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ABSTRACT Due to the increasing global population and the growing demand for food worldwide as well
as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert
systems, natural language processing, speech recognition, and machine vision have changed not only the
quantity but also the quality of work in the agricultural sector. Researchers and scientists are now moving
toward the utilization of new IoT technologies in smart farming to help farmers use AI technology in the
development of improved seeds, crop protection, and fertilizers. This will improve farmers’ profitability and
the overall economy of the country. AI is emerging in three major categories in agriculture, namely soil
and crop monitoring, predictive analytics, and agricultural robotics. In this regard, farmers are increasingly
adopting the use of sensors and soil sampling to gather data to be used by farm management systems for
further investigations and analyses. This article contributes to the field by surveying AI applications in the
agricultural sector. It starts with background information on AI, including a discussion of all AI methods
utilized in the agricultural industry, such as machine learning, the IoT, expert systems, image processing,
and computer vision. A comprehensive literature review is then provided, addressing how researchers have
utilized AI applications effectively in data collection using sensors, smart robots, and monitoring systems
for crops and irrigation leakage. It is also shown that while utilizing AI applications, quality, productivity,
and sustainability are maintained. Finally, we explore the benefits and challenges of AI applications together
with a comparison and discussion of several AI methodologies applied in smart farming, such as machine
learning, expert systems, and image processing.

INDEX TERMS Artificial intelligence applications, agriculture, smart farming, Internet of Things, sensors,
machine learning, deep learning.

NOMENCLATURE
Abbreviations Definition
AI Artificial Intelligence.
IoT Internet of Things.
FAO The Food and Agriculture Organization.
SVM Support Vector Machine.
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approving it for publication was Chun-Wei Tsai .

KNN K-Nearest Neighbor.
UAVs An-manned Aerial Vehicles.
WSN Wireless Sensor Network.
LEACH Low Energy Adaptive Clustering

Hierarchy.
PEGASIS Power Efficient Gathering in Sensor

Information Systems.
Wi-Fi Wireless Fidelity.
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WiMAX Worldwide Interoperability for
Microwave Access.

WPAN Wireless Personal Area Network.
LoRaWAN Long Range Wide Area Network.
SigFox French global network operator.
LPWA Low Power Wide Area.
LTE Long Term Evolution.
SaaS Software as Service.
PaaS Platform as Service.
CNNs Convolutional Neural Networks.
UAV Unmanned Aerial Vehicle.
GPS Global Positioning System.
GHG Greenhouse Gas.
ZigBee A Zonal Intercommunication Global-

standard.
NodeMCU Node Microcontroller Unit.
ARM Advanced RISC Machine.
SMS Short Message Service.
M2M Machine-to-Machine Communication.
ELSCP Enhanced locally selective combination

in parallel.
AUCPR Area under the precision-recall curve.
WDSs Water distribution systems.
UFMNet Ultrasonic Flow Metering Network.

I. INTRODUCTION
Smart farming applies information technologies for the
optimization of complex farming systems. It incorporates
information and communication technologies to improve
agriculture production system. The agricultural sector is one
of the most important production sectors. It is concerned with
all aspects of agricultural activities and is divided into the four
major subsectors of crops, forestry, livestock (production and
animal health), and aquaculture. Artificial intelligence (AI)
encompasses a broad range of applications in the field of
computer science related to the possibility of building smart
machines, robots, or sensors that are capable of simulating
human actions to achieve tasks on behalf of humans to serve
society intelligently. These actions are controlled by applica-
tion programs using information technology devices. Com-
bining AI approaches and traditional agricultural methods,
smart agriculture is being used to improve national economies
by monitoring crop growth using the principles of precision
farming [1]. With these strategies, together with the help of
machine learning, the Internet of Things (IoT), and cloud
computing, all environmental features can be monitored to
choose the best environment for each type of crop through the
classification of the gathered data using one of the available
classification techniques. The Internet of things (IoT) is a
system of interrelated physical devices or objects with sen-
sors, processing ability, software, and other technologies that
connect and exchange data with other devices and systems
over the Internet or other communications networks without
requiring human-to-computer or human-to-human interac-
tion. Smart irrigation is another new technique in agriculture

to help farmers in automating irrigation processes by collect-
ing data using smart devices such as Raspberry Pi [2]. The
collected data are then analyzed to select the best technique
for switching the flow of water on the farm to the ON or
OFF state. Therefore, smart irrigation system provides the
agriculture sector and farmers with many benefits such as:

• Cost savings due to minimized water waste
• Reduced human efforts
• Aunified view of soil characteristics, includingmoisture
and nutrient contents

• Smart notifications in case of abnormalities
• Better long-term landscape health
• IoT ecosystem for smart irrigation
AI and machine learning can be used to monitor crops

and soil health on a real-time basis, allowing companies to
estimate crop yields and predict the best time for harvesting
to maximize profit. Similarly, the early classification of plant
diseases will help farmers use the best strategies to fight
them. Using sensors, machine vision, AI models, and robots
makes it possible to perform harvesting processes on behalf of
workers with greater accuracy and speed. Moreover, it helps
reduce the wastage of crops in the field that is experienced
with the traditional method of harvesting. Using artificial
intelligence techniques and tools, it is possible to predict the
best time to fertilize fields and sow seeds to achievemaximum
yield and better prices in a proper time and manner. The
spraying of chemicals is considered an important method to
control pest insects, fungi, and bacterial diseases of plants.

Applications of artificial intelligence in agriculture are
divided into different types of activities that can be handled
using AI as follows:

• Crop and soil monitoring (monitor the crop health). For
example, AI and machine learning can be used to mon-
itor crops and soil health on a real-time basis, allowing
companies to estimate crop yields and predict the best
time for harvesting to maximize profit.

• Disease diagnosis (early classification of plant diseases
helps to use the proper strategy to fight it). The early
classification of plant diseases will help farmers use the
best strategies to fight diseases.

• Agriculture robot (tackling the labor challenges). Using
sensors, machine vision, AI models, and robots makes
it possible to perform harvesting processes on behalf of
workers with greater accuracy and speed.

• Predictive insights (Enables right decision-making)
• Crop yield prediction (predicting the best time to sow).
Using artificial intelligence techniques and tools, it is
possible to predict the best time to fertilize fields and
sow seeds to achieve maximum yield and better prices
in a proper time and manner.

• Intelligent spraying (allows for cost savings). Intelligent
spraying helps to reduce the wastage of crops in the
field that is experienced with the traditional method of
harvesting. The spraying of chemicals is considered as
an important method to control pest insects, fungi, and
bacterial diseases of plants.
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According to United Nations reports [3], the world’s popu-
lation will rapidly increase from 7.8 billion in 2020 to around
11 billion in the upcoming years. As predicted by the FAO,
the global population will reach 8 billion people by 2025 and
9.6 billion by the end of 2050 [4]. Therefore, global food
production must be increased to satisfy the huge increase
in population. This growing demand for food cannot be met
by using traditional farming techniques, as farmers not only
need to increase their productivity; they also need to provide
food of better quality for their customers. Parasuraman et al.
[5] emphasized the fact that because the total population
is expanding extremely rapidly and the demand for food
is increasing alongside the increase in population, different
classes of IoT applications, robotization, machine learning,
deep learning, and AI techniques should be utilized effec-
tively to increase not only the production of food but also the
quality of the produced food. In this regard, they proposed
a framework for utilizing classifier models to support better
detection of crop diseases and reported that the proposed
detection algorithm achieved 99.96% accuracy.

The contribution of this research work can be summarized
as follows:

• The survey is addressing how researchers can utilize AI
applications effectively in data collection using sensors,
smart robots, and monitoring systems for crops and
irrigation leakage. It is also shown that while utilizing
AI applications, quality, productivity, and sustainability
are maintained.

• This survey contributes to knowledge through the iden-
tification of the gaps and challenges in existing research
in smart farming.

• The provided discussions and comparisons between dif-
ferent AI methodologies applied in smart farming such
as machine learning, expert systems, and image pro-
cessing will create new opportunities for researchers to
conduct new research tracks in this area of research.

• In this survey, the provided information on the applica-
tion of smart agricultural technology would help differ-
ent countries especially developing countries to improve
the quality of the agriculture sector to achieve farm
sustainability in those countries.

In this survey we listed, compared and classified the
existing studies based on new criteria of classification: we
did a comparison based on the type of sensors, protocols,
wireless communication technologies as well as applica-
tions. We have presented a classification of the publica-
tions examined in the three dimensions (Benefits, Challenges
and Methodology). We have proposed a categorization of
each dimension according to the context and the field of
application of the publications. In-depth classification is also
introduced to distinguish publications according to their types
(automated decision-making, farm tracking, workflow assis-
tant, etc.). We investigated many different domains such as
IoT, and sensors including networks, communication pro-
tocols, cloud computing services, image processing, data

collection, crop, and livestock monitoring. Moreover, differ-
ent types of challenges, for example, data accuracy, security,
network, and data transmission may exist in the smart farms
and are investigated fully to provide a sustainable and good
productive environment for the farms. Some scientists have
performed research based on Artificial Intelligence (AI) to
resolve farmers’ problems. But they do not have a compre-
hensive review study to include many different technologies
as discussed in the paper. To fill in this gap, this research pro-
vides a systematic literature review on AI in the agricultural
sector based on 190 research publications mostly from recent
years. This evaluation not only provides effective direction to
the farmers but also shows possible models and implementa-
tions using AI techniques using different technologies.

The remainder of this article is organized as follows.
In Section II, a systematic review of the methodology is
presented. Background information about AI is presented
in Section III. An extensive literature review is offered in
Section IV, and in Section V, a general discussion of var-
ious related topics is presented, including the benefits and
challenges of several techniques, the classification of previ-
ous studies, and a comparison of several AI methodologies
applied in smart farming, followed by the conclusions of this
work.

II. SYSTEMATIC REVIEW METHODOLOGY
Agriculture and food industries are considered among the
most critical fields around the world. This sector can take
advantage of AI and its subfields such as machine learning,
computer vision, and image processing to solve many emerg-
ing problems. In these processes, IoT equipment can be used
to collect helpful information from raw data on farms regard-
ing agriculture and irrigation, while AI techniques can be uti-
lized during preproduction (crop yield and finding irrigation
leaks), production (disease detection and weather prediction),
processing (product estimation), and distribution (storage and
consumer analysis). In a systematic literature review, authors
should search, understand, and classify the current research
works in the area of interest and then perform analysis and
draw conclusions based on their findings. For the present
literature review, we searched journal papers, conference
papers, and book chapters addressing AI and IoT applications
in agriculture. We focused on high-quality papers indexed
by IEEE Xplore, Clarivate, and Scopus. Figure 1. Systematic
literature review phases show the review process followed for
this paper.

A systematic review is completed with three phases: plan-
ning, execution, and reporting. In the planning phase, the
reasons for conducting a literature review in a given area
are considered. In the present case, several emerging appli-
cations are discussed, such as crop and livestock monitor-
ing, abnormal activity detection, irrigation leakage detection,
monitoring, remote operations, and productivity. In addition
to these application areas, the most useful AI methodologies
are discussed, such as machine learning, expert systems, the
IoT, and image/video processing. The selected papers are
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FIGURE 1. Systematic literature review phases.

categorized based on the dimensions of benefits, challenges,
and methodologies.

