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ABSTRACT The notion of a complex hesitant fuzzy set (CHFS) is one of the better tools in order to deal
with complex information. Since distance plays a crucial role in order to differentiate between two things
or sets, in this paper, we first develop a priority degree for the comparison between complex hesitant fuzzy
elements (HFEs). Then a variety of distance measures are developed, namely, Complex hesitant normalized
Hamming-Hausdorff distance (CHNHHD), Complex hesitant normalized Euclidean-Hausdorff distance
(CHNEHD), Generalized complex hesitant normalized Hausdorff distance (GCHNHD), Complex hesitant
hybrid normalized Hamming distance (CHHNHD), Complex hesitant hybrid normalized Euclidean distance
(CHHNED), Generalized complex hesitant hybrid normalized distance (GCHHND) and their weighted
forms. Moreover, the continuous form of the proposed distances is also developed. Further, the proposed
distances are applied to medical diagnosis problems for their effectiveness and application. Furthermore,
a multi-criteria decisionmaking (MCDM) approach is developed based on the TOPSISmethod and proposed
distances. Finally, a practical example related to the effectiveness of COVID-19 tests is presented for the
application and validity of the proposed method. A comparison study was also done with the method that
was already in place to see how well the new method worked.

INDEX TERMS Complex fuzzy sets, priority degree, distance measure, closeness coefficient, TOPSIS
method.

LIST OF ABBREVIATIONS
Symbols Description
FS Fuzzy Set.
HFS Hesitant Fuzzy Set.
HD Hesitancy degree.
IFS Intuitionistic fuzzy set.
MCDM Multi criteria decision making.
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CHFS Complex Hesitant Fuzzy Set.
PD Priority degree.
DM Distance measure.
CF Closeness coefficient.
TM TOPSIS method.

I. INTRODUCTION
The fuzzy set theory initiated by Zadeh [1] is a useful tool
for dealing with real-world decision making (DM) prob-
lems that involve uncertainty. In practical problems, we have
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a variety of uncertain and unclear information. Therefore,
to deal with a such types of issues, many researchers have
investigated research and extend the idea of fuzzy sets
by developing intuitionistic fuzzy sets (IFS) [2], type-1
fuzzy sets [3] type-2 fuzzy sets [4] fuzzy multi-set [5],
hesitant fuzzy sets (HFS) [6], etc. Atanassov [2] initi-
ated the notion of IFS, which is characterized by a mem-
bership function, nonmembership function, and hesitancy
degree (HD).

Due to the lack of knowledge, limited time and other
factors in practical application, people are not always able
to agree on specific components of complex decision making
it extremely difficult to achieve an agreement. For example,
a pair of decision makers may debate the degree to which an
element X belongs to set A, and one should allocate 0.4 to
it, while the other wishes to allocate 0.8 to the elements.
The difficulty in generating a standard membership value
stems from the presence of a large number of values rather
than the presence of a range of errors or certain apparent
distribution values [6]. So, Torra [7], Torra and Narukava [8]
introduced the notion of HFS, which allowed membership to
be based on an infinite set of values. HFS has been exten-
sively studied since its beginning [9], [10], [11] and has been
successfully used in a variety of uncertain decision-making
situations. In addition, there has been research conducted
on the application of HFS algorithms based on distance and
similarity measurement [12], [13] have also been applied
to multi-criteria decision making (MCDM) problems [14],
[15], [16]. Many scientific domains, including health-
care [17], medical diagnosis [18], economics and sociol-
ogy [19], [20], have used MCDM approaches. In general,
aggregation and utilization are the two processes of MCDM.
Decision making techniques, in which experts use of HFS
to convey their opinions, have developed considerable aggre-
gation approaches for this purpose. Hesitant fuzzy weighted
averaging (HFWA) operator and Hesitant fuzzy weighted
geometric (HFWG) operator were introduced by Xia and
Xu [21], with various extensions and generalizations, includ-
ing GHFWA operator, a GHFWG operator, a HFWA oper-
ator and a HFWG operator. To aggregate the hesitant fuzzy
information, Senapati et al. [22] introduced the concept of
Aczel-Alsina t-norm and t-conorm based aggregation oper-
ators. Many scholars are concerned about what happens if
we extend the range of FS to include real numbers instead
of complex numbers in the unit disc in the complex plane,
and the impact of this change. Ramot et al. [23] introduced
the concept of the complex fuzzy set to solve this issue.
CFS has gotten more attention among researchers in the
last few years. Moreover, Talafha et al. [24] extended the
notion of CFS and introduced the concept of complex hesitant
fuzzy (CHFS). CHFS is the combination of HFS and CFS.
The degree of membership is complex-valued and is given
in polar coordinates. Distance measurement is an important
technique for determining the difference between two things.
Distance measure is an important topic in fuzzy set theory

