IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 23 November 2022, accepted 22 December 2022, date of publication 26 December 2022,
date of current version 2 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3232505

==l RESEARCH ARTICLE

PowerDP: De-Obfuscating and Profiling
Malicious PowerShell Commands With
Multi-Label Classifiers

MENG-HAN TSAI123, (Member, IEEE), CHIA-CHING LIN"', ZHENG-GANG HE’,
WEI-CHIEH YANG'23, AND CHIN-LAUNG LEI"!

! Graduate Institute of Electrical Engineering, National Taiwan University, Taipei 106319, Taiwan
2Center for Cybersecurity Service, Institute for Information Industry, Taipei 106214, Taiwan
3National Center for Cyber Security Technology, Taipei 106043, Taiwan

Corresponding author: Meng-Han Tsai (d02921015@ntu.edu.tw)

This work was supported in part by the Ministry of Science and Technology, Taiwan, under Grant 110-2221-E-002-073-MY2.

ABSTRACT In recent years, PowerShell has become the common tool that helps attackers launch
targeted attacks using living-off-the-land tactics and fileless attack techniques. Unfortunately, malware-
derived PowerShell Commands (PSCmds) have typically been obfuscated to hide the malicious intent
from detection and analysis. Also, malicious PSCmds’ expansive use of multiple obfuscation strategies and
encryption methods makes them difficult to be revealed. Despite the advances in malicious PSCmds detection
incorporating new approaches such as machine learning and deep learning, there is still no consensus on
the solution to de-obfuscating malicious PSCmds and profiling their behavior. To address this challenge,
we propose a hybrid framework that combines deep learning and program analysis for automatic PowerShell
De-obfuscation and behavioral Profiling (PowerDP) through multi-label classification in a static manner.
First, we use character distribution features to forecast obfuscation types of malicious PSCmds. Second,
we developed an extensive de-obfuscator utilizing static regular expression replacement to recover the
original content of obfuscated PSCmds based on the predicted obfuscation types. Finally, we profile the
behavior of PSCmds by features extracted from the abstract syntax tree of PSCmds after de-obfuscation. Our
results show that PowerDP achieves a promising 99.82% accuracy and 0.18% hamming loss in obfuscation
multi-label classification using deep learning. Furthermore, the successful recovery rate of the de-obfuscator
against 15 obfuscation types is 98.11% on average with semantic similarity comparison, and the accuracy of
the behavior multi-label classification for identifying 5 behaviors in malicious PSCmds averages 98.53%.
The evaluation indicates that PowerDP is able to classify and profile complicated PSCmds.

INDEX TERMS PowerShell, de-obfuscation, machine learning, deep learning, abstract syntax trees, multi-
label classification, behavioral profiling.

I. INTRODUCTION

With the rise of hacktivism [1] and cybercriminals’ growing
aspirations for higher profits [2], targeted attacks using
malicious emails have gradually expanded over the past
decade. According to the knowledgable MITRE ATT&CK
Matrix for Enterprise,! fileless malware spreading via emails

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masucci
1 https://attack.mitre.org/matrices/enterprise/

256

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

is one of the mainstream types of stealth attacks [3], evading
detection by most security solutions and thwarting forensic
analysis efforts. Even though security monitoring and defense
effectiveness increase, emails and decoy Office documents
are still the best combinations for malware delivery media.
Because people remain susceptible to manipulation, human
psychological weaknesses result in the main vulnerabilities
that can be exploited through social engineering, e.g.,
spear-phishing attacks. In this scenario, attackers typically
attached a well-customized malicious document containing

VOLUME 11, 2023

https://orcid.org/0000-0002-0636-4716
https://orcid.org/0000-0003-2779-6486
https://orcid.org/0000-0002-9011-5025
https://orcid.org/0000-0002-1570-8576

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

IEEE Access

PowerShell Commands (PSCmds) to a forged email. Addi-
tionally, impersonation is often used in sender names or
contact information to lure targets into opening malicious
files.

Living-off-the-Land (LotL) tactics and fileless attack
techniques are the emerging trends in targeted attacks [4],
[5]. Attackers use legitimate and preinstalled system tools
or run scripts such as PSCmds directly in memory to
perform lateral movement within a corporate network.
By leaving fewer artifacts and traces on the target system,
attackers can minimize the risk of being detected by security
defenses and increase the success of attacks. Considering
that PowerShell is widely used to administrate and manage
Windows operating systems, PowerShell has become one of
the primary attack tools used in fileless attacks.

PowerShell is a powerful scripting language, interactive
command-line interface, and scripting platform built on the
Microsoft .NET framework. With a wide range of libraries
and useful cmdlets, PowerShell is gaining popularity among
software developers and IT operators due to its versatility
and reliability. Unfortunately, cybercriminals and malware
authors are also rapidly taking advantage of PowerShell for
malicious usage [6]. As with other scripting languages used
by malware, PSCmds’ expansive use of multiple obfuscation
strategies and encryption methods makes them difficult to
be revealed. As a result, attackers use the flexibility of
PowerShell to hide malicious intent from the context of code,
compromising analysis by security analysts.

Table 1 shows three commands from the native Windows
command line, the Powershell cmdlet, and the dotNet code.
PowerShell could interpret all three commands to produce the
same output even though they are three different invocation
methods. In addition, PowerShell supports numerous encod-
ing and encryption mechanisms, such as Base64, Hex, XOR,
and SecureString. Using PowerShell’s natural properties,
attackers can combine multiple obfuscation strategies to
prevent malicious PSCmds from being quickly and auto-
matically broken by a sandbox or analyst. Also, malware
authors typically produce novel generations of malware
with polymorphic and metamorphic properties [7] through
advances in areas such as automated obfuscation engines [8],
code generation tools, code protection methods [9], and
packers to circumvent detection. With the rapid develop-
ments of obfuscation techniques and metamorphic engines,
malicious software and script populations have increased
dramatically [10], [11]. Therefore, detection evasion and
obfuscation techniques represent a non-neglected challenge
that needs to be mitigated in today’s IT environment.

While security vendors and researchers have proposed
many works and solutions from various aspects to combat
such threats, most mainly focus on dynamic execution or
static parsing to detect PSCmds. The monitoring schemes
using the NET framework [12], [13] and script block logging
via Antimalware Scan Interface (AMSI)? require in-depth

2https://learn.microsoft.com/en—us/windows/win32/amsi/antimalware—
scan-interface-portal

VOLUME 11, 2023

TABLE 1. Different invocation methods for the same purpose in
PowerShell.

I

| Command | Description

#
1 | PWD Native command line
2 | Get-Location PowerShell cmdlet
3 | [System.IO.Directory]:: dotNet code
GetCurrentDirectory()

knowledge of the system and implementation within the
dynamic mechanisms. The static mechanisms [14], [15],
[16], [17] manually picking with the regular expression
(regex) to match the string-level or token-level signatures
have been shown to facilitate the analysis and de-obfuscation
of malicious PSCmds. Although security analysts benefit
from dynamic and static solutions for analyzing malicious
PSCmds, the propagation speed of metamorphic malware
containing variants of various obfuscations is still faster than
real-world detection and analysis processes. As a result, the
arms race between malware authors and security analyzers
continued, and a more effective solution is required to combat
highly obfuscated and encrypted threats.

On the other hand, recently emerging techniques such
as Machine Learning (ML) and Deep Learning (DL)
have shown that they could offer researchers alternative
solutions [18], [19], [20], [21] for developing cutting-edge
methods to combat cybersecurity challenges. In general,
several studies achieve better performance than traditional
signature scanning and execution monitoring mechanisms,
including detection with vector representation features from
Abstract Syntax Tree (AST) [22], [23], [24], [25], [26],
Natural Language Processing (NLP) [27], [28], [29], [30],
and Graph Neural Network (GNN) [31] inference to dif-
ferentiate between malicious and benign scripts. However,
to the best of our knowledge, previous studies by ML and
DL cannot be considered conclusive as they mainly focus
on binary classification that discriminates malicious PSCmds
from benign ones, and often fail to reveal semantics or
malicious intent behind the obfuscated PSCmds. Therefore,
the problem remains unsolved, and analysts still have to put
much effort into finding out the behavior of PSCmds and
the targets of attackers through dynamic or static analysis for
forensic purposes.

To address this challenge, we propose a hybrid frame-
work that combines deep learning and program analysis
for automatic PowerShell De-obfuscation and behavioral
Profiling (PowerDP) through multi-label classification in
a static manner. We first collect malicious PSCmds from
an internal sandbox and external open datasets to generate
the ground truth, including obfuscation and behavioral
labels. Then we adopt an obfuscation multi-label classifier
to forecast the obfuscation types of PSCmds. As per
the prediction, we utilize the static regex replacement to
accurately de-obfuscate and recover the original content
of obfuscated PSCmds. Afterward, taking advantage of
AST, a tree-like representation of the abstract syntactic
structure of code, we process each de-obfuscated PSCmd of
arbitrary length into a real-valued vector representation for

257

IEEE Access

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

behavioral profiling with multi-label classification. PowerDP
not only efficiently automates labor-intensive tasks and
relieves analysts of mental effort but also provides a coarse-
to-fine grained report from the results of the multi-label
classification, which can be easily combined with previous
works on detecting malicious PSCmds. Security analysts can
benefit from the proposed automation mechanism to discover
malicious intent behind the malware-derived PSCmds and
reduce the burden of malware and forensics analysis.