In the execution phase of a systematic review, keywords are
selected for each subtopic and then filters are applied. In the
present case, most of the publication searcheswere performed
manually in databases such as IEEE Xplore, Scopus, and
Clarivate. Papers were selected from lists based on their
titles, years, abstracts, conclusions, and publication sources.
Finally, the authors read the full papers, filled out related
tables, and analyzed the information. In the reporting phase
of this systematic review, papers were classified into the
three dimensions; benefits, challenges, and methodologies.
Figure 3 illustrates the classification of AI applications in
agriculture. AI technologies have benefited farmers, com-
panies, and other members of the agricultural sector. Auto-
mated decision-making, monitoring, observation of irrigation
leakage, and remote operations are some examples of the
benefits for farmers. AI is also beneficial for companies and
other organizations in terms of improving performance, cost
and time optimization, quality and productivity improvement,
security, and data collection.

Developing and using AI technology for farms also
has some challenges including data collection, availability,
and integration. Weather conditions, human interventions,
government regulations, and privacy are some of the other
challenges related to data collection. Most of the data need
preprocessing before any image processing or machine learn-
ing can be applied. Methodologies can be categorized into the
four main groups of the IoT, machine learning, expert sys-
tems, and image/video processing. While other AI methods
do exist, these four categories constitute the most recent and
frequently used techniques. Machine learning methods can
be used for classification, clustering, decision-making, and
optimization. Expert systems are often used in recommen-
dation systems, decision-making, rule-based decisions, and
fuzzy problems, as shown in Figure 2. Taxonomy of AI-based
smart farming systems.

III. BACKGROUND ON ARTIFICIAL INTELLIGENCE
AI is an emerging topic of importance in the field of computer
science. Computers and machines use AI methodologies to
understand, analyze, and learn from data. There are many
application areas for AI, such as robotics, e-commerce, social
media, computer vision, face recognition, healthcare, agri-
culture, military usage, and games, and AI methodologies
are also used in smart farming. Machine learning, smart sen-
sors, image processing, computer vision, and expert systems
methodologies can be used to solve problems in agriculture.
AI information systems improve the quality, productivity, and
sustainability of farming.

A. MACHINE LEARNING IN THE AGRICULTURAL SECTOR
Machine learning is a part of AI technology and it con-
tributes to the agricultural sector by monitoring and control-
ling agricultural activities, thereby increasing productivity
and improving the quality of the crops that are cultivated.
Machine learning algorithms play essential roles in preci-
sion agriculture by detecting objects in agricultural fields.
Treboux and Genoud [6] showed 94.27% accuracy with
machine learning algorithms in detecting specific objects,
clearly reflecting the immense impact of these applications in
smart farming. Machine learning algorithms allow machines
to learn about particular agricultural lands, the geographi-
cal structure of farming areas, and plants and crops using
supervised and unsupervised learning methods. Datasets are
organized and predefined in the former case, whereas datasets
are not classified in the latter. Once the machine has learned
about agricultural activities, it can perform actions such as
monitoring and predicting temperature and humidity, soil
moisture, crop yield, and plant diseases [7].

Simulatenously, machine learning algorithms are used to
classify various agricultural datasets according to soil and
land types. Such classifications help farmers select suitable
crops. Machine learning algorithms such as random forest,
naive Bayes, and K-means can classify these datasets to
predict the most suitable crops for each area [8]. Applying
these techniques will undoubtedly assist farmers in different
agricultural activities for efficient and cost-productive crop
production.

Therefore, machine learning in the agricultural sector is
applied with the aim of developing computer programs that
can handle the input data to make predictions such as the most
ideal time for sowing or harvesting, irrigation methods and
levels, selection of soil type, temperature, and plants. These
inputs train the machine learning model to make appropriate
decisions in the field, thereby helping farmers identify ideal
farming opportunities. The selection of machine learning
algorithms is highly dependent on the availability of data, size
of the training data, accuracy and/or interpretability of the
output, speed or training time, linearity, number of features
and the modeling process involves regression, classification,
learning, and clustering. In smart farming, machine learning
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FIGURE 2. ML Algorithm – categorization.

systems work with the help of computer vision techniques
(such as Image Classification, Object Detection, Panoptic
Segmentation and Keypoint Detection) to recognize and eval-
uate various objects in an agricultural field. The data can
be acquired through different sensors to be used in model-
ing the system, including training and testing with various
machine learning algorithms. For example, to maintain con-
trolled water irrigation, an automatic drip irrigation system
can be implemented and controlled based on data such as
temperature, light, humidity, and rain captured using various
sensors in the field [9].

Furthermore, the support vector machine (SVM) algorithm
is identified as one of the best classification algorithms and
accuracy rates of 90%-97% were found in various stud-
ies where it was used to detect diseases in certain plants.
These studies showed that the K-nearest neighbor (KNN)
and SVM algorithms are suitable for classifying data and
producing excellent overall accuracy [10]. Figure 3. ML
Algorithm – categorization shows a brief categorization of
machine learning algorithms based on their behaviors in the
machine learning modeling process. They are divided into
supervised and unsupervised learning categories.

Meanwhile, supervised algorithms produce output based
on organized input data where the datasets are clearly labeled,
classification algorithms can predict or classify data based
on categories, such as male/female or spam mail/not spam,
and KNN, decision tree, random forest, and SVM are exam-
ples of classification algorithms. Regression algorithms will
predict continuous data or series of data such as salary and
age. Simple linear regression, logistic regression, and multi-
ple linear regression are examples of regression algorithms.
Unsupervised learning algorithms are used when datasets are
not labeled or organized. The machine learning model will
learn from the dataset to identify an unknown object, such
as identifying a person from a collection of image patterns.
Clustering algorithms are used to form a structure for these
uncategorized data. Upon identifying the pattern, the algo-
rithm will group them into different clusters [11].

To illustrate the ML process and its features, Figure 4.
ML Model for agriculture sector shows a machine learning

FIGURE 3. Taxonomy of AI-based smart farming systems.

model for the agricultural sector, consisting of three parts.
The ‘‘input’’ part collects the required data from an agricul-
tural field for data processing. Various types of IoT sensors
and manually entered datasets are the primary resources
for machine learning systems to train models. The col-
lected datasets will be categorized as labeled or unlabeled
in machine learning systems based on the data processing
outcome. Some datasets will be separated for testing and
classifications, while other sets will be used for making pre-
dictions with appropriate machine learning algorithms. The
generated results in the ‘‘output’’ part can be analyzed further
to improve system performance or for further related studies.

B. INTERNET OF THINGS IN SMART FARMING
In this section, we provide an overview of categories of
sensors, IoT sensor types used in smart farming, wireless
sensor networks, and IoT protocols used in smart farming.

1) PRIMITIVE SENSORS VS. SMART SENSORS
A sensor is defined as any device that can detect and measure
different types of physical properties and quantities, such
as wind speed and direction, air pressure, light, humidity,
heat, and many other physical variables. The input value read
by the sensor results in an electrical signal that is usually
transmitted to a microcontroller and then makes its way to
a network interface for further processing. The evolution
from primitive to smart sensors allowed a leap in how data
are collected from the environment, processed, and used in
making decisions for further investigations. IoT smart sensors
can connect huge numbers of smart systems that help us
develop smart solutions for emerging problems [12], [13].
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FIGURE 4. ML Model for agriculture sector.

Figure 5. Primitive sensor shows a block diagram for a
primitive sensor, which basically senses a physical attribute,
and then the resulting signals are manipulated for further
processing and sent out as an analog current. Technological
advancements have improvedmodern sensors in terms of how
they convert the physically sensed data; signals are condi-
tioned and converted to digital format, becoming input for an
algorithm for processing and then being sent to the transceiver
unit as illustrated in Figure 6. Smart sensor. A smart sensor
usually consists of the following:

1. A sensing device that measures a physical attribute
(heat, humidity, etc.).

2. Signal conditioning to translate the sensed signal into
data.

3. A connected processing unit with memory and a user
interface. This unit is loaded with an algorithm to pro-
cess digital data.

4. A transceiver unit to exchange information with the
gateway/sink sensor node.

2) SENSOR TYPES FOR SMART FARMING
Innovation is rapidly improving traditional farming practices.
Technologies such as satellite imaging, unmanned aerial
vehicles (UAVs), and sensor technologies are revolutionizing
the agricultural industry. Smart farming applies information
technologies for the optimization of complex farming sys-
tems. The objective of smart farming is to access and use
data collected to solve a problem or optimize a solution. The
main goal is to find a way to use the collected information
in a ‘‘smart’’ way [15]. Smart farming embraces almost all
operations of a farm [16]. Farmers can use portable devices
such as smartphones and tablets to monitor real-time data
(irrigation, climate, fertilization, etc.) that will aid farmers in
reacting to situations based on the collected data and making
informed decisions supported by smart algorithms. There are
many types of sensors that can be used to read and process
agricultural data. Below, we list the most common sensors
used in smart farming and their specifications:

1. Water content sensor: This is used to measure the
ratio of the amount of water in the tested soil to the
total amount of the tested soil, which is the ability of

FIGURE 5. Primitive sensor.

FIGURE 6. Smart sensor.

a substance to hold an electrical charge. It measures
changes due to the change in the dielectric permittivity
of the soil. Values range from 0 (dry soil) to the satura-
tion of the porosity in the tested soil [17] where porosity
saturation is the ratio of the pore volume to the total
volume of the soil sample. The measurements depend
on the soil type; consequently, the sensor needs to be
calibrated for different locations.

2. Volumetric water content sensor: This type of sensor
measures the water content of soil [18]. It works by
evaluating the water suction in the soil, reflecting plant
roots’ efforts to extract water from the soil. It provides
an estimation of the amount of water stored or the irri-
gation required to ensure the needed amount of water
in the soil.

3. Electrical conductivity sensor: This is used to measure
the saline content in soil by estimating the solute con-
centration, which can be hazardous for crops if the soil
salinity is too high [19]. Soil salinity around the roots of
plants is mainly caused by salt build-up from irrigation
water, which can potentially cause long-term damage
to the land itself.

4. pH sensor: This type of sensor is used to measure
pH values, reflecting the acidity and alkalinity of the
soil. Ideally, soil pH values range between 6.0 and 7.0.
Values outside of this range indicate a lack of nutrients
in the soil. Farmers need to regulate the pH value
by using alkaline or acidic fertilizers, which improves
production [20].

5. Weed seeker sensor: This sensor uses advanced optics
and processing power; it detects and eliminates resis-
tant weeds. When it passes over a detected weed,
it sends a signal to the attached spray nozzle to precisely
deliver herbicide to the weed. The sensor consists of
an active light source and a chlorophyll-identifying
selective spray sensor. This allows for detecting and
spraying only weeds, significantly reducing the amount
of chemicals applied by up to 90%. As a result, opti-
mized use of chemicals is achieved, which also reduces
the cost [21].

6. Temperature sensor: This sensor gives an alert if the
temperature deviates from the normal range. The soil
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TABLE 1. Different sensor types, protocols and applications.

temperature determines what types of crops can be
cultivated in a field. Temperature is important for plant
growth processes such as water absorption and tran-
spiration by plants through photosynthesis. Each crop
has a different temperature range for its growth. The
enzymes necessary for growth will not be active if the
temperature is outside of the normal range [22].

7. Wind speed sensor: This sensor aims to measure wind
speed at a certain surface level. It is necessary to
observe the changes in wind speed patterns and direc-
tions. The height at which this sensor is mounted
depends on the crop [23].

Table 1 lists the most commonly used sensor types, wire-
less communication protocols, and user applications.