and is widely used in many research areas, including machine
learning, pattern recognition, and decision-making prob-
lems [25], [26], [27]. In view of the significance of simi-
larity measures, several researchers have recently developed
different similarity measures. Xu and Xi [12] introduced the
distances and similarity measures for HFSs and also proposed
some novel measures under the Hamming and Euclidean dis-
tances between HFSs. Furthermore, Li et al. [13] developed
some new distance measures and proposed a MCDMmethod
based on these distances. Moreover, Cheng and Li [28] gen-
eralized the distance measures proposed in [12] by adding
hesitance degree and applied the concept to pattern recogni-
tion. Peng et al. [29] introduced a distance and similarity for
HFSs and it is widely used to deal with MCDM [30], [31]
problems. SomeHFS ordering relations have been developed,
and play a vital role in decision making. Rodriguez et al. [19]
defined order relations amongst HFSs. Lan [32] dis-
cussed the priority degree and studied some properties.
Farhadinia [33] also created two HFS ordering algorithms.
In a hesitant fuzzy environment, Yang and Hussain [34]
introduced the hesitant Hausdorff distance and similarity
measure. Modified the distance measure proposed in [12],
Singha et al. [35] defined modified distance measure on
HFSs. Some improved distance measures have been devel-
oped by Rezaei and Rezaei [36], and applied to hierarchical
clustering. Li et al. [37] developed parameterized distance
measures on HFS with credibility degree and applied it to
pattern recantation. Moreover, Lv et al. [38] developed a
hesitant fuzzy distance and similarity measure-based hesi-
tant fuzzy network clustering algorithm. Bi et al. [39] pro-
posed the distance-and-entropy measure for CFS. Rani and
Garg [40] defined the distance and similarity measures for
CIFSs. Garg et al. [41] also introduced the distance and
similarity measures for CHFSs.

In order to make the best decisions possible in real-world
settings, there are numerous instances where we must quan-
tify the uncertainty in the data. For managing the ambiguous
information that is present in our day-to-day problems, infor-
mation measures are crucial tools. The ambiguous informa-
tion is processed by various information measures, including
similarity, distance, entropy, and inclusion, which allows us
to draw some conclusions. Due to their numerous applica-
tions in a variety of domains, including pattern recognition,
medical diagnosis, clustering analysis, and image segmenta-
tion, these measures have recently attracted the attention of
many authors. All currently used information-based decision-
making methods in HF deal with membership functions, that
have real values. In CHFS theory, membership degrees are
complex-valued and are represented in polar coordinates.
The phase term linked with membership degree delivers the
additional information, typically related to periodicity, while
the amplitude term connected with membership degree gives
the amount of an object’s belongingness in a CHFS. Moti-
vated by the priority degree proposed by Li et al. [37] and
distance measure proposed by Xia and Xu [12], and keeping
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the advantages of the CHFS in this paper the key contributions
are investigated:

1) To define priority degree for CHFSs.
2) To propose Complex hesitant normalized Hamming-

Hausdorff distance (CHNHHD), Complex hesitant nor-
malized Euclidean-Hausdorff distance (CHNEHD) and
their weighted forms.

3) To develop Generalized complex hesitant normalized
Hausdorff distance (GCHNHD), Complex hesitant
Hybrid normalized Hamming distance (CHHNHD),
Complex hesitant Hybrid normalized Euclidean dis-
tance (CHHNED), Generalized complex hesitant
Hybrid normalized distance (GCHHND) and their
weighted forms.

4) To investigate the continuous form of the proposed
distances.

5) To propose a MCDM method based on TOPSIS and
developed distances.

Remainder of the paper is organize as: Section II of this
paper describes some basic ideas of hesitant fuzzy sets.
Section III investigates order relations of complex hesitant
fuzzy set (CHFS), while in Section IV, we define some gen-
eralized distances between two CHFSs, namely the Hamming
distance, Euclidean distance, Hausdorff distance and Hybrid
distance between CHFSs. We also define their weighted form
and continuous weighted forms. In Section V, a new tech-
nique for complex hesitant fuzzy multiple attribute decision
making is created based on the suggested formula for the
priority degree. In SectionVI, we give an example to illustrate
the applicability of the newmethod. Section VII compares the
proposed technique to other pertinent techniques in order to
determine its suitability. In Section VIII, we end the paper
with a conclusion and a future plan.

II. PRELIMINARIES
A. HESITANT FUZZY SET
To deal with MCDM problems, that have some possible
value, Torra [7], proposed the idea of HFS. HFS is charac-
terized by membership degree (MD) of the set of possible
values belonging to [0,1]. It can be defined as:
Definition 1: Let X be a universe of discourse and x ∈ X .