The significant contributions of this study can be summa-
rized as follows:

o« We present a novel research task to automatically
identify the obfuscation types of malicious PSCmds
through character distribution features and obfuscation
multi-label classification.

« We empirically extend previous works on static regex to
develop a de-obfuscator to recover obfuscated PSCmds
to the original content with precise regex replacement in
a recommended order.

o To address behavioral profiling for forensic analysis,
we use the real-valued vector representations from the
AST of PSCmds as input to a behavior multi-label
classifier to predict potential behavioral functionalities.

The remainder of this paper is organized as follows.
In Section II, we provide background information, the various
obfuscation types of PSCmds used by attackers to thwart
the analysis efforts, and the challenges of de-obfuscating
and behavioral profiling for PSCmds. Section III gives an
overview of our framework and entails our approach to
describe how we statically de-obfuscate and profile PSCmds.
We present the ground truth dataset creation and correction
process in Section IV, including how we collect and
preprocess PSCmds to detect obfuscation types and profile
behavior of PSCmds. Section V illustrates the evaluation
results, followed by a brief discussion of the proposed method
limitations in Section VI. Related work is summarized in
Section VII. Finally, we conclude this work and propose a
direction for future improvement in Section VIII.

Il. BACKGROUND AND MOTIVATION

Because of PowerShell’s versatility and reliability, Power-
Shell is abused as one of the most popular scripting languages
used by cybercriminals. Among all attacks, PSCmds are
commonly used to download and execute malicious payloads.
Listing 1 shows a typical example of malicious PSCmds
often stored in a well-customized malicious document. In this
section, we introduce various obfuscation types and discuss
the challenges of de-obfuscation and behavioral profiling to
uncover malicious intent behind the PSCmds.

A. PowerShell OBFUSCATION

Obfuscation is a technique to evade detection and thwart
malware analysis, bringing an invisible cloak for malware
and malicious scripts. Through obfuscation, attackers can
effectively launch an underneath intrusion without aware-
ness. There are various methods of obfuscating PSCmds,

258

1 |PowerShell -ExecutionPolicy Bypass
-NoProfile -WindowStyle Hidden -Command
(New—-Object

System.Net .WebClient) .DownloadFile (
"http://malicious.website/malware.exe",
"Senv:APPDATA\bad.exe"); Start-Process
("Senv:APPDATA\bad.exe")

LISTING 1. Maclicious PSCmds for malware download and execution.

many of which were implemented in the framework “‘Invoke-
Obfuscation™ created by Daniel Bohannon [32] in 2016 and
other tools such as PowerShell Empire® and PowerSploit.*
Three categories of obfuscation methods are typically
employed by malicious PSCmds:

1) Compression. This strategy applies compression to
compress the malicious PSCmds and then utilizes
Base64 to encode the result.

2) Encoding schemes. Encoding is the most common
method used in PowerShell obfuscation. We briefly
review the seven encoding schemes typical in the real
world.

o Base64: Encodes entire PSCmds to a Base64
encoded string.

o ASCII: Represents each printable character in
PSCmds with an ASCII code value.

« Hexadecimal: Converts each printable character in
PSCmds to a hexadecimal value.

e Octal: Converts each printable character in
PSCmds to an octal value.

« Binary: Generates encoded payload using binary
representation for entire PSCmds.

o Binary Exclusive OR: Takes PSCmds and a
specified key as inputs and produces the encoded
result with a bitwise XOR operation.

o SecureString: Generates an AES-encrypted
SecureString object from PSCmds using a speci-
fied key.

3) String manipulation. Since PowerShell provides
many string-level and token-level manipulation meth-
ods, attackers are always trying to modify the easily
recognizable patterns of functions, parameters, and
variables in PSCmds for malicious purposes. Below are
four common methods for manipulating strings.

o Concatenation: Splits the PSCmds into multiple
parts and combines all divided content with *“+”’
operators or a join operator for recovery.

o Reordering: Divides the PSCmds into several parts
and reassembles the string with the specified
indexes via the “-f” operator to format and
rearrange a string expression.

o Reversing: Makes the PSCmds appear in reverse
order and recreates the string expression with some
helper functions before executing the original
command.

3 https://github.com/EmpireProject/Empire
4https ://github.com/PowerShellMafia/PowerSploit

VOLUME 11, 2023

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

IEEE Access

o Tick: Inserts backticks “*’, known as grave
accents, into a string. Backticks are escape char-
acters that are not interpreted when executing
PSCmds.

Apart from the methods mentioned above, three helper
functions are often adopted or combined with other obfus-
cations to increase the complexity.

1) Splitting. This helper function splits an entire obfus-
cated string into a token array to remove extraneous
symbols or special characters not present in the original
PSCmds.

2) Replacement. Instead of using the split function,
replacing is another way to eliminate nonsensical
characters in the expression string for the same purpose
as splitting.

3) Randomcase. In this case, each alphabet in the
PSCmds is converted with a randomly mixed case
to break reading comprehension and thwart malware
analysis.

The complete list of obfuscation methods discussed in
this paper can be found in Table 2. Examples of obfuscated
PSCmds derived by applying the above 12 obfuscation
methods and three helper functions to the PSCmds in
Listing 1 are given in the public GitHub repository.’ As can
be seen from the examples, the original contents and intent
of PSCmds are hidden by the obfuscation. Furthermore, the
textual representation of PSCmds has also been changed in
different obfuscations. Thus, it is difficult to understand what
is being executed by the PSCmds without de-obfuscation,
affecting forensic analysis and impact evaluation. However,
the number of possible combinations of different obfuscation
strategies can be large and complex. Therefore, we need a
procedure or recommended order to handle all combinations
of obfuscation methods for recovery.

B. PowerShell BEHAVIORAL PROFILING
Behavioral profiling of malicious PSCmds provides security
analysts and researchers with a quick view of malicious
behavior and potential activities after executing the code.
Additionally, the process helps reduce labor-intensive tasks
like analyzing thousands of files in a limited time. Some
authors [15], [17] have provided practical approaches for
static analysis of PSCmds for PowerShell behavioral profil-
ing. For example, after identifying behaviors via keywords,
they use many custom regex to remove various types
of obfuscation and score the malicious code accordingly.
However, although previous work has proven useful for
behavioral profiling, the process still needs to be performed
iteratively to unravel new content and look for specific
keywords that may be obfuscated or hidden from context.
At the same time, recent advances in ML algorithms
and DL architectures have improved significantly and are
booming, particularly in the areas of computer vision,
video and speech recognition, and NLP. Moreover, studies
like Code2vec [33] have shown excellent performance and

5 https://github.com/mhtsail010/pscmd-obfuscation-examples

VOLUME 11, 2023

TABLE 2. The complete list and recommended order for de-obfuscation.

[Priority | Obfuscation method [Category |

1 Tick String manipulation
2 Concatenation String manipulation
3 Reversing String manipulation
4 Reordering String manipulation
5 Replacement Helper function

6 Splitting Helper function

7 ASCII encoding Encoding scheme

8 Binary encoding Encoding scheme
9 Hexadecimal encoding | Encoding scheme
10 Octal encoding Encoding scheme
11 Binary XOR encoding | Encoding scheme
12 Compression Compression

13 SecureString encoding | Encoding scheme
14 Base64 encoding Encoding scheme
15 Randomcase Helper function

effectiveness in terms of code search and comprehen-
sion. By leveraging the neural network with a fixed-sized
vector input representing arbitrary-sized snippets of code,
researchers can achieve algorithm prediction [34], semantic
code labeling [35], [36], and multi-label classification [37]
for code functionalities.

Several state-of-the-art studies [10], [11], [38], [39],
[40], [41] using ML/DL and genetic algorithm achieve
performance gains in detecting and analyzing malicious
executables and mobile apps. Additionally, they have shown
that automated behavioral profiling or semantic labeling for
malware analysis can benefit security analysts and reduce
manual work. Therefore, it is essential to study how the
ML/DL techniques, which in previous work mainly focused
on the binary classification of malicious PSCmds, can be
extended to include multi-label classification in behavioral
profiling to understand the malicious intent behind the
PSCmds.

lll. THE PROPOSED PowerDP FRAMEWORK

To counter the complexity and threat of malicious PSCmds,
we proposed PowerDP, a hybrid framework for automatic
PowerShell de-obfuscation and behavioral profiling through
multi-label classification in a static manner. Fig. 1 illustrates
the overview of the PowerDP framework that generates
a coarse-to-fine grained multi-label classification report of
malicious PSCmds. In the following subsections, we explain
the technical details of each component in PowerDP.

A. SYSTEM OVERVIEW

As shown in Fig. 1, the proposed PowerDP framework
consists of two phases, each of which involves a multi-label
classification task, as described below.