3) WIRELESS SENSOR NETWORKS IN SMART FARMING
A wireless sensor network (WSN) is a group of dedicated
and spatially distributed sensors used for monitoring physical

environmental variables. The sensed value is stored temporar-
ily, and then the collected values are transmitted to a central
station or sink [42]. Efficient WSNs for smart farming are
now attracting the attention of both the research community
and industry leaders. A WSN for smart farming consists
of multiple nodes with wireless communication capabilities.
Figure 7. A generic WSN node architecture illustrates a
genericWSN node architecture. EachWSN node has a power
source, sensor/actuator, microcontroller and memory, and
transceiver (Tx/Rx) [43]. A node can support one ormore sen-
sors in measuring different values such as soil moisture/water
content, soil temperature, soil electrical conductivity, and
weather parameters.

WSNs are characterized by being self-organized, self-
configured, and self-healing. One of their most common
advantages is the significant reduction in wiring since they
do not rely on a wired infrastructure; this can reduce costs by
up to 80% [44]. WSNs allow for tracking practices in haz-
ardous, infrastructure-less, and rural areas. This offers nearly
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FIGURE 7. A generic WSN node architecture.

limitless setup flexibility for sensors and improved network
robustness. Moreover, this technology reduces the need for
network maintenance. Another advantage of WSNs is their
portability, allowing them to be moved around in different
farming fields. This allows farmers to conduct measurements
for multiple fields or sites easily. In contrast, wired sensors
are more expensive and require regular maintenance, and
ensuring their mobility is not a trivial undertaking [45].

4) IoT PROTOCOLS IN SMART FARMING
The essential components of a smart farm’s architecture are
the deployed networking sensors, the sinks/base stations,
a server, and the communication links of the network [46].
The sensors that are deployed in a specific farmland area
communicate with the sink either directly or by relaying
packets toward the sink to other sensor nodes using a common
wireless routing protocol such as LEACH or PEGASIS. The
sink then stores the data and sends them via the internet to
the server. The server can be implemented using a cloud
computing infrastructure, which allows for scalability and
efficiency. WSN protocols are used in IoT to provide the
PHY/MAC connectivity between IoT sensor nodes and the
central gateway/sink. IoT encompasses different technology
stacks,WSN is a subset of IoTwhere data is transmitted using
several IoT devices without internet.

5) WIRELESS COMMUNICATION PROTOCOLS FOR
PHY/MAC LAYERS
In the context of WSNs, the relevant communication proto-
cols used are IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX),
and IEEE 802.15.4 (WPAN); the 2G, 3G, and 4G genera-
tions of cellular networks; and IEEE 802.15.1 (Bluetooth),
LoRaWAN (LoRA) [47], SigFox, and NB-IoT [48]. The
choice of the communication protocol depends on multiple
factors such as the needed data rate, the power consumption,
the transmission range, and the cost. NB-IoT is a standards-
based low-power wide-area (LWPA) technology developed
by 3GPP that supports a wide range of new IoT devices and
services. It uses a subset of the Long-Term Evolution (LTE)
standard with limited bandwidth for a single narrow band
of 200 kHz. LoRaWAN offers a high transmission range of
about 32 km and very low energy consumption; it provides
very limited data rates (maximum of 50 kbps), but they are
generally enough for transmission of measurements from
most currently available agricultural sensors. Table 2 lists the
different wireless technologies used in WSNs.

The characteristics provided in Table 2 for the differ-
ent wireless communications technologies show that each
technology has some advantages and disadvantages. Table 3
below, summarizes the advantages and disadvantages of each
of the technologies in the context of smart farming. The
summary reveals that the ZigBeeAlliance sensors and SigFox
are the best candidates for smart farming applications and
their advantages overweigh the disadvantages.

6) CLOUD COMPUTING SERVICES
Cloud computing services can be used in smart farming
applications for the purpose of collecting and storing the
data transmitted by remote sensors. On the other hand, cloud
computing can be used for processing the data and generating
results for the users. Data processing consists of data analysis,
visualization, and decision-making. Cloud services can be
classified into three connected layers, namely Software as
a Service (SaaS), Platform as a Service (PaaS), and Infras-
tructure as a Service (IaaS), which correspond to the internet
applications offered for end users, the tools used to imple-
ment a wide range of applications, and physical resources,
respectively [49].

C. EXPERT SYSTEMS IN AGRICULTURE
AI is now regarded as a well-established and important
technology that has contributed to many fields, such as
commerce, medicine, electronics, games, manufacturing, and
many more. In the domain of agriculture, AI technology has
been used to create computer programs that can perform
tasks that require human skills. There are a wide range of
AI technologies that have been used successfully in agricul-
ture, including expert systems and artificial neural networks.
Expert systems are computer programs that can perform
tasks that normally require the abilities of a skilled human.
These tasks are usually decision-making tasks rather than
physical activities, such as predicting or forecasting weather
conditions.

Expert systems are used in agriculture to change farming
practices and replace human labor. In expert systems, ‘‘intel-
ligence’’ means understanding and analyzing a pattern in the
data to replicate human behavior for decision-making and
problem-solving. The first application of AI techniques in
the management of crops occurred in 1985 [50]. Numerous
expert systems were developed to overcome the problems of
vague, unfocused, and imperfect information in agricultural
management, such as TEAPEST, which recommends a suit-
able control mechanism for identifying serious insect pests
of tea. Rice-Crop Doctor was developed by MANAGE as an
expert system to detect rice pests and diseases in addition
to their cures. AMPRAPALIKA is an expert system that
detects specific diseases of mango by using indicators and
recommending treatments for mango tree diseases, and many
other expert systems have been developed to address different
aspects of agriculture [51].

There are many research proposals and systems with the
aim of building expert systems that can determine land
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TABLE 2. Different wireless communication technologies.

suitability for specific crops. One such study aimed to develop
an expert system for making land suitability decisions for
fruit crops, a process undertaken by analyzing the soil to
recommend suitable plants [52]. In another study, new tech-
nological advancements were applied to model new types
of diseases that can damage crops. The proposed system
combined various factors in this application of technological
advancements [53]. Some expert systems were also devel-
oped in the agricultural domain to evaluate the nutritional
quality of the soil and determine whether plants absorbed
sufficient, sustainable nutrients [52].

Image analysis using expert systems plays an important
role in determining plant characteristics holistically. Such
systems measure the heterogeneity of leaf pieces to deter-
mine leaf scorch, which in turn helps determine symptoms
of leaf damage [54]. Image analysis particularly helps in
two main fields of agriculture, namely ecological informatics
and biometeorology, which require the quick interpretation
of plant photo images to save time in the treatment process.
In addition, many regression models were proposed using

crop nutrition parameters. Such models and systems can
decrease the risk of plant diseases for the global economy by
detecting diseases and recommending applicable treatment to
control them [55].

D. CHALLENGES OF ADOPTING AI IN AGRICULTURE
AI has provided great opportunities to the agricultural sector;
however, there are still many challenges faced by researchers
in this area, such as collecting the required data for building
the knowledge base. In addition to external factors, chal-
lenges from sowing to harvesting have led researchers to
improve and create AI techniques such as artificial neural
networks, fuzzy systems, expert systems, and agricultural
robots. These systems are widely used in many farming
applications such as crop and soil monitoring, weed manage-
ment, pest management, disease detection, yield prediction,
and general efforts to overcome challenges. Environmental
sustainability is a key factor in farming, as climate change
will cause decreases in water supplies and increased costs of
production.
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TABLE 3. Pros and cons of wireless communications technologies in smart farming.

Crop management systems provide interfaces that cover
many features of the management of crops. This approach
was first introduced by McKinion and Lemmon [50]. The
designing of such systems is important for guarding crops
from many different kinds of damage. Another challenge in
farming is crop pests and the selection of measures to control
them. Drone technologies were developed by different com-
panies to help farmers virtually visit all their crops and pro-
vide full monitoring systems, which can be used to discover
dead soil, diseases, irregular crops, and pests, in addition to
recommending solutions to these issues.

Plant diseases caused by pests have a significant effect
on the global economy as 35% of crops are destroyed by

different diseases. Thus, monitoring systems are needed to
diagnose diseases and pests in addition to providing solutions.
Such solutions can be based on past experiences. Soil quality
is another factor to be considered for crop growth. It is
known that many plants require specific soil characteristics
to achieve maximum yield and profit [51].

Other challenges that farmers face in their efforts to
successfully grow crops include climate factors such as tem-
perature, humidity, sunlight, and rainfall. Machine learning
techniques are being developed to forecast and predict the
suitability of such factors [56]. It is now necessary to intro-
duce modern technology that can use such data accurately
to develop intelligent prediction systems in agriculture and
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yield maximum profit. Furthermore, to achieve large-scale
planting, farmers face other challenges in trying to achieve
precise planting and avoid the waste of agricultural resources,
which can lead to unstable output. There are many solutions
proposed by researchers and companies to overcome such
problems by avoiding human labor and developing smart
agriculture using sensor and IoT technologies for data col-
lection and analysis [57].

AI technologies have shown very promising results in the
domain of real-time monitoring of data, which is particularly
suitable in the field of agriculture. As can be seen in the above
proposed solutions, machines communicatingwith each other
and using suitable AI technology will benefit farmers in their
efforts to achieve their objectives with minimum waste of
materials and maximum benefit.

Nevertheless, smart farming is not as widespread as
expected because farmers usually perceive AI as only belong-
ing to the physical world, and cannot be applied on land. This
is not due to hesitation or worry about taking the risk, rather,
it is due to the difficulties they face in understanding how to
use AI-based farming tools.

E. IMAGE PROCESSING IN SMART FARMING
Image processing consists of manipulating images using
computer programs. The inputs of these programs are images,
and the outputs are either altered images or sets of parameters
related to the input images [58]. Image processing is useful
in multiple fields, such as medicine [188], geology [189], and
smart farming [184]. It can be used to detect damaged stems,
leaves, or fruit, and to measure the spread of disease in a field
or the weights of fruits [185].

In image processing, an image is preprocessed by being
transformed into a matrix of numbers. Then, depending on
the objectives of the manipulation, different operations can be
applied to the matrix. These operations will be performed in a
fixed sequence for each pixel of the image. Image processing
may involve multiple techniques, as follows:
Image enhancement: Images can be easily subjected to

distortion [59]. This may be due to Gaussian noise, contrast
deviation, or blurring. The latter is usually seen in most
images [60]. Image enhancement consists of processing an
image in order to make it clearer. This can be achieved by
noise reduction, image sharpening, brightness adjustment,
and contrast increase, generating clearer images that are more
suitable for display or further processing and analysis.
Image restoration: Multiple factors cause corrupted or

degraded images. These can vary from a non-adjusted cam-
era focus to time effect. Image restoration techniques aim
to create images with the initially targeted quality so that
new images can be restored from initially corrupted ones by
reducing their degradation.
Image compression: Image compression entails minimiz-

ing the size of an image file while preserving its quality. This
process leads to the optimization of storage resources and
the reduction of time spent sending images and downloading
them from webpages.

Image smoothing: Images may contain noisy data such as
dots, blurs, speckles, or stains, and image smoothing methods
act as filters to remove noisy data. There are multiple image
smoothing methods including anisotropic diffusion, median
filters, Gaussian filters, adaptive median filters, conservative
smoothing, and mean filters. Most of them are based on
low-pass filters, which help in decreasing the large differ-
ence between pixel values by averaging nearby pixel values
while considering single values calculated for an image such
as median and average values. They remove impulse noise
from images by reducing the high-frequency components and
retaining the low-frequency components [61].