Then a hesitant fuzzy set Ĕ defined on X may be written as a
collection of ordered pairs,

Ĕ = {(x, pĔ (x)) : x ∈ X} (1)

where pĔ (x) is a collection of some values in [0, 1], that
represent the membership value of the element x ∈ X . For
convenience, p = pĔ (x) is called a hesitant fuzzy element
(HFE) and H be the set of all HFEs.

Xia and Xu [21] defined the comparison procedure to
compare two HFEs: For a HFE p in H , the score q(p) =
1
lp

∑
γ∈p γ is known as score function of p, where lp is the

total number of elements in p. Some properties of score
function.

Let any two HFEs, p1 and p2, then
if q(p1) > q(p2), then p1 > p2;
if q(p1) < q(p2), then p1 < p2;
if q(p1) = q(p2), then p1 = p2.
For any three HFEs p, p1, and p2, Xia and Xu [21] and

Torra [7] defined the following operations:
1) pc = ∪γ∈p{1− γ },
2) p1 ∪ p2 = ∪γ∈p1,γ∈p2max{γ1,γ2},
3) p1 ∩ p2 = ∩γ∈p1,γ∈p2min{γ1,γ2},
4) p1⊕ p2 = ∪γ∈p1,γ∈p2{γ1 + γ2 − γ1γ2},
5) p1 ⊗ p2 = ∪γ∈p1,γ∈p2{γ1γ2},
6) αp = ∪γ∈p{1− (1− γ )α},
7) pα = ∪γ∈p{γ α}.
To deal the ordering relation betweenHFSs, Lan et al. [32]

proposed the priority degree formula and can be defined as;
Definition 2: Given a set X = {x1, x2, . . . , xn}. Let Ĕ1 =
{< xi, ĥĔ1 (xi) > : xi ∈ X}, and Ĕ2 = {< xi, ĥĔ2 (xi) >:

xi ∈ X} be two HFSs. Then the priority degree for Ĕ1 � Ĕ2
is defined below;

P
(
Ĕ1 � Ĕ2

)
=



∑n
i=1 S1 (xi)∑n

i=1 S1 (xi)+
∑n

i=1 S2 (xi)
, when

n∑
i=1

S1 (xi)+
n∑
i=1

S2 (xi) 6= 0

0.5,
n∑
i=1

S1 (xi)+
n∑
i=1

S2 (xi) = 0

(2)

where

ĥĔ1 (xi) = {um (xi) |um (xi) ∈ [0, 1] ,m = 1, 2, . . . , ji} ,

ĥĔ2 (xi) = {vn (xi) |vn (xi) ∈ [0, 1] , n = 1, 2, . . . , ki} ,

A1 (xi) = {(um (xi) , vn (xi))|um (xi)− vn (xi) > 0,

(um (xi) , vn (xi)) ∈ ĥĔ1 (xi)× ĥĔ2 (xi)
}
,

A2 (xi) = {(um (xi) , vn (xi))|um (xi)− vn (xi) < 0,

(um (xi) , vn (xi)) ∈ ĥĔ1 (xi)× ĥĔ2 (xi)
}
,

A3 (xi) = {(um (xi) , vn (xi))|um (xi)− vn (xi) = 0,

(um (xi) , vn (xi)) ∈ ĥĔ1 (xi)× ĥĔ2 (xi)
}

and

S1 (xi) =


1
jiki

∑
(um(ci),vn(ci))∈A1(ci)

um (ci)− vn (ci) ,

when A1 (xi) 6= φ;
0, when A1 (xi) = φ

S2 (xi) =


1
jiki

∑
(um(ci),vn(ci))∈A1(ci)

vn (ci)− um (ci) ,

when A2 (xi) 6= φ;
0, when A2 (xi) = φ.

B. COMPLEX HESITANT FUZZY SETS
In the DM problem, the complexity of the expert opin-
ion changes for the same object but at different times, and

VOLUME 11, 2023 13649



M. S. A. Khan et al.: Priority Degrees and Distance Measures of CHFSs With Application to MCDM

HFS [7], [8] cannot deal with such information effectively.
Therefore, to deal with such information, Ramot et al. [23]
introduced the concept of CFS as a generalization of FS
and is characterized by complex valued membership degree.
Talafha et al. [24] extended the notion of CFS and introduced
the concept of complex hesitant fuzzy set and a generalization
of HFS with CFS. The CHFS [24] concept makes it one
of the most effective strategies for dealing with unfavorable
and complex data on practical decision-making problems.
CHFS [24], membership value has a complex value and is
reflected in polar coordinates. The amplitude term associated
with the membership level gives the object size to the CHFS,
and the phase time associated with the membership degrees
provides additional details, which are often related to the
passage of time. It can be defined as:
Definition 3 ( [28]): Let X be a universe of discourse.