1) PHASE 1: DE-OBFUSCATING PowerShell COMMANDS

In the first phase, we apply static techniques rather than
dynamic mechanisms to de-obfuscate the PSCmds for
efficiency. We extract textual features and statistical charac-
teristics of character distribution from PSCmds to represent
the malicious PowerShell samples. Given the representation

259

IEEE Access

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

Phase 1: De-obfuscating PSCmds

Character Distribution Feature
Extraction

Lofofafef] oo]

Obfuscation
Multi-label

prediction

of fofeqe]-Jol

vector

Obfuscated | Count | | Length | | Entropy | Classifier
PSCmds
De-obfuscator <
»| Report |
e oA ,
1 1
i Abstract Real-valued o [] Tow] Behavior i
Syntax Tree |l Vector Multi-label ol [Tl T7] !
PSCmds |i : vector . i
! Parser Representation Classifier prediction i
1
i i
1 1
1 1
1 1

Phase 2: Profiling PSCmds

FIGURE 1. The overview of the proposed PowerDP framework.

vector of character distribution, we then train a obfuscation
multi-label classifier to forecast the obfuscation types of
the PSCmds. After that, we empirically extend previous
studies [14], [15], [16], [17] on static regex to develop a
PowerShell de-obfuscator in python language, which utilizes
precise regex replacement against 15 obfuscation types
mentioned in Section II to recover the obfuscated PSCmds
into the original content based on the prediction from the
classifier.

2) PHASE 2: PROFILING PowerShell COMMANDS

After de-obfuscating the PSCmds, the original malicious
PSCmds are revealed, allowing us to profile their behavior
from context to uncover the intent behind the code. Instead
of sequentially retrieving behavioral patterns like keywords
from the de-obfuscated context of PSCmds, we use deep
learning with neural networks to classify the potential
behavior on a high abstraction level of AST. Specifically,
we develop an AST parser to encapsulate the underlying
meanings of discrete symbols in PSCmds in an ensemble
vector, such as AST node types and the parent-child
relationships among the AST nodes to represent the malicious
PowerShell samples, as will be detailed in Section III-C1.
Finally, we train a behavior multi-label classifier with the
real-valued vector representations from the AST of PSCmds
to predict five behaviors of the PSCmds. We discuss how we
choose the five predefined behaviors in Section I'V.

3) MULTI-LABEL CLASSIFICATION

Multi-label classification [37] is the problem of finding
a model that maps inputs X to binary vectors Y =
{r1,¥y2,...,ya}, where y; € {0, 1M representing the label
vector for X, n is the number of samples, and My is the
class dimension; that is, it assigns each element (label) in Y
a value of 0 or 1, where y; = 1 indicates the presence of the
label. At present, several methods are well documented in the

260

literature to address the problem of multi-label classification.
And these methods can be divided into two categories as
proposed in [37]: Problem Transformation Methods and
Algorithm Adaptation Methods. Problem transformation
methods aim to decompose the problem into a set of binary
problems. On the other hand, algorithm adaptation methods
extend specific learning algorithms to deal with multi-label
data directly. We share our design of the two multi-label
classifiers aiming to achieve obfuscation and behavior multi-
label classification, respectively.

B. DE-OBFUSCATING PowerShell COMMANDS

In this phase, we focus on de-obfuscating malicious PSCmds
based on the obfuscation types predicted by a multi-label
classifier, with each design component detailed below.

1) FEATURES BASED ON THE CHARACTER DISTRIBUTION
Since different obfuscation methods change the same
PSCmds through their properties to different appearances in
the text, we try to keep the most meaningful and represen-
tative abstraction of the textual code in the PSCmds. Unlike
other studies, we do not preprocess the PSCmds to eliminate
or normalize redundant tokens or characters. For obfuscation
multi-label classification, we collect 97 character-based
features from the minimum unit, which is a printable
character in PSCmds.

a: CHARACTER STATISTICS

We count every printable character whose ASCII decimal
value is 32 to 126 in PSCmds. As a result, we have the
quantity of existence of each character in PSCmds and
represent it as 95 features.

b: CHARACTER LENGTH
From our observation, the length of obfuscated PSCmds
in encoding schemes is usually much longer than that

VOLUME 11, 2023

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

IEEE Access

with obfuscation in string manipulation and compression.
Therefore, we count the length of the code as one feature for
PSCmds.

c: INFORMATION ENTROPY

Entropy is a measure to represent the statistical characteristics
of different characters in one source with a probability
distribution. We can use it to analyze the distribution of
different characters. The entropy can be calculated as follows:

X :{x17x27~-,xn}

HOX) ==Y piplogopee) { W = D%
i=1

i=1 X
plxi) = W

ey

In Eq. (1), x; and W refer to the count of each distinct
character and the count of all characters in the PSCmds, and
p(x;) represents the frequency of the i distinct character.

2) OBFUSCATION MULTI-LABEL CLASSIFIER

For obfuscation multi-label classification to forecast obfus-
cation types, we compare the performance of adopting
Linear Support Vector Machine (SVM) and Random Forest
(RF) from Problem Transformation methods, K-Nearest
Neighbors (KNN) and Decision Tree (DT) from Algorithm
Adaptation methods, and the Deep Neural Network (DNN).
All models were built using the python language on
the Google Colaboratory® with the Scikit-learn [42] and
Keras’ libraries. The parameters of the ML algorithms are
determined using the grid search strategy and listed in Table 3,
and the architecture of the DNN is presented in Table 4. In the
end, we employ the classifier with the best performance after
evaluation.

3) THE DE-OBFUSCATOR
Based on the predicted obfuscation types, we then build a
PowerShell de-obfuscator as follows. We empirically extend
previous work [14], [15], [16], [17] on static regex replace-
ment to develop the de-obfuscator to recover obfuscated
PSCmds to the original content. After receiving the prediction
results from the classifier, the de-obfuscator searches for
specified signatures and patterns in PSCmds for substitution
and recovery. To increase the accuracy of our designed
de-obfuscator, we provide in Table 2 a recommended order
for the de-obfuscation process for PSCmds with multiple
obfuscation types. The order of de-obfuscation arises from
the practical problems we faced when investigating different
types of obfuscation from the in-the-wild PowerShell samples
and the repeatable procedures such as iterative processing and
testing in previous work.

Due to the complexity and variety, string manipulation
methods must be treated as the top priority for de-obfuscation.

6https://colab.research.googlecom/
7 https://keras.io/

VOLUME 11, 2023

TABLE 3. The parameters for different machine learning algorithms.

Algorithm [Parameter |

SVM SvVC, kernel="linear", C=1,
random_state=42

RF n_estimators=300, max_depth=19,
random_state=42

KNN n_neighbors=3, p=1,
manhattan_distance

DT max_depth=15, random_state=42

TABLE 4. The architecture of the DNN for obfuscation multi-label
classification (Learning rate: 0.0001; Batch size: 256; Optimizer: Adam).

[# [Layer type [# of neuron [Activation |
1 Dense 512 ReLLU
2 | Dense 256 ReLLU
3 | Dense 128 ReLLU
4 | Dense 64 ReLLU
5 | Dense 32 ReLLU
6 | Dense 15 Sigmoid

Attackers use a combination of operators, string representa-
tion, and string-based helper functions such as replacement
and splitting to embed the malicious command in the expres-
sion string, rendering the string nearly unreadable. Therefore,
the first consideration should be to recover the obfuscation
results of string manipulation into the de-obfuscated content
using the de-obfuscator. Meanwhile, the encoding schemes
differ from command tokenization or partial substitution
commonly encountered in string manipulation. All methods
in encoding schemes change the entire PSCmds with a
specified representation of their corresponding range of
coding values. Thus, the encoding schemes are the secondary
candidates for de-obfuscation processing. We can detect the
range of the coding values in the obfuscated PSCmds and
use the corresponding transformation to recover the original
expression string.

Aside from the obfuscation methods discussed previ-
ously, Base64 encoding is the simplest and most com-
mon anti-detection method among all obfuscation schemes
and appears to be present in compression, SecureString
encoding, and Base64 encoding itself. Because compression
and SecureString encoding require additional operations
to de-obfuscate the PSCmds, such as unzip function and
decryption with keys, we designed the de-obfuscator to
recover the PSCmds that contain a Base64 encoded string
in the third stage to avoid the misjudgment. Finally, the
de-obfuscator transfers all alphabets in the PSCmds to
lowercase when Randomcase is recognized in the end,
in case some uppercase characters are required in prior
de-obfuscation processes.

C. PROFILING PowerShell COMMANDS

In this phase, we aim at behavior profiling for malicious
PSCmds, which have been de-obfuscated in the previous
phase.

1) FEATURES BASED ON THE ABSTRACT SYNTAX TREE
Knowing that AST is widely used in programming lan-
guage processing systems to represent the abstract syntactic

261

IEEE Access

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

(root)

‘/l\

(1) String tokens of the PSCmd

A A H EH=osN

PowerShell A

; N O
AAAAAA | ™ A
(| | | E A A a

(2) Relationships among AST nodes

H
PR

AANNE| |

N
|

(3) Real-valued vector representation

FIGURE 2. The concept of assembling real-valued vector representations from string tokens via the relationships among

AST nodes.

structure of programs, we develop an AST parser using
PowerShell commands ‘““ParseFile” and “FindAll” to deter-
mine the AST of the de-obfuscated PSCmds. We saved the
complete AST information as a text file in a depth-first-search
order, including parent-child relationships and all AST node
types. After parsing the AST structure from each PSCmds,
we extract five statistical features, including the number of
node types, the number of nodes, the number of leaves, the
maximum degree of the node, and the height of the tree.
Additionally, there are 45 distinct AST node types in our
dataset, each of which is associated with a feature vector,
as detailed below.