1) COMPUTER VISION
Computer vision is intended to empower computers to per-
ceive, recognize, and understand the real world in ways very
similar to humans. This field is now becoming more popu-
lar with the success of mobile technology, which generates
unlimited streams of photos and videos that cannot be ana-
lyzed by only human vision and thus require the intervention
of computer vision.

On the other hand, computer vision techniques are greedy
in terms of computing power. The continuous progress and
decreasing price of computing power has contributed to the
flourishing of computer vision. Novel artificial intelligence
techniques such as convolutional neural networks (CNNs) are
being utilized for both software and hardware advancement
[62]. Computer vision techniques are being widely used for
smart farming goals such as optimizing the performance
of automated robots or minimizing the losses of fruit har-
vesting with automatic robots [63] and post-harvesting fruit
classification [64].

2) COMPUTER VISION TECHNIQUES
Researchers have proposed different computer vision algo-
rithms for different tasks. Some of these are as follows:
Image classification: Image classification aims at classify-

ing images into preknown classes. This task is very challeng-
ing, especially with larger numbers of variable items.
Object detection: Object detection aims at localizing

semantic objects into an image. This technique usually
detects objects based on predefined categories of images
by comparing and matching a set of features with the
image database. Standard classification algorithms such as
AdaBoost [65] and SVM [66] are usually adopted for object
detection purposes. Research has been undertaken to detect
different objects such as faces [65] and pedestrians.
Image segmentation: Image segmentation involves par-

titioning images into multiple regions to be separately
examined. It can be considered as pixel-level classification,
where pixels are classified into specific entities [67]. Its main
purpose is to change the representation of the images into a
more meaningful one that can be analyzed more easily.

F. DATA COLLECTION AND IoT SENSORS
AI-enabled IoT sensors are widely used in many farms to
collect data. These sensors can be categorized into many
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different groups based on location, optic, mechanics, airflow,
electrochemical functions, etc. Effective usage of sensors
helps farmers to have much more accurate predictions and
good analysis while building their AI models. It is important
to collect and manage data with smart sensors working in
different IoT environments. One such study introduced a sen-
sor management system to collect the data produced by each
sensor in smart buildings and enable them to be processed and
controlled by remote devices [68]. In another recent study
[69], the data collection of IoT devices in a sparse network
of IoT sensors was explored using a UAV and two new data
collection solutions using an algorithm to address cases of full
or incomplete data collection from sensors. In another rele-
vant work [70], a data collection mechanismwas proposed in
remote areas using UAVs and building models for IoT-based
smart farms to collect and process data using scheduling.
Other scholars have devoted their attention to using the LoRa
platform and cloud infrastructure to disseminate data for
smart agriculture and effective irrigation.

Sensor data obtained bymonitoring temperature, humidity,
and soil moisture in the LoRa network were transmitted to the
cloud environment and collected IoT data were analyzed in
the testing environment [71]. Another important undertaking
for smart farms is measuring soil and ambient parameters in
agriculture. Placidi [72] proposed amodel wherein visualiza-
tion was provided after data collection using real-time opera-
tions. The overall reliability of the system was proven with a
long-term experiment with two natural soils, loamy sand and
silty loam. In another work [73], a data collectionmodel using
a ZigBee wireless sensor network was suggested; it covered
all aspects of crops based on a sustainable agriculture model.
The system supported the data collection and remote-control
processes of agricultural production, and it also facilitated
data analysis and operations using the single-point crossover
multiple-generation genetic algorithm. The results proved
that the smart agricultural model offered clear improvements
in production.

Other scholars have devoted attention to IoT-based smart
sensors that provide important innovations in the agricul-
tural industry to increase productivity and energy efficiency.
Research on IoT sensor technology was also undertaken
in consideration of solutions using specific IoT sensors
and sensor technologies in remote sensing and agricultural
applications to assess weather conditions, soil quality, and
the development of crops using robots for harvesting and
weeding [74]. In another relevant study [75], the applica-
tions of printed sensors in smart farming were investigated
and the advantages and disadvantages of measurement and
monitoring applications were weighed while noting the limi-
tations. That study also included measurements of chemicals,
soil monitoring, and microclimate conditions in greenhouses.

Recently, many different IoT software has been used
worldwide in various agricultural solutions, especially for
data-driven models needed to improve farm production or
solve insect-related diseases. Additionally, these solutions
become more effective and powerful by using machine

learning applications. Authors [76] discussed the issues
related to the software development models for IoT applica-
tions. Their results indicate that adaptation of these models in
IoT-based software solutions is more difficult than the other
types of standard implementations since the involvement of
hardware-related problems.Modern software solutions in IoT
can be categorized into remote sensing, computer imaging,
livestock monitoring, agricultural drones, precision farming,
and so on. The work [77] reflected a solution for protect-
ing crops from cattle with infrared sensors by monitoring
their movement in the fields. Another work related to the
decision support system in [78] discussed the AgroDSS is a
cloud-based smart evaluation of agricultural data analysis.

G. CROP AND LIVESTOCK MONITORING
According to the World Resources Institute, there will be
nearly 10 billion people on earth by 2050. To feed this many
people sustainably, it will be necessary to increase food pro-
duction by 53% to handle the overall expansion of agriculture
lands and lower emissions by 67% [79].

One way to meet these demands is by smart farming. Incor-
porating IoT devices, wireless and wired networks, cloud
computing, artificial intelligence, and software management
systems, we can monitor and improve farming outputs. Farm-
ing can be monitored in two main areas: crops and livestock
monitoring. Each category has its own specifics and needs.

1) CROP MONITORING
Crop monitoring takes into consideration one or more of the
following points:

• Environmental conditions including humidity, tempera-
ture, solar radiation, fertilization, and pesticide applica-
tion, for which data can be collected through WSNs and
IoT sensors [80].

• Crop diseases, including visual data that can be collected
with high-resolution cameras, which may be fixed or
mobile via UAVs [81].

In both cases, the information collected with these devices
needs to be further processed for anomaly classification,
prediction, and risk estimation [82].

Bauer and Aschenbruck [83] proposed an IoT-based farm
monitoring system. Their focus of analysis was the leaf area
index, which provides information on the photosynthetic pro-
cesses and vital conditions of plants. WSN clusters of sensors
were used to measure solar radiation (including temperature,
humidity, and light) to calculate the photosynthetically active
radiation range. Raspberry Pi was used at each cluster node,
exchanging data with the central base unit through the LTE
modem. The data were subsequently processed within a farm
management information system for generating reports and
making decisions.

Bagheri [84] developed a remote sensor system with high
spatial and temporal resolution to improve the monitoring
processes for temporal changes in agriculture via a UAV.
The system architecture consisted of a main onboard system
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and ground station subsystems, with multispectral cameras
for high-precision capturing, a GPS tracking system, and a
telemetry system to transfer data among the subsystems. This
monitoring system could speed up the monitoring processes
and increase the accuracy of crop classification. After image
capturing, multispectral imaging classification maps were
developed with a maximum likelihood model. The results
were very promising, with accuracy of 94% and a kappa
coefficient of 0.9.

A similar study was developed in a vineyard [85]. The
images captured were used to detect grape leaf stripe disease
via the application of the normalized difference vegetation
index, which facilitates analysis at the level of a single plant.
This system allowed for the detection of anomalies near the
infrared wavelength, which is not possible for the human
visible spectrum. Thus, this study confirmed the benefits of
using smart monitoring for plant protection.

In another previous study [86], the aim was to implement
an integrated plant protection architecture and tree protection
architecture by combining UAVs, cameras, and aWSN. After
extensive research, a system with the following components
was proposed:

1. Environmental data acquisition– Libeliu’s Plug and
Sense kit, a robust waterproof enclosure with specific
external sockets, and incorporated GPS. Data trans-
mission was performed with the LoRaWAN Gateway
protocol, which performs best compared to other
technologies.

2. Imagery data acquisition– An eBee X senseFly drone
together with a Parrot Sequoia+ camera to capture
ground and air images.

3. Imagery data processing – Preliminary processing of
the images directly in the field via Pix4D to improve
the overall processing time.

4. Cloud infrastructure– Data coming from both land and
air are stored, processed, and analyzed using multi-
ple machine learning and computer vision algorithms.
They are managed through web and smartphone appli-
cations. Cloud platforms are the best choices for such
storage due to the additional tools they provide.

The proposed system aimed to provide multiple area solu-
tions, extended area coverage, and macroscopic and micro-
scopic data, portability, and adaptability.

2) LIVESTOCK MONITORING
According to the FAO, livestock contributes 40% of the
global value of agricultural output and supports the liveli-
hoods and food and nutrition security of almost 1.3 billion
people [87]. Currently, the livestock sector emits an esti-
mated 7.1 GT of CO2 equivalent per year, representing 14.5%
of human-induced greenhouse gas (GHG) emissions. Increas-
ing the efficiency of livestock supply chains is crucial for
limiting the growth of GHG emissions in the future.

It was previously reported that smart monitoring of animal
health and welfare could affect the global meat supply by

reducing emissions by 2.5% and health problems and diseases
by up to 33% [87]. The precision farming approach focuses
on increasing productivity and preventing the spread of dis-
eases on farms. Through IoT infrastructure and cloud-based
technologies, it is possible to monitor farms in real-time to
support and predict animal diseases before they can spread.
Digital devices such as wearables are being used to monitor
the real-time behaviors of animals and thus improve their
health, lactation, or reproduction.Moreover, livestock facility
data collection is used to monitor environmental factors such
as malodor, gas emissions, and ventilation.

Smart systems consist of three main parts: sensing devices,
communication channels, and storage and processing infras-
tructure. The sensing devices can be of several forms, such as
collars, tags, actuators, or buzzers, and they are mostly known
as IoT devices. Communication technologies are mostly
wireless technologies such as Bluetooth, Wi-Fi, and mobile
technologies such as 4G or LTE. The storage and processing
infrastructure is usually a cloud platform, which gives system
supervisors the opportunity to use multiple processing tools
and help them make decisions. Moreover, the cloud infras-
tructure offers AI and machine learning-based applications
to support IoT applications.

Recent research has shown that the usage of smart mon-
itoring has immense potential for improving livestock out-
puts. Several studies have been conducted with cattle, sheep,
goats, poultry, and house pets, indicating positive impacts
in several directions. Precision livestock farming consists of
monitoring, controlling, tracking, predicting, and automating
applications [89]. These monitoring systems process and
transmit data to the concerned parties in real time. Moreover,
it is important that the farmers need to obey the laws of
governments to follow the national standards and guidelines
for livestock which are need to be developed collaboratively
by authority and livestock industries.

Parameters observed via these monitoring systems include
the following:

• Physiological data, such as body temperature, humidity,
or heart rate [89].

• Stress [90], [91].
• Food intake [92], [93].
• Disease [94].
• Digestion [89], [95].
• Other factors such as environmental conditions
[93], [96].

The normal body temperature of cows should be between
38 ◦C and 42 ◦C. Lower temperatures indicate indigestion
or milk fever and higher temperatures indicate serious health
issues. Humidity values above 72% indicate mild stress and
those above 80% are linked to severe stress causing the reduc-
tion of heat exchange and weakness. Normal heart rates are
considered to be between 48 and 84 BPM. A normal healthy
animal eats for approximately 3-4 hours per day and digests
the food for 9.5-10 hours per day. Incorrect measurements of
these values will lead to under- or overfeeding and subsequent
sickness or food waste.
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FIGURE 8. Cloud-based CPS/IoT architecture for monitoring livestock [88].