Then a complex hesitant fuzzy set (CHFS) Ch is:

Ch = {(x, hCh(x)) : x ∈ X} (3)

where hCh(x) = γCh(x).ei2π(θCh (x)) indicate the complex
valued in polar coordinate, where γCh(x) ∈ η(x), θCh (x) ∈
ψ(x) and where γCh(x) and θCh (x) ∈ (0, 2π ]. Furthermore,
when x is the singleton set then the CHFE denoted by
Ch = (x, η(x).ei2π (ψ(x))). We denote a complex hesitant
fuzzy element (CHFE) by Ch = ηei2π (ψ) and γCh(x) and
θCh (x) ∈ [0, 1] and (0, 2π ] respectively.

To compare CHFE’s Talafha et al. [24] developed score
function as: Let Ch be a CHFE on X ,

s(Ch) =
1
2

 1
lCh

∑
γ∈η

γ +
1
lCh

∑
θ∈ψ

θ

 (4)

is known as score function of Ch, where lCh is the number of
elements.

For any two HFEs Ch1 and Ch2, if s(Ch1) greater than
s(Ch2), then Ch1 greater than Ch2; if s(Ch1) equal to (Ch2),
then Ch1 equal to Ch2;

if s(Ch1) less than s(Ch2), then Ch1 less than Ch2.
Moreover, Talafha et al. [24] developed some operational

laws for CHFEs
For any three CHFN Ch, Ch1 , and Ch2 , then the properties

of CHFN as follows:
1. (Ch)c = ∪γ∈η

θ∈ψ
{(1− γ ) .ei2π (1−θ )}

2. Ch1 ∪ Ch2 = ∪γ∈η1 ,γ∈η2
θ∈ψ1 ,θ∈ψ2

{(max {γ1, γ2})ei2π (max{θ1,θ2})}

3. Ch1 ∩ Ch2 = ∩γ∈η1 ,γ∈η2
θ∈ψ1 ,θ∈ψ2

{(min {γ1, γ2})ei2π (min{θ1,θ2})}

4. Ch1⊕ Ch2 = ∪γ∈η1 ,γ∈η2
θ∈ψ1 ,θ∈ψ2

{(γ1 + γ2 − γ1γ2)

ei2π(θ1+θ2−θ1θ2)}
5. Ch1 ⊗ Ch2 = ∪γ∈η1 ,γ∈η2

θ∈ψ1 ,θ∈ψ2

{(γ1γ2) ei2π(θ1θ2)}

6. λCh = ∪γ∈η
θ∈ψ
{
(
1− (1− γ )λ

)
ei2π

(
1−(1−θ)λ

)
}

7. (Ch)λ = ∪γ∈η
θ∈ψ
{(γ λ)ei2π (θ

λ)
}

Garg at el. [41] introduced the distances measures for
CHFS as;

Let Ch1 = (xk , δCh(xk ).ei2π (θCh(xk ))) and Ćh2 =

(xk , δCh(xk ).ei2π (θCh(xk ))) be two CHFSs on the set X =

{x1, x2, . . . , xk},. Then the distance between Ch1 and
Ćh2 is denoted by d(Ch1, Ćh2), satisfy the following
properties.

(1) 0 ≤ d(Ch1, Ćh2) ≤ 1 OR d(Ch1, Ćh2) ∈ [0, 1]

(2) d(Ch1, Ćh2) = 0 if and only if Ch1 = Ćh2
(3) d(Ch1, Ćh2) = d(Ćh2,Ch1).

III. PRIORITY DEGREE FOR COMPLEX HESITANT
FUZZY SETS
Motivated by the priority degree developed by Lan et al. [32]
for HFS, in this section, we propose a priority degree formula
for CHFS in order to deal with the ordering relationship
among CHFESs.
Definition 4: Given a fixed set C = {c1, c2, . . . cn},

suppose that two given complex hesitant fuzzy sets are,
E1 =

{〈
ci, }E1 (ci) e

i2πwE1(ci)
〉
|ci ∈ C

}
, and E2 ={〈

ci, }E2 (ci) e
i2πwE2(ci)

〉
|ci ∈ C

}
.

