmaxD1,D2 L1(G,D1) +
αL2(G,D2) with L1 as the Wasserstein loss of the original
discriminator and L2 of the auxiliary.

As GANs are notoriously difficult to train, and according
to the loop distribution in Figure 2 the number of loops
with length greater than 100 is very small. As the more
time steps we have the more parameters there are to opti-
mize, we decide to train the model only on loops with max-
imum length 96. The batch generation parameter S is set
as 8. The training labels of our dataset (AD or HC) are
considered as attributes and are trained together with the
time series. This allows us to later conditionally generate
synthetic samples of each class by specifying the attributes.
The GAN model is trained for 1000 epochs with learning
rate 0.001.

F. MODEL SELECTION
As the data we work with are time series channels, it is
necessary to select a model architecture that is suitable for
the task. Using recurrent neural networks (RNNs) is a pos-
sible solution as it is designed to deal with sequential data.
However it has been shown that for very long sequences RNN
struggles to capture the temporal correlation [31]. Consid-
ering the promising results that has been obtained in other
works using 1D Convolutional Neural Network (1DCNN)
on medical time series, especially EEG signals [32], [33],
we decide to select it as the architecture to our model.

To figure out the best 1DCNN architecture for our task,
we perform random search on a range of different hyperpa-
rameters such as: number of convolutional layers, number of
convolutional filters, convolutional filter size, pool filter size,
etc. In order to reduce overfitting, dropout [34] is also applied.

IV. EXPERIMENTS AND RESULTS
A. TOOLS
The experiments are coded in Python, and the process of
building and training themodel performedwith the help of the
libraries Pytorch and sklearn. In order to have access to GPUs
and improve the traning speed, we make use of the resources
available on Google Colab.

B. EVALUATION METRICS
In order to maintain consistency and make comparisons with
previous works, we will evaluate our results by three main
metrics: accuracy, sensitivity and specificity, which are cal-
culated from the percentage of true positives (tp), true nega-
tives (tn), false positives (fp) and false negatives (fn):

a Accuracy: the overall ability of the model to make
correct classification ((tp+ tn)/(tp+ tn+ fp+ fn)).

b Sensitivity: the ability to correctly classify Alzheimer
patients (tp/(tp+ fn)).
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FIGURE 4. Example of the task performed (left) and the extracted loops (right) for PaHaW dataset.

FIGURE 5. The proposed 1DCNN architecture.

FIGURE 6. Loop length distribution of real data vs GAN-generated data.

c Specificity: the ability to correctly classify healthy
subjects (tn/(tn+ fp)).

In all our experiments except for the final, the model is
trained using 10-fold stratified cross validation. For each fold,
the model will be trained for 40 epochs, with a learning rate
of 0.001. For training, each of the loops is considered as an
individual training sample, and for validation we average the
output score of all the loops that belonged to one subject to
get the final classification for that subject.

C. HYPERPARAMETER OPTIMIZATION
As indicated in Section III-F, we perform random search in
order to find the best hyperparameter combination. To avoid
experimental bias, we decide to use, as training/validation
data for the process of hyperparameter optimization, the

similarly recorded online handwriting dataset PaHaW [19]
associated with Parkinson disease. The second task of
PaHaW, as shown in Figure 4 is also to write repetitive
l letters, which then can be splitted into loops using our
segmentation process.

We show in Figure 5 the 1D CNN architecture that is
obtained as the result. The model consists of two 1D convo-
lutional layers, each followed by ReLU activation and Max
Pooling. There are 128 1D filters in the first convolutional
layer and 64 in the second, all of them have size 4 × 1.
The Max Pooling filters for both layers have size 2 × 1.
Dropout is applied after both poolings with a dropout rate
set as 0.2. The output is then flattened and put into a fully
connected layer (FC) and finally softmax for classification.
This model achieves 78% accuracy, 85% sensitivity and 73%
specificity when training with our dataset using all eight
available channels as the input. As we work with limited data,
such a simple architecture can be enough to learnwell without
overfitting, in contrast to deeper models.

D. FEATURE SELECTION
By adding the two extra velocity features, we get eight time
series channels in total: x-coordinate, y-coordinate, times-
tamps, pressure, azimuth, altitude, x-velocity, y-velocity.
However, not all of these channels contain equal informa-
tion and some of them may even introduce noise. There-
fore, it is necessary to train the model with different feature
combinations in order to figure out the one that works best.
We start out with the two basic combinations (x-coordinate,
y-coordinate) and (x-velocity, y-velocity) then try to improve
the result by combining them with the rest.
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FIGURE 7. Examples of real data (left) and GAN-generated data (right).