The common tools used for physical measurements include
wearable collars [97], [98], [99] and infrared sensors. Collars
aremainly used tomeasure body temperature, blood pressure,
and the pulse rate of the animals. Skin temperature is mea-
sured with infrared cameras and thermometers. The data are
transferred to a database for further processing through wire-
less communication. Several types of microcontrollers can be
used. According to a previous study [100], four features help
in monitoring lameness, which are the daily number of steps,
walking distance, time spent lying down, and eating. That
study used three machine learning methods, namely the arti-
ficial neural network, SVM, and random forest approaches.
All methods gave perfect results in distinguishing healthy and
sick animals.

Joshitha et al. [101] proposed an automated smart system
for tracking the movements of cattle. A LoRaWan system
combined with GPS, NodeMCU, temperature and humidity
sensors, a power supply, and a Raspberry Pi module was
arranged to collect and process data on the movements of the
cattle. The system assured better productivity and protection
than existing conventional methods.

A similar proposal was made in another previous
study [102], where the LoRa approach was implemented
with a mobile gateway instead of a static gateway. Since
LoRa utilizes the sub-1-GHz unlicensed spectrum, it was con-
cluded that the static gatewaywas productivemostly for small
livestock areas because of the sufficient data extraction rate
and lower energy consumption. However, in larger livestock
areas, the mobile gateway offers lower deployment costs and
sufficient value. The system works by using sensor collars,
which are hung around the cows’ necks. These collars consist
of a heartbeat sensor, a temperature sensor, a respiration
sensor, and a humidity sensor. The data are transferred to
the gateway and then to the farmers or breeders. In cases
where there are many monitoring devices, the data transfer
infrastructure should be designed accordingly so that the
system can operate most efficiently.

3) POULTRY FARMS
Several studies and solutions have been proposed regarding
poultry farms. The main issue to be considered in poultry
farming is the housing environment. This entails odor moni-
toring, ventilation systems, temperature, carbon dioxide, and

humidity. Other factors include the type of chickens, housing
systems, building structures, ventilation systems, bedding
materials, flow rates, types and amounts of feed and animal
activity levels, manure handling systems, building manage-
ment (cleaning and disinfection procedures), and cleaning
practices [103].

Major malodor problems may arise on farms as a result
of waste and chicken manure. Odor emission is influenced
by various parameters such as temperature, humidity, wind
speed and direction, season, and distances. Aunsa-Ard et al.
[104] used an e-nose system to analyze malodor on poultry
farms in Thailand. Their system consisted of eight metal
oxide gas sensors and three major parts: a sample delivery
system, detection unit, and signal processing system. The
system provided high-precision data measurements. Another
study used three fuzzy logic controllers to monitor the tem-
perature, humidity, CO2, andNH3 on a poultry farm, applying
LabView and fuzzy control to regulate those parameters.
By using fuzzy controllers, the power consumption by the
actuators was decreased by 42% [105].

Wu et al. [106] developed a combined system of a
traditional henhouse with a remote environmental monitor-
ing system using ZigBee and ARM. The system provided
reliable and stable performance. The main considered param-
eters were temperature, humidity, and light. In the study
by Li et al. [107], an online poultry monitoring system was
proposed. The system was based on wireless sensor networks
and wireless sensor technology. Temperature, CO2, and NH3
concentration measurements showed high accuracy, leading
to a reliable system. In another study [108], the authors
took into consideration power shortages and issues raised
for ventilation systems for poultry. They proposed a smart
notification system using an infrared sensor to detect fan
malfunctions and notify users in three ways: phone calls,
SMS, and the LINE application. The above section describes
the background of artificial intelligence and using AI and IoT
applications in smart farming.

IV. AI IN AGRICULTURE
Agriculture has a significant role in the sustained viability
of any economy. It is significant for long-term economic
growth and structural transformation, and it has evolved
in terms of the processing, production, and conveyance of
crops and domesticated animals. Currently, the agricultural
sector is being influenced by new innovative IoT technolo-
gies, wireless communications, machine learning, and AI.
Thanks to these technologies, the collection and analysis
of data such as temperature, weather, soil properties, and
historical crop performance provide predictive information
that helps solve agricultural problems such as crop dis-
eases, pesticide control, weed management, lack of irri-
gation, and water management [109]. At the same time,
intelligent robots that operate in dynamic and unstructured
situations and interact with humans have sparked increased
interest and expanded applications in all fields, including
agriculture.
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Significant advances have occurred in the field of agricul-
ture from 1980 to the present day. For example, Jha et al.
[110] listed more than 50 technological advances in subfields
of agriculture, including the use of artificial neural networks
and expert systems, machine learning and fuzzy logic sys-
tems, automation, and IoT techniques to solve agricultural
problems. Artificial neural networks that predict and forecast
based on parallel reasoning were incorporated into the agri-
cultural sector by Robinson and Mort [111], who proposed
one of the first models to be fed with raw meteorological data
like humidity, temperature, precipitation, and wind direction
to predict the occurrence of frost.

Gliever et al. [112] used an artificial neural network suc-
cessfully to differentiate weeds from cotton plants and soil
in images collected from commercial cotton fields with 92%
overall accuracy. Maier and Dandy [113] presented a lit-
erature review of the use of artificial neural networks for
forecasting water resource variables and they outlined the
steps that should be followed, the options available, and
the issues that should be considered in the development of
models that use artificial neural networks for the prediction
of water resource variables. Song and He [114] used an
artificial neural network and expert system to help farmers
detect crop nutritional disorders in time. That combination
led to diagnostic efficiency of 92% for nutritional disorders
in crops. Prakash et al. [115] developed an expert systemwith
a graphical interface based on fuzzy logic. It stored knowl-
edge provided by agricultural experts, implemented reason-
ing algorithms to simulate human thinking, and provided a
decision-making framework to help farmers improve their
soybean planting and harvesting decisions in circumstances
where the help of an agricultural expert is needed but not
immediately accessible.

Sannakki et al. [115] applied an image processing-based
approach for the automatic grading of leaf diseases by utiliz-
ing fuzzy logic. The proposed system was divided into five
steps including image acquisition, image preprocessing, color
image segmentation, calculation of the image total leaf area
and image total disease area, and disease grading by fuzzy
logic. The system gave accurate results. Tilva et al. [116]
developed a fuzzy inference system to forecast plant diseases
on the basis of weather data. The framework was created to
prevent diseases in plants using an ‘‘IF, THEN’’ condition that
indicated diseases happening because of a particular range of
temperature and humidity. Shahzadi et al. [117] developed
a specialist expert system based on the IoT that gathers and
sends real-time data to a server to make appropriate decisions
to enhance productivity and limit losses due to diseases and
insects/pests.

Embedded intelligence aims to discover individual behav-
iors by mining their digital traces during interactions with
the IoT. Yong et al. [118] applied wireless sensor networks
and embedded intelligence in the domain of agriculture and
presented a technology roadmap that explained the challenges
and opportunities in agricultural areas in general and offered
examples of IoT applications for smart irrigation. Patil and

Thorat [119] used the IoT and machine learning to predict
grape disease before it occurred. That involved developing a
monitoring system for leaf temperature and a humidity sensor
to identify grape disease risks in the early stages using a
hidden Markov model that provides SMS alerts to farmers
and experts.

Several studies have presented different decision-making
strategies to help farmers monitor their fields [120], [121],
[122], [123], [124], [125], [126], [127]. For example, Koteish
et al. [120] proposed a real-time agriculturemonitoringmech-
anism based on the IoT for sensing the soil moisture of a field
and enhancing the irrigation system. They divided the moni-
tored field into small zones and studied the data collected by
the sensors from each zone to allow farmers to make the right
decisions based on a predefined decision table. These studies
showed efficiency in terms of data reduction, energy con-
servation, and accurate decision-making. The above section
describes using IoT technologies in smart farming.

V. ROBOTICS IN AGRICULTURE
The literature has reported various ideas regarding the abil-
ity of robots to assist in agricultural activities. Indeed, the
mechanization and automatization of agricultural tasks are
an essential step to addressing population growth. Khadatkar
et al. [128] emphasized the available robotic systems for
various farm operations for field crops and horticulture and
they discussed the following approaches and technologies
presented in the literature for undertaking various agricultural
operations:

• Transplanting: Robotic transplanters use computer
graphics or machine vision systems for transplanting
operations [128]. Most robotic transplanters consist of
a robotic arm for seedling pick-up, a path manipulator,
and an end-effector [129], [130].

• Intercultural operations: Intercultural operations such
as weeding are done to kill weeds by mechanical
weeders or chemical spraying. Robotic weeders use
vision-based systems for weed detection, guiding weed-
ers, and uprooting weeds mechanically [131], [132],
[133]. Gonzalez-de-Soto et al. [134] developed a robotic
patch spraying system for the precise application of
herbicides.

• Harvesting: Fruit selection and detachment are among
the essential tasks for efficient harvesting. Most robotic
harvesters have been developed for fruits and operate
by grasping the fruit with grippers and then detaching
it based on shape, size, color, and texture [135], [136].

Rahmadian et al. [137] explored three important devel-
opments of autonomous robotics in agriculture: navigation
(incorporating GPS technology and vision-based sensor navi-
gation to direct robots through agricultural fields), harvesting
systems (incorporating sensors for harvesting and actuators to
control harvesting devices), and soil analysis systems (giving
information about the state of the farm’s soil). However,
agricultural conditions present many difficulties for robotic
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navigation. One relevant study [138] presented a litera-
ture review of the approaches for path planning in sev-
eral agricultural areas. Bochtis et al. [139] offered a review
of advances in agricultural machinery, where one of the
approaches involves path planning methods for area coverage
on farms. Palmer et al. [140] addressed improving the effi-
ciency of field operations and suggested that precise tracking
of predetermined efficient courses could reduce both overlaps
and misses.

According to some researchers [128], [138], there are two
main categories of path planning algorithms:

• Point-to-point path planning: The goal consists of deter-
mining a collision-free path from a starting point to a
destination point, optimizing parameters such as time,
distance, or energy.

• Coverage path planning: The aim is to determine a path
that passes over all points of an area or volume while
avoiding obstacles [141]. Cao et al. [142] defined all the
requirements for coverage operations.

Luís et al. [138] indicated that path planning has been
successfully applied to agrarian robots for field coverage and
point-to-point navigation, with coverage path planning being
slightly more advanced. Other researchers [143] presented a
review of case studies in which robots were applied in recent
agricultural tasks, including multi-robot systems and ground
and aerial robots. Gliever and Slaughter [112] demonstrated
that a well-validated computer simulation can provide a vir-
tual proving ground that is essential for understanding how
the robots of the future should be designed and controlled.
Another study [143] suggested steps for making robotic
simulations helpful, such as generating large amounts of data
for machine learning and consequently facilitating the devel-
opment of human-robot interactions and intelligent robots.

Oliviera et al. [144] reviewed the main existing applica-
tions of agricultural robotic systems for the execution of
land preparation before planting, sowing, plant treatments,
harvesting, yield estimation, or phenotyping. They evaluated
robots according to the following main criteria: locomotion
system, development stage, final application, use of sensors
in robotic arms, and computer vision algorithms. They con-
cluded that agricultural robotic systems are promoted and
proposed in four main areas for future research: locomotion
systems, sensors, computer vision algorithms, and IoT-based
smart agriculture [144]. The above section discusses the
usage of robotics in the agriculture sector and its start of the
artwork.