The priority degree for E1 and E2, denoted by E1 � E2 is
defined by;

P (E1 � E2) =



∑n
i=1 S1(ci)∑n

i=1 S1(ci)+
∑n

i=1 S2(ci)
, when∑n

i=1 S1 (ci)+
∑n

i=1 S2 (ci) 6= 0

0.5,
∑n

i=1 S1 (ci)+
∑n

i=1 S2 (ci) = 0

(5)

where,

Ćh̄E1 (ci) =
{
ur (ci) ei2πwE1 (ci)|ur (ci) ei2πwE1 (ci)

∈ [0, 1] , r = 1, 2, 3 . . . . . . .mi} ,

Ćh̄E2 (ci) =
{
vt (ci) ei2πwE1 (ci)|vt (ci) ei2πwE2 (ci)

∈ [0, 1] , t = 1, 2, 3 . . . . . . .ni} ,

A1 (ci) = {(ur (ci) , vt (ci))|ur (ci)− vt (ci) > 0,

(ur (ci) , vt (ci)) ∈ Ćh̄E1
(
ciφ
)
× Ćh̄E2 (ci)

}
,

θ1 (ci) = {(wr (ci) ,wt (ci))|wr (ci)− wt (ci) > 0,

(wr (ci) ,wt (ci)) ∈ Ćh̄E1 (ci)× Ćh̄E2 (ci)
}
,

A2 (ci) = {(ur (ci) , vt (ci))|ur (ci)− vt (ci) < 0,

(ur (ci) , vt (ci)) ∈ Ćh̄E1 (ci)× Ćh̄E2 (ci)
}
,

θ2 (ci) = {(wr (ci) ,wt (ci))|wr (ci)− wt (ci) < 0,

(wr (ci) ,wt (ci)) ∈ Ćh̄E1 (ci)× Ćh̄E2 (ci)
}
,

A3 (ci) = {(ur (ci) , vt (ci))|ur (ci)− vt (ci) = 0,

(ur (ci) , vt (ci)) ∈ Ćh̄E1 (ci)× Ćh̄E2 (ci)
}
,

θ3 (ci) = {(wr (ci) ,wt (ci))|wr (ci)− wt (ci) = 0,

(wr (ci) ,wt (ci)) ∈ Ćh̄E1 (ci)× Ćh̄E2 (ci)
}
,
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S1 (ci)

=



1
2


1

mini

∑
(ur (ci),vt (ci))∈A1(ci)

ur (ci)− vt (ci)+∑
(wr (ci),wt (ci))∈θ1(ci)

wr (ci)− wt (ci)

,
where A1 (ci) 6= φ; θ1 (ci) 6= φ

1
2

{
1

mini

∑
(ur (ci),vt (ci))∈A1(ci)

ur (ci)− vt (ci)

}
,

where A1 (ci) 6= φ; θ1 (ci) = φ

1
2

{ ∑
(wr (ci),wt (ci))∈θ1(ci)

wr (ci)− wt (ci)

}
,

where A1 (ci) = φ; θ1 (ci) 6= φ,

0, where A1 (ci) = φ; θ1 (ci) = φ

S2 (ci)

=



1
2


1

mini

∑
(ur (ci),vt (ci))∈A1(ci)

vt (ci)− ur (ci)+∑
(wr (ci),wt (ci))∈θ1(ci)

wt (ci)− wr (ci)

,
where A2 (ci) 6= φ; θ2 (ci) 6= φ

1
2

{
1

mini

∑
(ur (ci),vt (ci))∈A1(ci)

vt (ci)− ur (ci)

}
,

where A2 (ci) 6= φ; θ2 (ci) = φ

1
2

{ ∑
(wr (ci),wt (ci))∈θ1(ci)

wt (ci)− wr (ci)

}
,

where A2 (ci) = φ; θ2 (ci) 6= φ,

0, where A2 (ci) = φ; θ2 (ci) = φ

Remark 1: S1 (ci) represents the average residual amount
for Ćh̄E1 (ci) over Ćh̄E2 (ci). And S2 (ci) represents the
average residual amount for Ćh̄E2 (ci) over Ćh̄E1 (ci).
P (E1 � E2) represents the priority degree for E1 � E2.
And P (E2 � E1) represents the priority degree for
E2 � E1.
For example, P (E1 � E2) = 0.25 indicates that the

priority degree for E1 � E2 is 0.25, and is written as:
E1 �(0.25) E2.
The notation E1 �P(E1�E2) E2 doesn’t mean that E1 is

absolutely superior to E2; its just shows that the priority
degree of E1 � E2 which is denoted by P (E1 � E2). In fact,
the priority degree of P (E2 � E1) = 1− P (E1 � E2).
Example 1: Suppose that C = {c1, c2, c3},

E1 =


〈
c1, {0.5ei2π (0.4), 0.2ei2π (0.6), 0.3ei2π(0.8)}

〉
,〈

c2,
{
0.1ei2π (0.2), 0.3ei2π (0.5)

}〉
,〈

c3,
{
0.4ei2π (0.1), 0.7ei2π (0.2)

}〉


and

E2 =


〈
c1, {0.2ei2π (0.4), 0.6ei2π(0.6), 0.4ei2π (0.8)}

〉
,〈

c2, {0.8ei2π (0.3), 0.3ei2π(0.5), 0.1ei2π (0.2)}
〉
,〈

c3, {0.9ei2π (0.1), 0.7ei2π (0.3)}
〉



are two CHFSs. Then by above Definition (3.1) we have,

A1(c1) = {(0.5, 0.2) , (0.5, 0.4)} ,

A1(c2) = {(0.3, 0.1)},A1(c3) = φ.