We have noticed that vector embedding representations are
suitable for general ML/DL tasks such as clustering, recom-
mendation, and classification. Therefore, we employed [43]
to learn the real-valued vector representations of the 45 dif-
ferent AST node types. Furthermore, besides the vector
representation for each node type in the AST, we try to
preserve the parent-child relationships among AST nodes
in the vector. Therefore, a node’s vector representations in
the AST should not only be learned from different node
types but also be “coded” by its children’s representations,
which means that a node’s vector representations could be
treated as a summary of all functionalities of its child nodes.
To give an example, for each subtree with parent node P and n
direct child nodes Ci, ..., C, in an AST, we present them as
vec(P), vec(Cy), . .., vec(Cy). The primary objective is that

n

vec(P) ~ tanh (Z LiW; - vec(Ci) + b) 2)
i=1

where [; = (# leaves of C;)/(# leaves of P) is the coefficient

of the weight and b € R/ is a bias vector. Besides, W; €

RN %M is the weights matrix for child node C;, which can be

defined as follows:

n—i i—1

Wi = Wi +
n—1

W, 3
n—1

where W;, W, € RN *Nf are trainable weights matrices. The
objective is to make the Euclidean distance between the two
vector representations on the left and right sides in Eq. (2)
as small as possible. Moreover, to overcome the problem that
different nodes may have different numbers of children, [44]
proposed the idea of a “continuous binary tree,” where W;

262

TABLE 5. The architecture of the DNN for behavior multi-label
classification (Learning rate: 0.00001; Batch size: 8; Optimizer: Adam).

[# | Layer type [# of neuron [Activation |
1 | Dense 512 ReLU
2 | Dense 128 ReLU
3 | Dense 32 ReLU
4 | Dense 5 Sigmoid

and W, are model parameters, and W; is a linear combination
of W; and W, according to the position of node i. Formally,
P has n (n > 2) children, if n = 1, W; = %Wz + %Wr.
In our experimental setting, we empirically set Ny to 22,
which indicates the length of the vector of each AST node.

After optimizing all parameters, we could generate the
real-valued vector representations of all AST nodes using
the methodology in [43]. For leaf nodes in the AST,
they are just the vector representations learned by the
algorithm. Meanwhile, for each non-leaf node P, there are
two representation vectors. One is the left side of Eq. (2)
learned from the algorithm, and the other is the right side
of Eq. (2) coded by the child nodes. Hence we denote the
combined vector of node P as P. We have

1 1 n
P= 3 x vec(P) + 3 X tanh (Z L;W; - vec(Cy) —i—b) .
=1

“

Since each non-leaf node in the AST can be represented as
a real-valued vector using Eq. (4), we adopted a breadth-first
search to create the tree vector. Fig. 2 shows our idea of
abstracting all information in PSCmds and encapsulating it
from string tokens to a real-valued vector via the AST node
relationships. Because the number of nodes in each tree is
different, the length of each tree vector is not the same.
However, for the ML/DL model, the input length of all data
should be identical. To solve this problem, we zero-padded
the end of each tree vector and fixed the most extended length
as L. In our experiments, we will discuss how the length L of
the vector representations affects performance.

2) BEHAVIOR MULTI-LABEL CLASSIFIER
After extracting features from AST of PSCmds, we then build
a multi-label classifier for behavioral profiling. Specifically,

VOLUME 11, 2023

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

IEEE Access

©)

Private data source
Publicdata source

Step 1: Collectraw PSCmds withoutobfuscation

Step 2: Leverage security tools to generate datasets with
obfuscation and behavioral labels, respectively
Step 3, 4: Cross-check the datato construct ground truth

FIGURE 3. The flow diagram of the dataset creation.

we implement a different DNN architecture, with detailed
information described in Table 5. We trained the classifier
with different experimental settings and selected the one with
the best performance to verify the effectiveness of behavior
multi-label classification.

IV. THE DATASET

There are many publicly available PowerShell corpora on
the internet, such as Microsoft PowerShell gallery, GitHub
repositories, and blogs. However, most of them are non-
malicious, non-obfuscated, and unlabeled. In order to evalu-
ate our system, we need a labeled dataset that can provide the
obfuscation types of PSCmds and the malicious behavioral
labels. Therefore, we first collect malware-derived PSCmds
without obfuscation as our primary dataset. We then utilize
security tools to generate the desired obfuscated PSCmds
with obfuscation labels and annotate the non-obfuscated
PSCmds with their behavioral labels. Fig. 3 shows the flow
diagram of our dataset creation. We explain the process in
detail as follows.

A. RAW DATA COLLECTION

We obtained malicious PSCmds from internal sandbox
analysis reports as our initial dataset. For enrichment,
we also gathered PSCmds from the open dataset, including
Palo Alto’s research data® and various online sandboxes
such as Any.Iun,9 FileScan.10,!0 Hatching Triage,11 and
VirusShare,'> a malware repository for research. Besides
Palo Alto’s data, we used the keyword ‘‘PowerShell”
with case insensitive search to discover desired malicious
PSCmds from each dataset. We examined all detected scripts
between 2019 and 2021 according to their submitted time.
Table 6 shows the number of malicious PSCmds we obtained
from each dataset. All received scripts and commands are
identified as malicious by dynamic analysis of sandbox or
static detection by at least three anti-virus programs. After
manually removing duplicated and obfuscated PSCmds from
the previous collection stage, we ended up with 3,057 non-
obfuscated PSCmds executed by malware.

8https://github.com/pan—unit42/iocs/tree/masu:r/psencmds
9https:// any.run/malware-reports/

! Ohttps /Iwww.filescan.io/reports/

1 https://tria.ge/reports/public/

12https://virusshare.com/

VOLUME 11, 2023

Raw Data

PSCmds without
obfuscation and
behavioral labels

@[_Tnvoke- PSCmds with
Obfuscation obfuscation labels
Tool
PowerShell- PSCmds with
Profiler behavioral labels

TABLE 6. The collection of non-obfuscated malicious PSCmds.

Dataset

[# of samples | Period |

2019 to 2021
before 2017

Internal sandbox reports 495
Palo Alto’s research data 1,644

Any.run 85 2021
FileScan.IO 175 2021
Hatching Triage 156 2020 to 2021

VirusShare 502 2019 to 2021

B. GROUND TRUTH CREATION

After collecting the raw samples of PSCmds, we gener-
ate two datasets for obfuscation multi-label classification
and behavior multi-label classification, respectively. First,
to achieve the obfuscation multi-label classification, we man-
ually generate obfuscated PSCmds based on our raw data
using the Invoke-Obfuscation tool [32], a PowerShell v2.0+
compatible PowerShell command and script obfuscator,
to build the ground truth of the obfuscated dataset. Then,
we apply 12 obfuscation methods in three categories and three
helper functionalities introduced in Section II for the 3,057
non-obfuscated PSCmds. After this step, we have 39,741
PSCmds samples, which comprise 3,057 non-obfuscated
samples and 36,684 obfuscated samples with labels.

Second, to perform behavioral profiling with multi-label
classification, we need to annotate the predefined behavioral
labels for each PSCmds. However, it is challenging and
infeasible to annotate all behaviors for PSCmds. Therefore,
we leverage the PowerShellProfiler,' a pattern-based Pow-
erShell analyzer developed by Palo Alto’s researchers [17],
to manually identify negative, neutral, and benign behaviors
in 37 predefined behavioral labels. After analyzing the 3,057
non-obfuscated PSCmds, we have 23 behavioral labels in our
dataset. To avoid the problem of imbalanced data, we only
keep behavioral labels with at least 1,000 samples and remove
ambiguous and non-behavioral labels. As a result, we use
the top 5 behavioral labels for our behavioral profiling
assessment, as shown in Table 7.

C. DATA CROSS-CHECK

To confirm that the two datasets generated by the security
tools are appropriate for our evaluation, two security
professionals helped review and cross-check the datasets.

13 https://github.com/pan-unit42/public_tools/tree/master/powershell
profiler

263

IEEE Access

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

TABLE 7. Top 5 behavioral labels with at least 1,000 samples for
non-obfuscated PSCmds.

[# | Behavioral labels [# of samples |
1 Sleeps 1,413
2 | Known Malware 1,409
3 Code Injection 1,237
4 | Byte Usage 1,228
5 Downloader 1,226

The number of labels for PSCmds in the obfuscation
dataset is between O and 4, i.e., the maximum obfuscation
methods applied to PSCmds are four in our dataset, and the
methods for non-obfuscated PSCmds are zero. Meanwhile,
the maximum and the minimum number of behavioral
labels for non-obfuscated PSCmds range from 0 to 5. After
manually correcting some mislabeling for obfuscation and
behavioral labels, we formed the final ground truth datasets
for the multi-label classification.

V. EVALUATION

In this section, we present the evaluation results and show
the performance and effectiveness of our proposed work.
Specifically, we conduct extensive experiments to answer the
following research questions:

o« RQI1: What is the performance of using character
distribution features to detect and differentiate multiple
obfuscation types?

« RQ2: What is the successful recovery rate of the
de-obfuscator in PowerDP against various obfuscation
methods?

« RQ3: How effective is PowerDP using the real-valued
vector representations to profile multiple malicious
behaviors of PSCmds on a high abstraction level of
AST?

A. EVALUATION METHODOLOGY
In this work, we employ the following standard metrics

and methods to evaluate the performance and correctness of
PowerDP.