VI. ABNORMAL ACTIVITIES
The first step in anomaly detection is defining the normal
patterns as a standard reference point for the data analysis
and processing phase. In general, an anomaly is defined as an
abnormal state of the data that does not fit with the standard
normal flow of systematic data behavior.

In a previous study [145], the occurrences of abnormal
behaviors in the data processing phase were classified into
the categories shown in Table 4.

For the performance evaluation of the detection model,
some anomalies were inserted into the data during the pro-
cess of data collection from the sensors. The model was
able to detect anomalies from different sensors successfully.
The implemented autoencoder model in that study [145]
was considered as one of the most well-recognized neural
network techniques classified as an unsupervised learning
method, where the encoder has to learn the ways of com-
pressing, encoding, and reconstructing the data. Basically,
after the input data are acknowledged, the autoencoder starts
the encoding process, utilizing the bottleneck layer in order
to shrink the input data size. In the decoding phase, the
autoencoder is trained to ignore non-vital data in the process
of reconstructing the original data. By ignoring non-vital data
such as moisture too low, light too high, or humidity too
low in the decoding process, the autoencoder will be able to
process large numbers of features with as little loss of normal
data as possible andmaximization of the loss of the anomalies
contained within the testing dataset.

The autoencoder produces output in the form of images
and labels the anomalies as abnormal data attributes. The data
in the training phase are divided into validation (25% of the
original data size) and training (75% of the original data size)
datasets. After the training phase of the model, the threshold
is determined along with the hyperparameters (batch size,
learning rate, number of nodes, and number of epochs) using
the validation dataset. The optimal training parameter setup
values are shown in Table 5 [145].

Park et al. [146] proposed a machine-to-machine (M2M)
standard communication method between things within the
IoT environment in order to address the fact that most IoT ser-
vices and devices are implemented to operate in a prototyped
zone limited to the location where the experiment is taking
place. The proposed method paved the way toward more
interactive and well-connected system sensors and controlled
devices within smart farm zones inside IoT environments.
The M2M method offers functions including remote con-
figuration, operation instruction, connections, data collec-
tion, data storage, device management, and security. In the
same study [146], the compiled and processed information,
basically generated from different IoT-based devices within
livestock houses as shown in Figure 9. Livestock houses
and farm communication structure using the M2M approach
[146], was transmitted and received according to the M2M
standard method.

The livestock houses consisted of multiple pig barns,
each of which had a set of IoT equipment as shown in
Table 6 [146].

Creating a predictive model for each device is essential
in order to identify multidevice failure situations in live-
stock houses. The accumulated received data from livestock
houses’ sensors and control equipment feed the predictive
model in the learning process. The training process takes
place in a central server using transmitted data in a real-
time manner from the livestock farm’s devices. The data
received at the server side are used to predict occurrences
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TABLE 4. Categories and types of anomalies.

TABLE 5. Optimal training parameter setup values.

of malfunctions in order to inform the user so that suitable
action can be taken according to the type of malfunction. The
proposed anomaly detection mechanism suits all IoT device
types and numbers within livestock houses or farms zones.

According to Moso et al. [147], smart farms are producing
enormous spatial, temporal, and time-series data streams.
Analyzing these enormous volumes of streamed data will aid
in better understanding various issues of productivity and effi-
ciency regarding farm processes. Monitoring and analyzing
a farm’s progress by utilizing a suitable anomaly detection
technique will help in recognizing any behavioral deviations
from the norm. In the work of Moso et al. [147], using
the enhanced locally selective combination in parallel outlier
ensembles (ELSCP) as an ensemble anomaly detector was
proposed. An unsupervised data-driven methodology was
defined to be applied in two case studies of temporal data
in smart farming. The first study considered harvesting data
along with the use of a combine-harvester Global Positioning
System (GPS) in tracking events. The second case study
addressed crop data, considering the link between crop status
(damaged or not) and detected anomalies. Referring to the
area under the precision-recall curve (AUCPR), Moso et al.
[147] concluded that their proposed methodology applied to
the combine-harvester dataset yielded a score of 0.972, and
for the crop dataset, 30% of the detected anomalies could be
directly linked to crop damage. The main focus of their work
was evaluating anomaly detection on farms by analyzing GPS
logs, along with the following contributions:

FIGURE 9. Livestock houses and farm communication structure using the
M2M approach [146].

TABLE 6. List of IoT equipment within livestock houses.

1. A detailed state-of-the-art report was offered for
anomaly detection techniques with a focus on smart
agriculture.

2. A robust ensemble-based methodology for the detec-
tion of anomalies from data streams in smart agriculture
contexts was proposed.

3. The proposed technique was implemented and applied
to a data stream of combine-harvester GPS logs with
the aim of identifying anomalies that impact the harvest
efficiency of farm machinery.

4. The proposed technique was also implemented and
applied to crop data with the aim of identifying anoma-
lies that reveal the status of crops during harvesting.

In smart agriculture field, Catalano et al. developed amulti-
layered architecture anomaly detection system to alleviate the
infrastructure threats. In their work, two machine-learning
algorithmic approaches’; the multivariate linear regression
(MLR) and a long-term memory neural network algorithm
(LSTM) were employed in the development process of the
anomaly detection system. The system was fed by a real
dataset coming from a smart agriculture system located in the
Apulia region (Italy). In the training phase of both MLR and
LSTMmodels, the datasets were obtained fromGoogle Colab
platform and the performance was evaluated by metrics.
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Right after the training process, the testing phase took place to
generate predictions on the obtained data; therefore, the result
will be assessed to reveal the detected anomalies [148]. The
novelty of Akhter et al. work is that they developed an inter-
digital phosphate sensor for smart agriculture with a low-cost
and low-power planar. The fabrication of the sensor is pro-
duced using a 3D printed template; in time, Multi-Walled
Carbon Nanotubes (MWCNTs) and Polydimethylsiloxane
(PDMS) are used to form the electrodes and substrate of the
sensor respectively. In order to characterize the sensor for a
wide range of temperature and phosphate detection the Elec-
trochemical Impedance Spectroscopy (EIS) is employed. The
system is trained with a well-recognized AI data processing
algorithmwhich is K-nearest neighbor (KNN)machine learn-
ing algorithm. The obtained data from sensors are labeled as
unclassified raw data. The principle of Euclidean distance
used in KNN to compute the nearest distance between the
training dataset matrix and new entry. The next step in this
phase is optimizing the ‘K’s parameter from training dataset
matrix and new entry. At this stage, shortest distance group
of rows of the matrix is classified, the nearest possible result
is computed using the mean deviation of those distances. The
experimental outcomes were validated via standard UV vs.
Spectrometry promotes the reliability of the sensor [149]. The
above section discusses the recognition and identification of
anomalies activities in agriculture.

VII. IRRIGATION LEAKAGE
Water is scarce and it is one of the most essential resources
in the agricultural sector. A large amount of water is wasted
as a result of the improper management of irrigation sys-
tems. As per the United Nation’s World Water Development
Report, more than 50% of the world’s population will be
facing high levels of water scarcity by 2050 [150]. The main
reason for water wastage in farming is leakage in water
distribution systems (WDSs). In an unmonitored irrigation
system, small leaks in the WDS often go unnoticed, resulting
in critical problems such as ruptures or bursts in the pipelines.
The leakages in water pipelines are mainly due to excessive
pressure on the pipelines, which causes distortion and further
leads to the bursting of pipes when water flows through
them [151].

Leakage detection in these pipelines by using a proper
irrigation leakage monitoring system can help reduce water
wastage and improve the efficiency of irrigation systems.
A considerable number of studies have been conducted on
leakage detection in WDSs. Researchers have developed dif-
ferent approaches for leakage detection and localization, such
as the use of flow sensors and methodologies to analyze
inputs from the sensors.

Daadoo et al. [151] proposed a system using wireless
networks for leakage detection in WDSs for domestic envi-
ronments. The two main phases of the system were an alarm
based on GSM to send SMS information to the user and
an Android application to control the pump. The proposed
system used water sensors and ultrasonic sensors for water

leakage detection and a microcontroller as a controlling unit.
The results showed that the proposed system gave good
responses to the sensor and owners could enjoy the ease
of controlling the water pump through the mobile Android
application.

Odumodu et al. [152] presented UFMNet, or Ultrasonic
Flow Metering Network, with real-time flow monitoring,
providing a cost-effective solution for pipeline leak detec-
tion. UFMNet is composed of a set of time-synchronized
ultrasonic sensors to measure flow data (changes in the flow
rate at different sections of the pipeline) continuously at
high frequencies and radio transceivers to enable data cor-
relation and in-network processing of the data flow. The
authors listed the main advantage of the proposed system
as the cost effectiveness of the development and installation
process. Furthermore, the system provides more flexibility,
as it can be deployed without shutting down pipelines.
Results showed that the system could achieve reasonable
accuracy.

A hybrid entropy clustering-based framework for the
identification and placement of potential pressure sen-
sors in WDSs for leakage detection was proposed by
Taravatrooy et al. [153]. Minimizing the number of pressure
sensors by reducing redundant information based on infor-
mation theory and choosing the optimal solution based on a
multicriteria decision-making model were the unique points
of this study. The main aim of the proposed system was to
develop an effective framework for optimizing leak detection
by decreasing the cost of pressure sensor procurement and
maximizing the coverage of the sensor network.

Fan et al. [154] and Coelho et al. [155] used a machine
learning-based framework for water leakage detection in
their works. In the former case [149], the authors used a
semi-supervised learning framework of clustering and then
localization for optimal sensor placement and leakage local-
ization. In this approach, the WDS is partitioned into water
leakage zones using amodifiedK-means clustering algorithm
and a machine learning model is trained for leakage detec-
tion. New leakage characteristics extracted by the unsuper-
vised learning algorithms proposed in that study [154] were
determined by principal component analysis and an autoen-
coder neural network. An important feature of the proposed
model was that it could be trained with the leakage charac-
teristics matrix of the unbalanced data to detect abnormal
conditions. The method achieved satisfactory performance
for leakage detection and leakage localization. On the other
hand, Coelho et al. [155] used a wireless sensor network to
monitor the WDS and a machine learning algorithm to iden-
tify the precise locations of water leaks. A study to identify
the most suitable machine learning classification algorithm
for leakage detection was presented in that paper. The pro-
posed system was able to achieve 75% accuracy for leakage
detection with the benefit of being a low-cost application.
Figure 10.Machine learning (ML)-based framework for leak-
age detection depicts a simplified model used in machine
learning-based water leakage detection frameworks.
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Aditya et al. [150] discussed different smart techniques
available for detecting leakages and burst events in pipeline
networks along with the present challenges and future pos-
sibilities in their work. Their study highlighted the major
limitations of smart water technology as false alarms and the
difficulty in identifying exact leak locations.

The calibration method proposed by Moasheri et al. [156]
used a two-step process of identifying the zone with the
most leakages and dividing that leaky zone into virtual zones.
Calibration of the probability of leakage and the roughness
coefficients of the pipes in theWDSwere obtained simultane-
ouslywith the imperialist competitive algorithm. Thismethod
used the analysis of field pressure and flow metering results
in the network, and it was shown that the method had no
limitations on the number of leakages that could be evaluated
simultaneously. This method helped reduce operational costs
by reducing the number of field measurement devices.