From the results obtained in Table 1, we observe that the
best performance is achieved by using only the two velocity
features. Adding additional features to them does not further
improve accuracy. Another notable observation is that the
pressure feature is very noisy and reduces significantly the
performance of the combinations that include it.

E. DATA AUGMENTATION
We apply data augmentation on input data that are time series
of two channels: x-velocity and y-velocity, according to the
results of the experiment in Section IV-D. Table 2 gives us the
classification results comparing different data augmentation
techniques. For each test fold of cross validation, the training
data are augmented once while the validation data are kept
intact. This means we perform training with twice the original
amount of data. We observe that using DoppelGANger [31],
we obtain an accuracy of 89%, the highest among all the
augmentation schemes. With Jittering and SPAWNER, the
accuracy also improves but only slightly (2%). Scaling does
not affect the performance in terms of accuracy, while the data
generatedwithwarpingmethods are noisy, which is detriment
to classification. We also attempt to combine different aug-
mentation methods with DoppelGANger, but this does not
further improve the results.

F. ANALYSIS OF GAN-GENERATED SYNTHETIC DATA
In order to evaluate the fidelity of the time series data gen-
erated by DoppelGANger compared to the original training
data, we compare the length distribution of real and synthetic
data (Figure 6). Note that as we mentioned in Section III-E2,
the maximum length of the time series that are used for GAN
training is 96. As observed in Figure 6, apart from a few
outliers that have too short lengths, the synthetic data that

TABLE 1. 1DCNN performance with different feature combinations.

TABLE 2. 1DCNN performance with different data augmentation
techniques.

we generate match closely the length distribution of the real
training data.

We also perform a qualitative assessment, by comparing
the generated series by our DoppelGANger model with the
original ones (Figure 7). The comparison shows basically
that even though the generated data are not as smooth, they
do approximate the velocity curves of the original data at
different lengths. This shows that DoppelGANger are suitable
GAN models for generating good quality online handwrit-
ing time series, which ultimately significantly improves the
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FIGURE 8. The finalized pipeline of data processing and classification.

TABLE 3. Final classification result of model with LOOCV and comparison to previous state of the art.

training of our CNN classifier of Alzheimer’s patients vs.
Healthy Controls.

G. FINAL EVALUATION WITH LEAVE-ONE-OUT CROSS
VALIDATION
In order to better evaluate the generalization ability of the
model, as well as to make comparison with the previous
state of the art on the dataset obtained in [18], we decide to
perform leave-on-out cross validation (LOOCV) in addition
to stratified 10-fold cross validation that is used in previous
experiments. This means that from the dataset of 54 subjects,
we have 54 folds, and for each fold we train on 53 subjects
and test on the one left out. For each fold, we also randomly
initialize the weights of the model. The model architecture
as well as the feature combination (x-velocity, y-velocity)
and augmentation method (DoppelGANger) are chosen from
the previous best results. We illustrate this finalized training
procedure in Figure 8.

We are also able to compare our final results in Table 3
with the results of [18], which are also evaluated using
LOOCV. We observe that using the same data and features,
our approach with deep learning using 1DCNN and data aug-
mentation with DoppelGANger is able to improve the result
significantly. This confirms the viability of applying deep
learning solutions to this problem, even if the data available is
very limited, thanks to ourGAN-based augmentation scheme,
specifically tailored for time series.

V. CONCLUSION
In this work, we have been able to develop an effective deep
learning approach for the problem of classifying Alzheimer
patients. Despite the lack of sufficient training data, the result
obtained from training 1D Convolutional Neural Network
model is the new state of the art on the dataset, at 87.04%
accuracy, 85.19% sensitivity and 88.89% specificity. This is
very promising and opens up further possibilities for research.

The newly achieved state of the art has been made possible
by tackling the problem of limited data through synthetic
data generation, based on the application of of Generative
Adversarial Network adapted to time series, namely Doppel-
GANger. The generated data have been shown to approximate
the quality and distribution of the real data, which helped
significantly improve the classification performance.

For future improvements, several research directions can
be taken. [20] has shown that it is possible to apply transfer
learning from unrelated data such as ImageNet [35] and
perform classification based on the images created by the
handwriting coordinates. Another possibility is to combine
online handwriting with other biomarkers such as voice and
facial expressions in order to make better detection.
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