1) PERFORMANCE METRICS

Various evaluation measures have been developed for ML/DL
solutions. In addition to the standard Accuracy, Precision,
Recall, and F1 scores, we also adopt Hamming loss, a popular
metric for evaluating multi-label classification problems.

o Hamming loss (HL): It reports how many times on
average, the relevance of a sample to a class label is
mispredicted. The smaller the Hamming loss value, the
better the classification performance. It can define as
Eq. (5), where Yi] is the prediction giving the predicted
labels for i sample and j™ class, and Z/ is the target
giving the actual labels for the i sample and the j* class.

11 <& k . .
—) i
HL_EZ.EI .El(Yi@Zi) 5)
=1 j=

264

TABLE 8. The Hamming loss, Accuracy score, Precision score, Recall
score, and F1 score comparison with different classification approaches.

["Algorithm | HL(%) | AS(%) | PS(%) | RS(%) | F1(%) |

SVM 0.94 87.26 95.76 93.65 94.56
RF 0.18 97.56 99.69 98.98 99.33
KNN 0.69 93.16 96.96 95.88 96.29
DT 0.43 95.91 98.22 98.13 98.17
DNN 0.18 99.82 99.44 99.53 99.48

o Accuracy score (AS): It is also called exact match ratio
or subset accuracy. As shown in Eq. (6), it is the most
strict metric, indicating the proportion of samples where
all labels are correctly classified, where [is the indicator
function.

1 n
AS = - ;jl(n =7) (©6)

e Precision score (PS): A standard metric as shown in
Eq. (7), where the precision score is the proportion
of predicted correct labels to the number of predicted
labels, averaged across all samples.

1« |Y;NZ]
ps=-) - —“ (7
ng Yil

o Recall score (RS): A standard metric as shown in Eq. (8),
where the recall score is the proportion of predicted
correct labels to the total number of actual labels,
averaged across all samples.

1 YNz
RS = — _ (8)
n ; |Z;|

o F1 score (F1): It seeks a balance between precision and
recall and is interpreted as the harmonic mean of the
precision and recall scores. Eq. (9) shows the formula
for the computation of the F1 score.

. 2% PS xRS

Fl=)
PS + RS

2) SIMILARITY COMPARISON

Ideally, the PSCmds de-obfuscation process can recover the
same contents as the original ones. However, it is not easy
to achieve such perfection in practice. Therefore, we need
an indicator to evaluate the overall recovery effect of our
work. We apply clone detection methods using abstract
syntax suffix trees [45] to compare the similarity between the
de-obfuscated PSCmds and their original content. Previous
research has divided the clones into three types:

o Type 1 clones are exact copies without modifications,
except for possible differences in whitespace and
comments.

o Type 2 clones are syntactically identical copies with
parameter changes such as function names, types, and
variables.

« Type 3 clones are syntactically dissimilar copies with
modifications of statements but are semantically similar.

VOLUME 11, 2023

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

IEEE Access

TABLE 9. The Hamming loss of different classification approaches against different obfuscation methods.

HL(%) >\ _Obf.

o spl. rep. rnd. | cmp. | ascii | b64. | bin. | bxor. | hex. | oct. | secstr. | concat. | rod. rev. tick
SVM 0.05 | 2.5 1.5 0.15 | 3.32 | 0.09 | 0.16 | 346 | 035 | 0.15 0.14 0.11 023 | 1.77 | 0.05
RF 0.0 | 0.72 | 0.89 0.0 0.25 0.0 0.0 031 | 0.08 | 0.0 0.01 0.13 0.05 | 0.2 | 0.03
KNN 0.09 | 255 | 1.11 | 0.08 | 1.47 | 0.04 | 0.05 | 1.92 | 0.08 | 0.31 0.01 0.28 0.1 1.57 | 0.75
DT 024 | 1.07 | 1.65 | 0.11 | 0.84 | 0.03 | 0.11 | 0.77 | 0.36 | 0.11 0.04 0.33 03 | 035 | 0.11
DNN 0.01 | 052 | 0.81 0.0 0.5 0.0 0.0 0.54 | 0.08 | 0.05 0.0 0.08 0.0 | 0.16 | 0.01

Since we leverage the methods in [45] to compare
similarities by converting the AST of PSCmds into a semantic
string sequence using every unique letter in ’A-Za-t’ as
an identifier for each AST node type, we can treat Type
1 and Type 2 as the same type of clones. Therefore, for
the exact clones detection (Typel & Type 2), we check the
Longest Common Subsequence (LCS) [46] metric of the
de-obfuscated PSCmds and their original content. If the LCS
metric is identical to the semantic string sequence of the
original PSCmds, we claim that they are full-cloned. The LCS
metric is defined as follows:

0, if i=0o0rj=0

LCS (Xi—1,Yj—1) A xi,
LCS(X;, Y]) ={if i,j>0andx; = Vi

max {LCS(X;, Y1), LCS(Xi-1. Y))}.

if i,j > 0andx; #yj

(10)

where X = {x;,i = 1,2,...,m} is the semantic string
sequence of de-obfuscated PSCmds, and ¥ = {y;,j =
1,2,...,n} is the semantic string sequence of the original

PScmds.

For the semantic clones detection (Type 3), we calculate the
EditRatio from the Levenshtein distance [47] as a comparable
metric between the de-obfuscated PSCmds and the original
content. The Levenshtein distance between two strings is
the minimum number of single-character operations required
to change one into the other, including insertions (cost of
1), deletions (cost of 1), and substitutions (cost of 2). For
example, the following equation calculates the EditRatio
between two semantic string sequences of PSCmds:

LevenshteinDistance(X, Y)
IX]+1Y]

The EditRatio close to 1 suggests the excessive semantic
similarity between two PSCmds, which means the effective
recovery results, whereas the value closed to O indicates
the opposite. We set our threshold to 0.7 and take only the
samples whose EditRatio exceeds the threshold, claiming that
they are copy-and-modified.

EditRatio(X,Y) =1 — (11)

B. EVALUATION RESULTS

1) PERFORMANCE OF MODELS ON OBFUSCATION
MULTI-LABEL CLASSIFICATION

In our first experiment, we used all 36,684 obfuscated sam-
ples with 15 labels from 3 different obfuscation categories

VOLUME 11, 2023

and 3,057 non-obfuscated PSCmds with all zero labels in
raw data. After mixing and shuffling all 39,741 samples,
we followed the 80/20 rule to separate our dataset as training
and testing sets. A total of 97 character-based features were
used in the experiment. To find the best performance by the
automatic multi-label classification results of the obfuscation
classifier, we performed 5-fold cross-validation tests in all
models. As shown in Table &, the best result in each evaluation
metric is marked in bold.

The results showed that the minimum value of the ham-
ming loss came from the RF and DNN models, which showed
excellent multi-label classification performance compared to
others. As for the comparison between the RF and DNN
models, even though the precision of RF is superior to DNN,
we still chose DNN model as our desired classifier in Pow-
erDP. This is because the DNN model has a higher recall score
than RF, which means DNN has fewer misprediction results.
Thus, it is reasonable to state that DNN performs more
reliably in obfuscation multi-label classification. In PowerDP,
the prediction of the obfuscation multi-label classification is
passed to the extensive PowerShell de-obfuscator. Moreover,
the de-obfuscator attempts to recover the obfuscation to the
original content by using different methods based on the
predicted labels. Therefore, fewer misprediction lead to a
more successful recovery.

2) ACCURACY OF PREDICTION AGAINST DIFFERENT
OBFUSCATION TYPES

Table 9 presents the hamming loss of 5 ML/DL models
against different obfuscation labels. Hamming loss evaluates
how many times a label is misclassified. The greater the value
of hamming loss means worse performance. We marked the
top 3 misclassified labels for each model in bold. As shown
in Table 8, the obfuscation using “Replacement,” “Binary
Exclusive OR,” and “Randomcase’ methods are the three
most misclassified types.

After reviewing the distribution of characters in the
PSCmds obfuscated by the “Binary Exclusive OR” methods,
we found that they are very similar to other PSCmds
with different obfuscation. Therefore, they may be poorly
classified due to not too many differences in character
distribution. In addition, as the helper functions, ‘“Replace-
ment” and ‘“Randomcace’ methods are often combined with
other obfuscation strategies. However, from the statistical
information, they do not show many unique characteristics
compared with different obfuscation types. Instead, it is
easier to detect them if we use traditional regex patterns

265

IEEE Access

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

100%
90%
80%
70%
60%
50% :

PGS S &
(©)

(a) Full-cloned detection with LCS (Type 1 & 2)

100%
iy & H E E B EEEE'EHE B
iy # H B E E EEEEEBEEB
s " E B B B B EEEERNEZBS
ye @ @ B B B B EEEEBNEZBS
50% :

(b) Copy-and-modified detection with EditRatio > 0.7 (Type 3)

FIGURE 4. The successful recovery ratio of the de-obfuscator against different obfuscation methods.

TABLE 10. The Hamming loss, Accuracy score, Precision score, Recall score, and F1 score comparison with different number of nodes to construct the AST

vector.

[# of nodes [Coverage of samples

[Vector size | HL(%) | AS(%) | PS(%) | RS(%) | F1(%) |

0 0.0% 5 | 10.62 89.38 89.72 96.47 92.97
<10 9.39% 225 | 4.15 95.85 95.15 97.93 96.52
<20 30.59% 445 | 1.47 98.53 97.94 98.31 98.12
< 50 50.15% 1105 | 1.67 98.33 97.64 98.47 98.05
< 100 59.99% 2205 | 1.67 98.33 97.42 98.39 97.90
< 1392 100% 30629 | 1.96 98.04 97.03 97.85 97.44

to discover the keywords for “Replacement” or to detect
specific commands in mixed cases for ‘““Randomcase.”