θ1(c1) = {(0.6, 0.4), (0.8, 0.4), (0.8, 0.6)},

θ1(c2) = {(0.5, 0.3) , (0.5, 0.2)} ,

θ1(c3) = {(0.2, 0.1)} .

A2(c1) = {(0.5, 0.6) , (0.2, 0.6) , (0.2, 0.4) , (0.3, 0.6) ,

(0.3, 0.4)} ,

A2(c2) = {(0.1, 0.8) , (0.1, 0.3) , (0.3, 0.8)} ,

A2(c3) = {(0.4, 0.9) , (0.4, 0.7) , (0.7, 0.9)} .

θ2(c1) = {(0.4, 0.6) , (0.4, 0.8) , (0.6, 0.8)} ,

θ2(c2) = {(0.2, 0.3) , (0.2, 0.5)} ,

θ2(c3) = {(0.1, 0.3) , (0.2, 0.3)} .

S1(c1) = 0.0667, S1(c2) = 0.0583, S1(c3) = 0.0125.

S2(c1) = 0.1055, S2(c2) = 0.1500, S2(c3) = 0.1625.

P (E1 � E2) = 0.2475,P (E2 � E1) = 0.7525.

E1 �(0.2475) E2,E2 �(0.7525) E1.

The above results only shows that the priority degree for
E1 � E2 is 0.2475 and the priority degree for E2 � E1 is
0.7525. However, this does not imply that E1 is inherently
superior to E2. We may deduce the following characteristics
concerning priority degree.
Property 1 (Normalization): 0 ≤ P (E1 � E2) ≤ 1, 0 ≤

P (E2 � E1) ≤ 1.
Proof: In above example, P (E1 � E2) = 0.2475 ≤ 1,

P (E2 � E1) = 0.7525 ≤ 1 hold. �
Property 2:(Complementarity): P (E1 � E2) +

P (E2 � E1)
= 1.

Proof: Let

P (E1 � E2) =

∑n
i=1 S1 (ci)∑n

i=1 S1 (ci)+
∑n

i=1 S2 (ci)

and

P (E2 � E1) =

∑n
i=1 S2 (ci)∑n

i=1 S1 (ci)+
∑n

i=1 S2 (ci)
.

Then

P (E1 � E2)+ P (E2 � E1)

=

∑n
i=1 S1 (ci)∑n

i=1 S1 (ci)+
∑n

i=1 S2 (ci)

+

∑n
i=1 S2 (ci)∑n

i=1 S1 (ci)+
∑n

i=1 S2 (ci)

=

∑n
i=1 S1 (ci)+

∑n
i=1 S2 (ci)∑n

i=1 S1 (ci)+
∑n

i=1 S2 (ci)
= 1.

�
In above example, P (E1 � E2) = 0.2475 and

P (E2 � E1) = 0.7525, P (E1 � E2) + P (E2 � E1) =
0.2475+ 0.7525 = 1 hold.
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IV. DISTANCE MEASURES BETWEEN CHFSs
In this section, we define some generalized distances between
two CHFSs, namely the Hamming distance, Euclidean dis-
tance, Hausdorff distance and Hybrid distance between
CHFSs. We also define their weighted form and continuous
weighted forms.

Let C be the universal set,

X = {〈c, γXj (c) e
i2π

(
wγXk (c)

)
〉|c ∈ C}

and

Y = {〈c, γYj (c) e
i2π

(
wγYk (c)

)
〉|c ∈ C}

be two CHFSs, where k = {1, 2, . . . n} and j = {1, 2, . . . n}
then the distance measures between X and Y can be presented
as follows:
Complex hesitant normalized Hamming distance

(CHNHD) [41]:

dCHNHD (X ,Y )

=
1
2n

n∑
i=1

[
1
lci

lci∑
k=1

{ ∣∣γXk (ci)− γYk (ci)∣∣
+
∣∣wγXk (ci)− wγYk (ci)∣∣

}]
(6)

Complex hesitant normalized Euclidean distance
(CHNED) [41]:

dCHNED (X ,Y )

=

 1
2n

n∑
i=1

 1
lci

lci∑
k=1

∣∣γXk (ci)− γYk (ci)∣∣2
+
∣∣wγXk (ci)− wγYk (ci)∣∣2




1
2

(7)

where γXk (cj), γYk (ci),wγXk
(
cj
)
and wγYk

(
cj
)
are the kth

largest value in X and Y , lcj = max {l (X) , l(Y )} and respec-
tively. Eq. (6) and Eq. (7) may be used to form a Generalized
complex hesitant normalized distance:
Generalized complex hesitant normalized distance

(GCHND) [41]:

dGCHND (X ,Y )

=
1
2n

 n∑
i=1


1
lci

lci∑
k=1
|γX (ci)− γY (ci)|λ

+
∣∣wγX (ci)− wγY (ci)∣∣λ




1
λ

(8)

where λ > 0.
• If we take λ = 1,then the Generalized complex hesi-
tant normalized distance is reduce to complex hesitant
normalized Hamming distance.