Islam et al. [157] proposed a novel methodology based
on a fuzzy-based algorithm to analyze the uncertainties of
differentWDS parameters such as roughness, nodal demands,
and water reservoir levels to detect leakages. An experimental
case study showed that the developed model could detect
leakages and diagnose the exact locations of leakages within a
minimal amount of time. The limitation of this model was the
higher level of computational effort in cases of multiple leak-
ages with limited numbers of sensors. Moreover, the model
did not facilitate optimization of the number of nodes and
their placement. The above section introduced the irrigation
leakage and its solutions using AI techniques.

VIII. QUALITY, PRODUCTIVITY, AND SUSTAINABILITY
Food quality, productivity, and sustainability are critical
issues in all countries because of the increasing population,
climate change, and decreased resource availability. Tradi-
tional farming is not sufficient for ensuring high quality and
quantity in secure food production. Global changes including
climate change, water shortages, increased labor costs, and
security challenges are essential problems in the agricultural
sector. AI, the IoT, and robotics are important technologies
used in smart farming to increase quality and productivity.
Information technology supported by sensors, smart cameras,
data science, and robotics can increase crop productivity and
sustainability in farming. It is more practical and efficient to
use AI technologies for monitoring and automating decision-
making processes in agriculture [158]. In addition, crop and
animal management is easier and more efficient with these
technologies. AI-based smart monitoring systems provide
more profitable, secure, and efficient farming. They reduce
the cost of resources such as water and labor and increase
reliability and security [159].

Productivity and sustainability in farming can be increased
by applying the following AI, IoT, and robotics-based
technologies:

• Crop monitoring using the IoT
• Automated monitoring of information systems and deci-
sion support

FIGURE 10. Machine learning (ML)-based framework for leakage
detection.

• Data analysis using machine learning algorithms
• Yield mapping using supervised machine learning
• AI-based smart tractors, agribots, and robotic technology
• Supply chain management and tracking
• Price forecasting and optimization

Figure 11. AI-enabled IoT smart farming system provides
an example of an AI-enabled IoT smart farming system. IoT
sensors (optical sensors, electrochemical sensors, mechanical
soil sensors, location sensors, airflow sensors, etc.), drones,
and Wi-Fi bots collect data from the fields and share the
data via the cloud to the AI-based smart farming system.
Smart farming systems apply many different machine learn-
ing, image processing, computer vision, remote sensing, and
expert system algorithms to retrieve knowledge from raw data
and thus support farm management and decision-making.
These systems increase the quality, productivity, and sustain-
ability of agriculture and supply chains.

Thakor et al. [158] proposed an IoT-based Digi farm-
ing model to analyze the production of farms. IoT sensors
collect data from farms and help farmers make decisions
and monitor their crops. Mobile and web applications are
very efficient in disseminating product information and sup-
porting e-commerce. Thakor et al. [158] evaluated several
AI-based and IoT-based farming methodologies and com-
pared them to traditional farming systems. Their results show
that AI-based farming production is more efficient and prof-
itable and that the Happiness Index scores of farmers and their
living standards are higher among those engaged in smart
farming compared to traditional farmers. Suebsombut et al.
[159] classified the current trends and future possibilities
of farming production and sustainability considering climate
change, food security, and farm management, which are all
relevant to smart farming, information management, product
lifecycles, supply chains, and traceability. The experimen-
tal results showed that one of the most important variables
was soil carbon emission, which affects food production and
sustainability.
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FIGURE 11. AI-enabled IoT smart farming system.

Quality, productivity, and sustainability in agriculture are
affected by plant diseases, prices of crops, weather and cli-
mate, water availability, insurance, agent commissions, and
potential lack of farming and management skills. Radu et al.
[160] proposed a farm information management system with
two levels, namely the local farm and the cloud farm. The
farm management systems collected data from several farms
and applied data preprocessing and machine learning algo-
rithms to extract knowledge from the raw data. These authors
compared farm management with local, cloud, and mobile
applications. Cloud-based farmmanagement systems yielded
more accurate results than the others. Data collection for
several crop species and several types of data will increase
the efficiency and productivity of farming. Soil moisture,
macronutrients, and micronutrients are also important param-
eters in agriculture for the maximum productivity and effi-
ciency of crops. Production resources such as water and
fertilizers should not be excessively or insufficiently applied.
Researchers have shown that soil sensing techniques using
real-time IoT technology can increase soil productivity with
efficient water usage [161].

Malik et al. [162] proposed fog computing in sustainable
and productive smart farming systems. Low-cost sensors and
smart management were used to enhance agricultural pro-
ductivity. In their paper, simulation platforms were modeled
for data collection, sensor deployment, and data processing.
These are critical parts of the smart farming ecosystems. The
system considered sensor node placement, robot planning,
data collection, mobile nodes, energy nodes, and coverage
area. Sensors are especially important in smart farming for
efficient monitoring and early warning systems. The pro-
posed model gave promising results based on sensor energy,
transmission delay, and packet delivery ratio. It has also been

proposed that sensor placement and management simulation
models can support sustainable IoT systems for farm man-
agement [163], [164]. Such systems can work with cloud
computing in real-time applications. Probabilistic rule-based
and supervised learning algorithms have also been proposed
to enhance the productivity of crop production andwater level
arrangements [165], [166], [167], and Bayesian networks are
often used in smart farming to monitor sensors remotely.

Priyadharsini et al. [168] proposed a new AI- and machine
learning-based information system that used deep learning to
analyze types of seasonal agricultural products. Input, hidden,
and output layers were used with a total of 9 neurons in
training. Monitoring the soil nutrition and pH level increased
the productivity of the crops, and deep learning-based classi-
fication yielded more than 90% accuracy. Machine learning
supervised classification algorithms are also used for pre-
processed raw data received from multiple sensors using
information fusion for crop monitoring to increase produc-
tivity and sustainability in smart farming [169], [170], [171].
Experimental results have shown that probabilistic-based
methods such as the naïve Bayes classifier and Bayes network
algorithms offer high accuracy in classification.

Deep learning is one of the machine learning algorithms
which uses artificial neural network technique. Deep learn-
ing performs feature extraction automatically without human
intervention which provide advantages in training of data.
Deep learning is used several applications of the smart
farming such as plant classification, behavior recognition,
anomaly detection, pest recognition, smart irrigation and
weed detection. Park et al. [146] collect livestock data from
sensors and controllers to find out the anomalies in the
farm. Feature vector includes temperature, humidity, CO2,
ventilation, radiator temperature and external temperature.
Anomaly detection accuracy in the farm is more than 93%
using deep learning algorithms. Shakeel et al. [183] pro-
posed deep learning algorithm-based cow behavior detection.
Deep recurrent learning algorithm is used to identify and
forecast cow behavior patterns. Proposed algorithm provides
robust, secure and efficient computing time. Durai et al. [184]
proposed several deep learning and other machine learning
algorithms to predict the weather conditions, analyze the soil,
recommend the crops for cultivation, determine the amount
of fertilizers. Results in deep learning is more promising than
the rule-based algorithms such as decision tree and random
forest.

IX. BENEFITS OF SMART FARMING
Smart farming helps to determine the optimal use of natural
resources in an economically sustainable manner. In addition,
IOT based smart farming systems facilitates demand forecast,
improves quality of supply, and ultimately the experience of
the consumer. The objective of the extensive data collection
and analysis approach used in smart farming is to increase the
agricultural output while contributing to the environmental
protection. Smart farming has proven to be beneficial to
society in several regards. In this section, the main benefits
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of smart farming as seen by farmers, companies, and other
members of the agricultural sector will be addressed.

A. FARMERS
As was described above, the usage of smart devices, AI,
machine learning, expert systems, and cloud computing can
significantly improve the monitoring processes of farms and
allow actions to be taken to resolve any abnormalities or
problems that have occurred. The usage of smart sensors
allows farmers to measure all the required parameters related
to their specific farms, such as crops or livestock, in real
time. Image processing and machine learning enable the
early diagnosis of plant diseases, leading to an early iden-
tification of the best strategies to fight them. Moreover,
AI provides predictive insights that facilitate the decision-
making processes of farmers in several stages of the farming
process.

Cloud computing and web and mobile applications make
notification processes remotely available, allowing farmers
to be anywhere and still have real-time knowledge about
the daily conditions of their farms. Finally, smart monitor-
ing systems allow farmers to use fewer resources, including
water, energy, food, fertilizers, land, and human resources,
compared to traditional approaches.

B. COMPANIES
The farming and agricultural industry can benefit from
IoT-enabled smart farming for real-time data collection and
process automation, which helps achieve better decision-
making, reduces waste, and maximizes efficiency in opera-
tions. According to Hunter et al. [172], the growing demands
for global food consumption will require an increase in
agricultural production of 25%-70% by 2050. Meeting this
demand is a serious challenge around the world. With smart
farming, it is possible to support the production of larger
quantities of food. Smart agriculture has the potential to
help address the world’s problems with food security and
sustainability.

Smart farming enables accuracy and precision in agri-
culture, subsequently allowing for improved labor and fuel
efficiency. Resource consumption and human errors can be
reduced using IoT technologies, thus reducing the operational
costs and enhancing the quality of the products. The imple-
mentation of smart farming technologies is a major factor
driving the growth of the smart farming market. However,
although smart agriculture models are beneficial, there are
still many challenges that need to be addressed, such as
the high costs of smart agriculture equipment and the man-
agement of huge volumes of data related to productive
decision-making.

Precision in smart farming allows us to optimize the use
of resources such as fertilizers and irrigation water and thus
improves food quality. Agricultural data collected using IoT
devices help agricultural companies make the right decisions
related to farming and the selling of crops [168].

C. AGRICULTURAL SECTOR
Smart farming solutions have important effects on the agri-
cultural sector from different perspectives. For example,
observing and collecting data from large farms with respect to
humidity, air temperature, soil moisture, and sunlight inten-
sity will have positive effects on the efficiency of water usage.
Therefore, it will affect the overall crop yield. Since the
world’s population is increasing day by day, it is essential to
use new techniques in the agricultural sector to increase food
productivity. In this sense, smart farming is the best solution
for increasing food production and maximizing profit. Smart
farming solutions should be implemented effectively using
IoT platforms and low-cost sensors while saving time,money,
and resources. The outcomes of such implementations will
benefit the agricultural sector in different ways that include
increased production quality, the protection of water supplies,
real-time data collection, lower operational costs, improved
livestock farming, remote monitoring of fields, and reduced
environmental footprints.

In many countries, research and development in the field
of smart farming is being promoted to maximize sustainable
food production while ensuring better profitability for farm-
ers. One example of the implementation of smart farming in
the agricultural sector was offered by Collado et al. [174].
They addressed the challenges related to the implementa-
tion of such projects, taking into consideration the human
resources, the availability of fully equipped research centers,
and the environmental aspects.

X. CHALLENGES
A. DATA ACCURACY
The success of a smart farming system is highly reliant on
the accuracy of the data captured by IoT devices, as deci-
sions will be made based upon the analysis of the data. IoT
platforms, low cost sensors and data insights enables increase
of efficiency and production in smart farming. However,
in smart farming, data accuracy can be easily affected by
multiple factors. First, IoT devices are generally designed
for indoor environments, while in real life, smart farming
takes place outdoors where environmental conditions can be
very harsh, with snow, hail, floods, wind, or dust. This may
lead to the rapid deterioration of IoT sensors. For example,
sensors that contain copper might experience rapid oxidation,
dust may easily cover several types of sensors, and some
humidity sensors might be saturated in highly humid envi-
ronments [175]. This will lead to the deterioration of the
measurement capacity of the sensors and thus to degradation
in data accuracy. Furthermore, electromagnetic interference
caused by high-voltage grids across rural areas can cause data
distortion or corruption due to the generation of electromag-
netic fields [175].