Regarding the four obfuscation methods in the string
manipulation category, ‘“Reversing” is the worst one in
classification. It is obvious to have such results, compared to
other methods in the same category, the “Reversing”’ method
does not provide too much insertion or modification to the
original PSCmds except for reversing the whole expression
string. On the other hand, DNN performed the classification
well on average among all models. Five obfuscation types
can be 100 percent predicted with the DNN model in our
experiment, including “Compression,” “Base64 Encoding”,
“Binary Encoding,” ‘“SecureString,” and “Reordering.”
From the point of human vision, all of them have unique
textual representations in obfuscation.

3) CORRECTNESS OF THE EXTENSIVE PowerShell
DE-OBFUSCATION

When there are multiple obfuscations, our empirically
designed de-obfuscator endeavors to recover obfuscated
PSCmds to their original content according to the
de-obfuscation order in Table 2. We evaluate the recov-
ery quality by comparing the similarity between the
de-obfuscated PSCmds and their original content. In this
experiment, we use all 36,684 obfuscated samples generated
by the 12 obfuscation methods in the ““‘Invoke-Obfuscation™
tool with their ground-truth obfuscation labels mentioned
above.

As shown in Fig. 4, the diagram on the left side presents
the successful recovery ratio of the de-obfuscator, which
uses full-cloned detection for similarity comparison; the
diagram on the right side shows the same ratio but uses copy-
and-modified detection instead. Among all, the recovery
ratios of eight obfuscation methods in the categories of

266

“Compress” and “Encoding” are higher than 98.5% with
full-cloned detection, which means only 1.5% of obfuscated
samples using the “Compress” and “Encoding” strategies
can not be recovered ideally by the de-obfuscator. This is
because ‘“Compress” and “Encoding” schemes encapsulate
the whole expression string of PSCmds in their encoding
representatives. Once the de-obfuscator discovers the core
encapsulation, it can transform the encapsulation to the
original content according to the encoding schemes.

Concerning the four obfuscation methods in the “String
manipulation,” all recovery ratios are higher than 76.09%
with full-cloned detection, which decreases significantly
from the other two categories. Since ‘‘String manipulation”
changes the whole expression string with multiple insertions,
deletions, and substitutions, the de-obfuscated contents are
not strictly the same as the original ones. Therefore,
we use copy-and-modified detection to compare the semantic
similarity between the de-obfuscated and original samples.
As shown in Fig. 4(b), the recovery ratio increased remark-
ably from 76.09% to 92.54% for de-obfuscated PSCmds
in the “String manipulation” category with the copy-and-
modified detection (EditRatio > 0.7). In the end, the average
recovery ratio of the de-obfuscator is 94.54% with full-clone
detection, and it increases to 98.11% on average with copy-
and-modified detection.

4) EFFECTIVENESS ON BEHAVIOR MULTI-LABEL
CLASSIFICATION

To validate the effectiveness of behavior multi-label classi-
fication, we select five behavioral labels, including sleep,
known malware, code injection, byte usage, and downloader,
to annotate the behaviors in 3,057 non-obfuscated PSCmds.
We converted PSCmds to their AST structures and then built
the real-valued vector representations from the vectors of

VOLUME 11, 2023

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

IEEE Access

100%

90%
80%
70%
60%
50%

byte_ code_ downloader known_ sleeps
usage injection malware

sASwPSmRS 1 F1

FIGURE 5. The performance of behavioral profiling with real-valued
vector representations in 20 AST nodes.

AST node types as the features. First, since the size of each
real-valued vector varies based on the number of nodes in the
AST of PSCmds before padding, we evaluate the impact of
the real-valued vector size on the performance in behavior
multi-label classification. In our experimental setting, we set
the vector size of each AST node type to 22 and used
five statistical features mentioned in Section III as default
features.

In our dataset, more than 40% of samples have more
than 100 AST nodes, and the maximum number of nodes
is 1,392. Therefore, we compared the number of nodes
in {0, 10, 20, 50, 100, 1392} to form the real-valued vector
representations and examine the impact of real-valued vector
size on the effectiveness. Table 10 shows the overall
comparative results. From the experiment, we found that
the basic statistical features of the AST were enough to
profile behaviors of the PSCmds with an accuracy score
of 89.38%. If we assemble sub-vectors of 20 AST nodes
as the real-valued vector feature in breadth-first-search
order, we can escalate the accuracy score to 98.53% and
decrease the hamming loss from 10.62% to 1.47%. The
notable improvement shows that the ensemble order and
the size of the real-valued vector are both significant
factors for effectiveness. Furthermore, we also noted that
the performance decreased marginally when we used more
sub-vectors of AST nodes to compose the real-valued vector,
which illustrated negative impacts on zero-padding in the
vectors.

Fig. 5 reports the effective results of behavior multi-label
classification with the experimental settings in 20 AST nodes
and the DNN model. Except for the “downloader” label, the
DNN model can predict all other four behaviors among all
samples with an accuracy score of over 99.5%. After examing
the content and the AST structure of the misclassified
samples with the ‘“downloader” label, we discovered that
the downloading commands are placed in the tail of these
PSCmds. In addition, some commands generated too many
nodes after transforming the PSCmds into the AST. There-
fore, with the settings of assembling sub-vectors of 20 AST
nodes to the real-valued vector, the feature vector may lack
critical information of ‘“‘downloader” behavior in the vector
representations. From the results, it is clear that the length L
of the real-valued vector representations is a tradeoff factor
for the effectiveness of behavioral classification.

VOLUME 11, 2023

VI. DISCUSSION AND LIMITATION

PSCmds with obfuscation are complex and provide flexibility
for attackers to hide malicious intent from the context of
code. Although many authors have conducted studies on
PowerShell detection and de-obfuscation, this problem is
still insufficiently explored. This paper introduces many
obfuscation methods and attempts to use a hybrid method-
ology combineing deep learning and program analysis to
de-obfuscate PSCmds and then profile their behaviors with
multi-label classification. With the native character-based
features from program analysis and the ensemble real-valued
vector representations from AST abstraction, we highlight the
opportunities for improvement on automatic de-obfuscation
and behavioral profiling tasks and bridge the gap between
malware analysis and machine learning. However, we found
that some obfuscation does not present a different textual
representation and unique distribution of characters. Besides,
it is also difficult to exactly recover some obfuscation
methods with string manipulation to their original content.
Thus, we transform the recovery problem into the semantic
similarity comparison for proof-of-concept, which may pose
arisk in some cases.

Due to the lack of labeled data with ground truth,
we created two datasets that rely on open-sourced security
tools developed by other security researchers. Even though
the tools provide various options and methods to generate our
desired data, some other obfuscation methods and behavioral
labels have not been comprehensively discussed in our work.
One of our limitations is that the ground truth is a closed
source and does not fully cover all obfuscations and behaviors
of malicious PSCmds. Second, we empirically extend other
previous works on static regex replacement to design a
PowerShell de-obfuscator in python language that employs
regex for a quick and effective de-obfuscation process.
However, we do not handle multi-layer obfuscation and other
more complex techniques, such as mixed obfuscation with
native windows commands, PowerShell cmdlets, and dotNet
APIs.

VII. RELATED WORK

This section provides an overview of the literature on
malicious PowerShell detection and de-obfuscation over the
last few years. Most ML/DL works focused on binary clas-
sification that discriminates malicious PSCmds from benign
ones. Meanwhile, other researchers proposed innovative and
practicable methods using the subtree in the AST or classical
regex for de-obfuscation.

A. DETECTION OF MALICIOUS PowerShell

Dynamic mechanisms using system monitoring [12], [13] or
script block logging via AMSI to detect malicious PowerShell
have already been suggested as straightforward ideas in
the previous work. Several security vendors also proposed
their practical solutions. For example, Jeff White [16] from
Palo Alto provided a set of observations of malicious
PowerShell behavior with in-depth static analysis. With
the advent of emerging ML/DL, Bohannon et al. from

267

IEEE Access

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

FireEye [18] leveraged machine learning methods like
linear regression and gradient descent algorithms to detect
malicious PowerShell. Additionally, many DL approaches
combine the notions of AST, NLP, or Graph, which perform
excellently in differentiating between malicious and benign
scripts.

AST is commonly used in programming language process-
ing systems to represent the abstract syntactic structure of
programs. Rusak et al. [22] proposed malicious PowerShell
detection methods by combining AST and DL. They
model PowerShell code using AST, and then utilize the
structural information of AST to create the ensemble vector
representations of each PowerShell. Using the novel idea
with DL, they successfully identify common intrinsic patterns
of PowerShell codes and distinguish malware families.
Song et al. [25] try to optimize feature selection with a
mixture of token-based and AST-based keyword extraction.
By combining the vocabulary and structure of PowerShell
code, the performance in detecting malicious PowerShell is
increased.