• If we take λ = 2, then the Generalized complex hesitant
normalized distance reduce to complex hesitant normal-
ized Euclidean distance.

Now we follow the Hausdorff metric and general-
ize the distance measures proposed in [12] to CHFS
environment and develop complex hesitant normalized
Hamming-Hausdorff and Euclidean-Hausdorff distance as
follows;

Complex hesitant normalized Hamming-Hausdorff dis-
tance (CHNHHD):

dCHNHHD (X ,Y )

=
1
2n

[
n∑
i=1

{
max
i

( ∣∣γXk (ci)− γYk (ci)∣∣+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣
)}]

(9)

Complex hesitant normalized Euclidean-Hausdorff dis-
tance (CHNEHD):

dCHNEHD (X ,Y )

=

 1
2n


n∑
i=1

 max
i

∣∣γXk (ci)− γYk (ci)∣∣2+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣2



1
2

(10)

Generalized complex hesitant normalized Hausdorff dis-
tance (GCHNHD):

dGCHNHD (X ,Y )

=

 1
2n


n∑
i=1

 max
i

∣∣γXk (ci)− γYk (ci)∣∣λ+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣λ



1
λ

(11)

where λ > 0, if λ = 1 then the Generalized complex hesitant
normalized Hausdorff distance reduce to a Complex hesitant
normalized Hamming-Hausdorff distance, and if λ = 2 then
the Generalized complex hesitant normalized Hausdorff dis-
tance reduce to a Generalized complex hesitant normalized
Hausdorff distance.

Now we define complex hesitant hybrid normalized
hamming distance, complex hesitant hybrid normalized
Euclidean distance and generalized complex hesitant hybrid
normalized distance measure by combining the above dis-
tances respectively.
Complex hesitant Hybrid normalized Hamming distance

(CHHNHD): Please see (12).

dCHHNHD (X ,Y )

=
1
4n

n∑
i=1

 1
lci

lci∑
k=1


( ∣∣γXk (ci)− γYk (ci)∣∣+∣∣wγXk (ci)− wγYk (ci)∣∣

)
+max

i

∣∣γXk (ci)− γYk (ci)∣∣+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣


(12)

Complex hesitant Hybrid normalized Euclidean distance
(CHHNED): Please see (13).

dCHHNED (X ,Y )

=


1
4n

n∑
i=1


1
lci

lci∑
k=1

( ∣∣γXk (ci)− γYk (ci)∣∣2+∣∣wγXk (ci)− wγYk (ci)∣∣2
)

+max
i

∣∣γXk (ci)− γYk (ci)∣∣2+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣2





1
2

(13)
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Generalized complex hesitant Hybrid normalized distance
(GCHHND): Please see (14),

dGCHHND (X ,Y )

=


1
4n

n∑
i=1


1
lci

lci∑
k=1

( ∣∣γXk (ci)− γYk (ci)∣∣λ+∣∣wγXk (ci)− wγYk (ci)∣∣λ
)

+max
i

∣∣γXk (ci)− γYk (ci)∣∣λ+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣λ





1
λ

(14)

where λ > 0.
Normally, the weighted vector Wj of every element ci ∈

C, such that Wj(j = 1, 2, . . . , n) with Wj ∈ [0, 1] and
n∑
j=1

Wj = 1, then the Generalized complex hesitant weighted

distance are define as follows;
Generalized complex hesitant weighted normalized dis-

tance (GCHWND) [41]: Please see (15),

dGCHWND (X ,Y )

=

[
1
2n

n∑
i=1

Wj

(
1
lci

lci∑
k=1

( ∣∣γXk (ci)− γYk (ci)∣∣λ+∣∣wγXk (ci)− wγYk (ci)∣∣λ
))] 1

λ

(15)

where λ > 0. If we put λ = 1 and λ = 2, then we get complex
hesitant normalized hamming distance [41], and complex
hesitant normalized Euclidean distance [41] respectively as
follows:
Complex hesitant weighted normalized Hamming distance

(CHWNHD) [41]: Please see (16).