Furthermore, IoT devices should not be running 24 hours
a day; they should be switched off if no data are to be read.
However, continuous data transmission is important for smart
farming, so a serious challenge is seen in efforts to balance
energy consumption and continuous signal transmissions.
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Battery depletion can also cause data inaccuracy since it is
a gradual process that is not immediately detected. Until the
moment of detecting a battery problem and fixing it, sensors
may be sending data of questionable accuracy.

B. SECURITY
Since smart farming relies on the integration of multiple
technologies, networking, the IoT, and cloud computing,
it inherits all the security issues related to those technologies.
Different attacks can be executed against smart farming sys-
tems, and node capture may alter or replace devices [176].
Denial of service and sleep-deprivation attacks deplete the
batteries of IoT devices and disrupt data transmission, which
means that decision-making processes are also disrupted
[177]. Furthermore, for technical reasons, IoT sensors usually
cannot be placed in protective boxes [175]. The installa-
tion and use of advanced smart farming systems require the
intervention of experts. The uncertainty, the technical and
operational feasibilities of the system are critical. With the
use of sensors and IoT in smart farming, some issues related
to security and data privacy arise. Indeed, when a device is
connected, it can be the source of an attack. In addition, sen-
sors have batteries with a limited lifespan and in the majority
of cases the battery is not replaceable, i.e. the age of a sensor is
that of its battery. This is why reducing energy consumption,
recycling or waste disposal are important challenges.

Smart farming may be applied in huge rural areas, where
controlling the security of the whole location is challenging
and expensive. Generally, security cameras on farms will
be stationed at critical locations and access points, but it
would be very challenging to ensure the security of every
part of a farm. Attacks with consequences like flooding, the
under-watering or over-watering of crops, and the misuse of
pesticides are often described as agroterrorism, and agroter-
rorism may also be waged against food animal populations
[175] [178]. Such actions can create fear, financial loss, and
social disturbances. Rettore de Araujo Zanella et al. [175]
stated that with the emergence of smart farming, new types
of agroterrorism may appear, which can also be referred to
as cyber-agroterrorism. Cyber-agroterrorism involves actions
of attacking smart farming systems to cause serious finan-
cial and social damage. Security is thus very challenging
for smart farms, as they face the possibility of both local
physical attacks and online cyber-attacks. In smart farming,
sensors, actuators and other technologic devices are exposed
to climatic and natural events such as rain, snow, sun and hail.
Animals, human, or agricultural machinery can damage or
remove them from the installed locations.

C. KNOWLEDGE
The attitudes of farmers toward smart farming play crucial
roles in the success and democratization of smart farming,
especially since most farmers prefer to not take risks and con-
tinue with traditional farming practices [179]. The required
skills and knowledge might represent a barrier for farmers
that hinders them from adopting smart farming. In particular,

attaining new skills and knowledge consumes both extra time
and extra expenses. Researchers [180] [181] have agreed
that training farmers would be an easy matter in developed
countries where different types of advanced technology are
already available and adopted by farmers. However, it is more
difficult in developing countries, where most farms are in
rural areas.

Charania and Li [182] stated that smart farming reduces the
need for labor. Therefore, in countries where unemployment
is a problem, smart farming would constitute a threat to farm
laborers. This may discourage laborers from cooperating and
contributing to the success of such technology as it injects
insecurity in terms of employment stability.

D. NETWORK AND DATA TRANSMISSION
Transmitting data continuously to the cloud is an important
task for smart farming systems. Subsequently, high-quality
internet services with reliable bandwidth are mandatory.
However, the largest percentage of farming zones are located
in rural areas, where internet services are weaker than in
urban zones, and this poses a serious challenge. If the network
and/or internet is extremely unreliable and does not meet
the minimum requirements of smart farming platforms, it is
recommended to equip the platformswith local computers for
data storage and decision-making processes rather than losing
efficiency while sending a continuous stream of data over a
weak network. However, this will make smart farming more
expensive to implement [175]. The costs will increase upon
including computers with adequate computational capacity
and highly skilled employees may be required to operate
the systems. The population is estimated at 9.7 billion by
2050, which requires improving agricultural mechanisms to
increase food production and have high yields in a limited
time. Moreover, agriculture is not limited to food production
but constitutes the necessary raw materials in various sectors
such as poultry, medicine, industrial, etc. We believe that the
collection of new types of data such as water quality, citizens’
behaviors, degree of air pollution and geographical character-
istics of agricultural areas (the spatio-temporal characteristic
of the agricultural area and its topological relationship with
water points and urban areas) combined with the knowledge
of experts in the agricultural field constitute an essential
source for understanding potential agricultural problems and
finding potential solutions. Indeed, in the short term, new
types of sensors will be used in agriculture with a large
continuous automation and use of AI techniques. In the long
term, the strategies for improving productivity and selecting
agricultural products will become more widespread to solve
global problems rather than local ones.

Despite the major benefits smart farming offers to farmers,
there is still a few things that demotivate them are mainly the
lack of knowledge and costs associated. Some other general
factors are as follows:

• Initial cost of investment into a smart environment such
as hardware, software, configurations and training.
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TABLE 7. Classification of publications according to the dimensions of benefits, challenges, and methodologies.
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TABLE 7. (Continued.) Classification of publications according to the dimensions of benefits, challenges, and methodologies.

• Building a smart farm requires technical knowledge on
choosing the appropriate smart devices, a reliable net-
work infrastructure based on the characteristics of the
farm, setting up and monitoring software packages to
implement actions such as watering triggers, alarms and
notifications. Missing this knowledge is associated with
extra cost of maintenance.

• One of the main parts of the system is the smart energy.
The solar agricultural market is still in the early stages of
development and challenges related to technology costs,
limited awareness of the benefits, lack of appropriate
policy incentives and limited governmental subventions
for farmers and suppliers who decide to use these
technologies.
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TABLE 8. Recent AI techniques and accuracy rates in smart farming.

• Coping with climate change, soil erosion and biodi-
versity loss is a novel journey for the majority, which
may lead to continuously changing on the smart farm
infrastructure.

• Farmers need to meet global rising demand of higher
quality food. They need to reduce their impact on the
environment, increase the nutritional content of crops
and minimize chemical residues, which also needs extra
technologies.

• There is a trend of youth migration form rural areas
into cities which makes it more difficult for farmers

convincing and inspiring young people to stay and
become future farmers. Encouraging and training farm-
ers to use technologies in farming has become a policy
priority in several counties.

XI. CLASSIFICATION OF PAPERS
Table 7 provides the categorization of the reviewed publica-
tions in the three aforementioned dimensions. These findings
show that IoT data collection, machine learning, and benefits
for farmers are the focuses of a large percentage of the
relevant publications in the literature.
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XII. COMPARISON OF METHODOLOGIES
Machine learning, expert systems, and image processing
methodologies are commonly used to solve various problems
in the agricultural sector. Table 6 provides information about
several recent applications of AI techniques for smart farm-
ing systems. For example, Shakeel et al. [183] proposed a
deep learning-based classification algorithm for cow behav-
ior recognition. Durai et al. [184] developed a system using
the random forest classifier and deep learning algorithm to
classify crops. They reported very promising results with
accuracy of 95.45%. Decision tree, K-nearest neighbor, and
random forest algorithms were used in mushroom classifica-
tion by Rahman et al. [186] with accuracy of 100%. Other
relevant algorithms used in recent works are given in Table 8.
It shows that Junior et al. [185] have the best accuracy in the
spectral, hierarchical, and DBSCAN clustering applications
using decision tree and K-nearest neighbor algorithm com-
pared with other machine learning algorithms. Sharma et al.
provided a review of precision agriculture using machine
learning algorithms to demonstrate that data-driven solutions
in smart farms improve the productivity and quality of the
products. In prediction of the crop growth K-neighbor’s clas-
sifier, Logistic Regression, Ensemble classifiers algorithms
give very promising results. Linear regression algorithm is
commonly used predict the production value for climate data
such as rainfall, temperature and humidity. Deep learning
algorithms are very successful for weed detection, image
classification, image segmentation and object tracking in
agricultural data. Neural network, k-nearest neighbors and
Naïve Bayes classifier algorithms are used in insect recogni-
tion and classification. Experimental results show that accu-
racy is more than 90%.

XIII. CONCLUSION
Smart farming is a concept that involves handling and control-
ling farms using new technologies such as the IoT, robotics,
drones, andAI to increase the quantity and quality of products
while reducing the human labor required for production.
These benefits will have positive effects on the profitabil-
ity and the growth of the economy as population sizes are
dramatically increasing worldwide. Therefore, researchers
and scientists are moving toward the utilization of recently
introduced IoT technologies in smart farming to help farmers
use AI technology in the development of improved seeds,
crop protection, and fertilizers. AI in agriculture is emerging
in the threemajor areas of soil and cropmonitoring, predictive
analytics, and agricultural robotics. In this regard, farmers are
rapidly beginning to use sensors and soil sampling to gather
data to be used by farm management systems for further
investigation and analysis.

In this survey, we have studied many AI applications in
the agricultural sector to investigate the various developments
and solutions to improve the productivity of farms and solve
some environmental problems encountered during the pro-
duction of different types of products in agriculture. The AI
models for farms help countries to maintain sustainability in

this sector. We began with background on AI, which included
a discussion of all AI methods utilized in the agricultural sec-
tor, such as machine learning, the IoT, expert systems, image
processing, and computer vision. Second, a comprehensive
literature review was presented, focusing on how researchers
have utilized AI applications effectively in data collection
by using sensors, utilizing smart robots, monitoring crops,
and monitoring irrigation leakage. It was shown that quality,
productivity, and sustainability are maintained while utiliz-
ing AI applications. Third, the benefits and challenges of
AI applications were explored along with a comparison and
discussion of several AI methodologies applied in smart
farming. In this regard, considering the publications that were
reviewed, it was concluded that machine learning, expert
systems, and image processing methodologies are the most
frequently used methodologies in the literature for solving
problems in the agricultural sector.

Smart farming technologies are emerging technologies that
help countries to maintain sustainability in the agriculture
sector, however, the research community should consider
some research gaps and challenges that create new opportu-
nities for researchers to conduct new research tracks using
trusted, secure data, factors in climate changes and weather
forecasting to improve productivity. A lot of research work
effort has been conducted to use machine learning for the
early detection of disease in farms. However, there is a limita-
tion in this field due to disease infestation and therefore, new
models should be developed for early prediction of diseases
before the farm harvest is affected significantly. The research
gaps and challenges explained above encourage researchers
towork on these gaps and create new opportunities and direct-
ions to conduct new research on various tracks as future work.

In this survey, we have also discussed the most recent
applications of AI methods in smart farming while focusing
on which AI methods or algorithms are used and the accuracy
rates that were obtained. Tables were provided to demonstrate
the most recent AI techniques and the associated applications
as well as the obtained accuracies and, researchers have
obtained very promising results while utilizing AI method-
ologies effectively. In conclusion, this survey has provided
in-depth descriptions of AI applications in smart farming.
Therefore, due to the provided information, discussions, and
comparisons given here, this survey will be a useful guide for
researchers conducting research on AI applications in smart
farming.
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