Since DL methods for NLP have had great success
recently, Hendler et al. [27], [28] have shown that DL-based
detectors that use character-level information and contextual
embeddings of words from commands contribute most to
malicious PowerShell detection. In the first work, they extract
character-level information as inputs to a convolutional
neural network (CNN) [48] from the perspective of DL.
Their evaluation findings indicate that an ensemble detector
that combines an NLP-based classifier with a CNN-based
classifier performs best. In the later work, they project
semantically similar words to approximate vectors in the
embedding space with contextual word embeddings. Com-
bining character-level and token-level details for DL, they
attained impressive performance with a low false positive
rate of less than 0.1%. Meanwhile, Fang et al. [24] and
Mimura et al. [29] proposed conceptually identical working
structures using traditional NLP-based methods such as Fast-
Text [49] and Doc2vec [50]. By extracting hybrid features
from PowerShell, their models demonstrate the capability to
classify complex PSCmds and make improvements over other
works.

Finally, Ongun et al. [30] adopt active learning and
cmd2vec feature generation to expand the detection range
to LotL threats, which encompass attacks with more sys-
tem preinstallation tools and commands. Sunoh Choi [31]
provides another perspective in turning detection into a
graph inference problem using GNN and an adjacency
matrix generation method via Jaccard similarity to detect
malicious PowerShell. Without a doubt, ML/DL detection
methods benefit in many ways. However, the full poten-
tial of ML/DL is not realized in malicious PowerShell
analysis, particularly in de-obfuscation and behavioral pro-
filing. In this paper, we propose a coarse-to-fine grained
framework PowerDP that can be easily combined with
previous detection-based methods and further infers the
intents of malicious PSCmds through behavior multi-label
classification.

268

B. DE-OBFUSCATION OF MALICIOUS PowerShell

Despite the advances of ML/DL in malicious PowerShell
detection, there is still no consensus on the perfect solution
to de-obfuscate malicious PowerShell. Liu et al. [14]
proposed a framework called PSDEM that applies a two-layer
de-obfuscation technique to recover the original content of
obfuscated malicious PowerShell codes in Word documents.
From the results, PSDEM can statically extract the commands
and present the original script to users with no false
positives compared to other security tools and anti-virus
programs. In related works, Jeff White [17] has developed
a well-designed tool called PowerShellProfiler, which not
only can handle de-obfuscation for PowerShell code but
also statically create behavioral profiles using numerous
predefined regex patterns. Ugarte et al. [15] designed the
PowerDrive, an open-source static and dynamic multi-
stage de-obfuscator for PowerShell attacks. PowerDrive
leverages regex for recursive de-obfuscation through multi-
layer recovery. In addition, a taxonomy of behavioral models
and a comprehensive list of malicious domains during the
analysis are reported.

Seemingly, the regex technique is still a dominant solution
to provide the analyst with effectiveness against various
obfuscation methods. However, related solutions may easily
fall into a cat-and-mouse race with attackers and lack of
efficiency in recursively unraveling new contents of specific
patterns or keywords that may be obfuscated or hidden
from context. On the other hand, AST provides researchers
with another solution to gain unprotected insight into the
structure of obfuscated PSCmds. Li et al. [23] proposed
the first semantic-aware PowerShell attack detection system
that performs obfuscation detection and emulation-based
recovery. The system de-obfuscates the obfuscation at the
level of subtrees in the AST of PowerShell scripts. Based on
the evaluation results with the dataset, the system outperforms
both Windows Defender!* and VirusTotal.!> However, the
system does not support behavioral profiling and the number
of handled obfuscation methods is limited. Ultimately, our
approach is inspired by the work of previous eminent
researchers. How to balance the efficient de-obfuscation
process with ML/DL and preserve the complementary
semantic context for program analysis are vital issues.

VIil. CONCLUSION AND FUTURE WORK

This paper introduced PowerDP, a hybrid framework combin-
ing deep learning and program analysis for automatic Power-
Shell de-obfuscation and behavioral profiling. We leveraged
multi-label classification to forecast 15 obfuscation types
to improve the accuracy of an extensive de-obfuscator and
successfully profiled five behaviors of malicious PowerShell
commands. Our method achieves superior performance
in classifying different obfuscation types using character
distribution features and detecting malicious behaviors with
real-valued vector representations from the abstract syntax

14https://www.microsoft.(:om/en—us/windows/comprehensive—security
15https://WWW.virl.lstotal.com/

VOLUME 11, 2023

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

IEEE Access

tree. To the best of our knowledge, PowerDP is the first
work to employ the multi-label classification that infers

the

obfuscation types and behavioral labels of malicious

PowerShell commands before and after the de-obfuscation,
respectively. In the future, we will expand our work against
more obfuscation types and malicious behaviors. We will also
look at multi-layer obfuscation and improve classification
performance and accuracy.

REFERENCES

[1]

[2]

[3]

[4]
[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. J. George and D. E. Leidner, “From clicktivism to hacktivism:
Understanding digital activism,” Inf. Org., vol. 29, no. 3, Sep. 2019,
Art. no. 100249.

S. Afroz, V. Garg, D. McCoy, and R. Greenstadt, ‘“‘Honor among thieves: A
common’s analysis of cybercrime economies,” in Proc. 8th IEEE APWG
eCrime Res. Summit, Sep. 2013, pp. 1-11.

1. Ghafir, V. Prenosil, M. Hammoudeh, F. J. Aparicio-Navarro, K. Rabie,
and A. Jabban, “Disguised executable files in spear-phishing emails:
Detecting the point of entry in advanced persistent threat,” in Proc. 2nd
Int. Conf. Future Netw. Distrib. Syst. (ICFNDS), 2018, pp. 1-5.

Sudhakar and S. Kumar, “An emerging threat fileless malware: A survey
and research challenges,” Cybersecurity, vol. 3,no. 1, pp. 1-12, Dec. 2020.
F. Barr-Smith, X. Ugarte-Pedrero, M. Graziano, R. Spolaor, and
I. Martinovic, “Survivalism: Systematic analysis of Windows malware
living-off-the-land,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2021,
pp. 1557-1574.

S. M. Pontiroli and F. R. Martinez, “The Tao of .NET and powershell
malware analysis,” in Proc. Virus Bull. Conf., 2015, pp. 1-26.

A. G. Kakisim, M. Nar, and 1. Sogukpinar, ‘“Metamorphic malware
identification using engine-specific patterns based on co-opcode graphs,”
Comput. Standards Interfaces, vol. 71, Aug. 2020, Art. no. 103443.

I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in Proc. 5th Int. Conf. Broadband, Wireless Comput., Commun. Appl.
(BWCCA), Nov. 2010, pp. 297-300.

M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Sutter, and
K. De Bosschere, “Software protection through dynamic code mutation,”
in Proc. 7th Int. Workshop. Inf. Secur. Appl. (WISA). Berlin, Germany:
Springer, 2006, pp. 194-206.

D. Javaheri, P. Lalbakhsh, and M. Hosseinzadeh, “A novel method for
detecting future generations of targeted and metamorphic malware based
on genetic algorithm,” IEEE Access, vol. 9, pp. 69951-69970, 2021.

J.-Y. Kim and S.-B. Cho, “Obfuscated malware detection using deep
generative model based on global/local features,” Comput. Secur., vol. 112,
Jan. 2022, Art. no. 102501.

A. Rousseau, “Hijacking .NET to defend PowerShell,”
arXiv:1709.07508. Accessed: Nov. 23, 2022.

M. Manna, A. Case, A. Ali-Gombe, and G. G. Richard, “Memory analysis
of .NET and .Net core applications,” Forensic Sci. Int., Digit. Invest.,
vol. 42, Jul. 2022, Art. no. 301404.

C. Liu, B. Xia, M. Yu, and Y. Liu, “PSDEM: A feasible de-obfuscation
method for malicious PowerShell detection,” in Proc. IEEE Symp.
Comput. Commun. (ISCC), Jun. 2018, pp. 825-831.

D. Ugarte, D. Maiorca, F. Cara, and G. Giacinto, ‘“Powerdrive: Accurate
de-obfuscation and analysis of PowerShell malware,” in Proc. 16th Int.
Conf. Detection Intrusions Malware, Vulnerability Assessment (DIMVA).
Cham, Switzerland: Springer, 2019, pp. 240-259.

J. White. (2017). Pulling back the curtains on encodedcommand
PowerShell attacks. Palo Alto Networks. Accessed: Nov. 23, 2022.
[Online]. Available: https://unit42.paloaltonetworks.com/unit42-pulling-
back-the-curtains-on-encodedcommand-powershell-attacks/

Palo Alto Networks. (2019). Practical Behavioral Profiling of
Powershell Scripts Through Static Analysis (Part I—Part 3). Accessed:
Nov. 23, 2022. [Online]. Available: https://unit42.paloaltonetworks.
com/practical-behavioral-profiling-of-owershell-scripts-through-static-
analysis-part-1/

D. Bohannon and L. Holmes, ‘“Revoke-obfuscation: PowerShell obfusca-
tion detection using science,” in Proc. Black Hat USA. Milpitas, CA, USA:
FireEye, 2017, pp. 1-20.

T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep
learning method for Android malware detection using various features,”
IEEE Trans. Inf. Forensics Security, vol. 14, no. 3, pp. 773-788, Mar. 2019.

2017,

VOLUME 11, 2023

(20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

(40]

Y. Shen and G. Stringhini, “ATTACK2VEC: Leveraging temporal word
embeddings to understand the evolution of cyberattacks,” in Proc. 28th
USENIX Secur. Symp. Berkeley, CA, USA: USENIX Association, 2019,
pp- 905-921.

S. Ndichu, S. Kim, and S. Ozawa, ‘“Deobfuscation, unpacking, and
decoding of obfuscated malicious Javascript for machine learning models
detection performance improvement,” CAAI Trans. Intell. Technol., vol. 5,
no. 3, pp. 184-192, Sep. 2020.

G. Rusak, A. Al-Dujaili, and U.-M. O’Reilly, “AST-based deep learning
for detecting malicious PowerShell,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), Oct. 2018, pp. 2276-2278.

Z. Li, Q. A. Chen, C. Xiong, Y. Chen, T. Zhu, and H. Yang, “Effective
and light-weight deobfuscation and semantic-aware attack detection for
PowerShell scripts,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. (CCS), Nov. 2019, pp. 1831-1847.

Y. Fang, X. Zhou, and C. Huang, “Effective method for detecting malicious
PowerShell scripts based on hybrid features,” Neurocomputing, vol. 448,
pp- 30-39, Aug. 2021.

J. Song, J. Kim, S. Choi, J. Kim, and I. Kim, “Evaluations of Al-based
malicious PowerShell detection with feature optimizations,” ETRI J.,
vol. 43, no. 3, pp. 549-560, Jun. 2021.

H. Chai, L. Ying, H. Duan, and D. Zha, “Invoke-deobfuscation: AST-
based and semantics-preserving deobfuscation for PowerShell scripts,” in
Proc. 52nd Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN),
Jun. 2022, pp. 295-306.

D. Hendler, S. Kels, and A. Rubin, “Detecting malicious PowerShell
commands using deep neural networks,” in Proc. Asia Conf. Comput.
Commun. Secur. (AsiaCCS), May 2018, pp. 187-197.

D. Hendler, S. Kels, and A. Rubin, “AMSI-based detection of mali-
cious PowerShell code using contextual embeddings,” in Proc. 15th
ACM Asia Conf. Comput. Commun. Secur. (AsiaCCS), Oct. 2020,
pp. 679-693.

M. Mimura and Y. Tajiri, “Static detection of malicious PowerShell
based on word embeddings,” Internet Things, vol. 15, Sep. 2021,
Art. no. 100404.

T. Ongun, J. W. Stokes, J. B. Or, K. Tian, F. Tajaddodianfar, J. Neil,
C. Seifert, A. Oprea, and J. C. Platt, “Living-off-the-land command
detection using active learning,” in Proc. 24th Int. Symp. Res. Attacks,
Intrusions Defenses (RAID), Oct. 2021, pp. 442-455.

S. Choi, ‘“Malicious powershell detection using graph convolution
network,” Appl. Sci., vol. 11, no. 14, p. 6429, Jul. 2021.

D. Bohannon. (2016). Invoke-obfuscation: PowerShell obFUsk8tion
Techniques & How to (Try to) D e‘Tec‘T’th‘+’em’. DerbyCon. Accessed:
Nov. 23, 2022. [Online]. Available: https://www.danielbohannon.
com/blog-1/2016/9/25/invoke-obfuscation-public-release

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” in Proc. ACM Program. Lang.
(PACMPL), vol. 3, 2019, pp. 1-29.

W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. S. Yu,
and G. Xu, “Reinforcement-learning-guided source code summarization
using hierarchical attention,” IEEE Trans. Softw. Eng., vol. 48, no. 1,
pp. 102-119, Jan. 2022.

B. Gelman, B. Hoyle, J. Moore, J. Saxe, and D. Slater, “A language-
agnostic model for semantic source code labeling,” in Proc. Ist Int.
Workshop Mach. Learn. Softw. Eng. Symbiosis (MASES), Sep. 2018,
pp. 36-44.

R. Wang, H. Zhang, G. Lu, L. Lyu, and C. Lyu, ““Fret: Functional reinforced
transformer with BERT for code summarization,” IEEE Access, vol. 8,
pp. 135591-135604, 2020.

G. Tsoumakas and I. Katakis, ‘“Multi-label classification: An overview,”
Int. J. Data Warehousing Mining, vol. 3, no. 3, pp. 1-13, 2007.

J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, Y. Wang, and Y. Xiang,
“A3CM: Automatic capability annotation for Android malware,” [EEE
Access, vol. 7, pp. 147156-147168, 2019.

S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, and A. A. Ghorbani,
“Dynamic Android malware category classification using semi-
supervised deep learning,” in Proc. IEEE Int. Conf Dependable,
Autonomic Secure Comput., Int. Conf Pervasive Intell. Comput., Int.
Conf Cloud Big Data Comput., Int. Conf Cyber Sci. Technol. Congr.
(DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020, pp. 515-522.

F. N. Ducau, E. M. Rudd, T. M. Heppner, A. Long, and K. Berlin,
“Automatic malware description via attribute tagging and similarity
embedding,” 2019, arXiv:1905.06262. Accessed: Nov. 23, 2022.

269

IEEE Access

M.-H. Tsai et al.: PowerDP: De-Obfuscating and Profiling Malicious PSCmds With Multi-Label Classifiers

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

M. R. Smith, N. T. Johnson, J. B. Ingram, A. J. Carbajal, B. I. Haus,
E. Domschot, R. Ramyaa, C. C. Lamb, S. J. Verzi, and W. P. Kegelmeyer,
“Mind the gap: On bridging the semantic gap between machine learning
and malware analysis,” in Proc. 13th ACM Work. Artif. Intell. Secur.
(AlSec), 2020, pp. 49-60.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp- 2825-2830, Oct. 2011.

H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin, “Building program
vector representations for deep learning,” in Proc. 8th Int. Conf. Knowl.
Sci., Eng. Manage. (KSEM), vol. 9403. Cham, Switzerland: Springer, 2015,
pp. 547-553.

L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proc. 13th AAAI Conf. Artif. Intell. Palo Alto, CA, USA: AAAL 2016,
pp. 1287-1293.

R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in Proc. 13th Work. Conf. Reverse Eng. (WCRE),
2006, pp. 253-262.

L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common
subsequence algorithms,” in Proc. 7th Int. Symp. String Process. Inf. Retr.
(SPIRE), 2000, pp. 39-48.

L. Yujian and L. Bo, “A normalized Levenshtein distance metric,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1091-1095, Jun. 2007.
X.Zhang,J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
vol. 28. Red Hook, NY, USA: Curran Associates, 2015, pp. 649-657.

S. Wu and U. Manber, “Fast text searching: Allowing errors,” Commun.
ACM, vol. 35, no. 10, pp. 83-91, Oct. 1992.

Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. 31st Int. Conf. Mach. Learn. (ICML), 2014, vol. 32,
no. 2, pp. 1188-1196.

MENG-HAN TSAI (Member, IEEE) received the
B.S. degree in computer science and information
engineering from National Chung Cheng Univer-
sity, Chiayi, Taiwan, in 2008, and the M.S. degree
in computer and communication engineering from
National Cheng Kung University, Tainan, Taiwan,
in 2010. He is currently pursuing the Ph.D.

\\4 degree in electrical engineering with National
—— Taiwan University, Taipei, Taiwan. He joined at
'ﬁ k‘

the Institute for Information Industry (III), Taipei,

in 2010, where he is currently a Cybersecurity Engineer. His current research
interests include network security, malware analysis, and intrusion detection.

270

CHIA-CHING LIN received the B.S. degree in
electrical engineering and the M.S. degree in
communication engineering from National Taiwan
University, Taiwan, in 2007 and 2009, respec-
tively, where he is currently pursuing the Ph.D.
degree with the Department of Electrical Engi-
neering. From 2011 to 2014, he was a Software
Engineer at Media Tek Inc., Hsinchu, Taiwan.
From 2016 to 2019, he was a Research Assistant

S at the Institute of Information Science, Academia
Sinica, Taipei, Taiwan. His current research interests include computer
vision, deep learning, and image processing.

ZHENG-GANG HE received the B.S. degree
in computer science from National Chengchi
University, Taipei, Taiwan, in 2020, and the M.S.
degree in electrical engineering from National
Taiwan University, Taipei, in 2022. His current
research interests include network security and
deep learning.

WEI-CHIEH YANG received the B.S. and M.S.
degrees in computer science and engineering
from Tunghai University, Taiwan, in 2003 and
2005, respectively. He is currently pursuing the
Ph.D. degree with the Department of Electrical
Engineering, National Taiwan University, Taipei,
Taiwan. From 2005 to 2022, he was a Cyberse-
curity Engineer at the Institute for Information
Industry (IIT), Taipei. His current research interests
include network security and user entity behavior
analytics (UEBA).

CHIN-LAUNG LEI received the B.S. degree
in electrical engineering from National Taiwan
University, Taipei, in 1980, and the Ph.D. degree
in computer science from The University of Texas
at Austin, in 1986. From 1986 to 1988, he was an
Assistant Professor at the Computer and Informa-
tion Science Department, Ohio State University,
Columbus, OH, USA. In 1988, he joined as a
Faculty Member with the Department of Electrical
Engineering, National Taiwan University, where
he is currently a Professor. He has published more than 250 technical
papers in scientific journals and conference proceedings. His current research
interests include network security, cloud computing, the Internet of Things,
and big data analytics. He was a co-recipient of the First IEEE LICS
Test-of-Time Award.

VOLUME 11, 2023