dCHWNHD (X ,Y )

=
1
2n

n∑
i=1

Wj

[
1
lci

lci∑
k=1

( ∣∣γXk (ci)− γYk (ci)∣∣+∣∣wγXk (ci)− wγYk (ci)∣∣
)]

(16)

Complex hesitant weighted normalized Euclidean distance
(CHWNED) [41]: Please see (17).

dCHWNED (X ,Y )

=

[
1
2n

n∑
i=1

Wj

(
1
lci

lci∑
k=1

( ∣∣γXk (ci)− γYk (ci)∣∣2+∣∣wγXk (ci)− wγYk (ci)∣∣2
))] 1

2

(17)

Next we define generalized complex hesitant weighted
Housdorff distance as:
Generalized complex hesitant weighted normalized Haus-

dorff distance (GCHWNHD): Please see (18),

dGCHWNHD (X ,Y )

=

 1
2n

n∑
i=1

Wj

 max
i

∣∣γXk (ci)− γYk (ci)∣∣λ+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣λ


1
λ

(18)

where λ ≥ 1. When λ = 1, then we get a com-
plex hesitant weighted normalized Hamming-Hausdorff dis-
tance (CHWNHHD). When λ = 2, then we get complex
hesitant weighted normalized Euclidean-Hausdorff distance
(CHWNEHD) respectively as follows;
Complex hesitant weighted normalized Hamming-

Hausdorff distance (CHWNHHD): Please see (19).

dCHWNHHD (X ,Y )

=
1
2n

n∑
i=1

Wj

[
max
i

∣∣γXk (ci)− γYk (ci)∣∣+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣
]
. (19)

Complex hesitant weighted normalized Euclidean-
Hausdorff distance (CHWNEHD): Please see (20).

dCHWNEHD (X ,Y )

=

 1
2n

n∑
i=1

Wj

 max
i

∣∣γXk (ci)− γYk (ci)∣∣2+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣2


1
2

(20)

Furthermore, by combining the GCHWWND and GCH-
WNHDwe define theGeneralized complex hesitant weighted
Hybrid normalized distance as follows:
Generalized complex hesitant weighted Hybrid normalized

distance (GCHWHND): Please see (21),

dGCHWHND (X ,Y )

=


1
2n

n∑
i=1

Wj


1
lci

lci∑
k=1

( ∣∣γXk (ci)− γYk (ci)∣∣λ+∣∣wγXk (ci)− wγYk (ci)∣∣λ
)

+max
i

∣∣γXk (ci)− γYk (ci)∣∣λ+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣λ





1
λ

(21)

where λ > 0.
In particular, if we put λ = 1 and λ = 2 in

Eq. (21), then a complex hesitant weighted Hybrid
normalized Hamming distance and complex hesitant
weighted Hybrid normalized Euclidean distance are obtained
respectively.
Complex hesitant weighted Hybrid normalized Hamming

distance (CHWHNHD): Please see (22).

dCHWHNHD (X ,Y )

=
1
2n

n∑
i=1

Wj


1
lci

lci∑
k=1

{ ∣∣γXk (ci)− γYk (ci)∣∣+∣∣wγXk (ci)− wγYk (ci)∣∣
}

+max
i

∣∣γXk (ci)− γYk (ci)∣∣+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣

 (22)
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Complex hesitant weighted Hybrid normalized Euclidean
distance (CHWHNED): Please see (23).

dCHWHNED (X ,Y )

=


1
2n

n∑
i=1

Wj


1
lci

lci∑
k=1

( ∣∣γXk (ci)− γYk (ci)∣∣2+∣∣wγXk (ci)− wγYk (ci)∣∣2
)

+max
i

∣∣γXk (ci)− γYk (ci)∣∣2+
max
i

∣∣wγXk (ci)− wγYk (ci)∣∣2





1
2

.

(23)

Example 2: Let C = {c1, c2, c3} be a universal set and

Ch1 =


〈
c1,
{
0.1ei2π(0.3), 0.3ei2π(0.4)

}〉
,〈

c2,
{
0.8ei2π(0.5), 0.5ei2π(0.1)

}〉
,〈

c3,
{
0.6ei2π(0.9), 0.9ei2π(0.5)

}〉
.


and

Ch2 =


〈
c1,
{
0.9ei2π(0.1), 0.7ei2π(0.5)

}〉
,〈

c2,
{
0.3ei2π(0.1), 0.4ei2π(0.4)

}〉
,〈

c3,
{
0.1ei2π(0.6), 0.2ei2π(0.9)

}〉
.

 .
be two CHFEs. Then applying complex hesitant normalized
Hamming distance (CHNHD) we get
dCHNHD (Ch1,Ch2)= 0.3917 (Please see (24), as shown at

the bottom of the page),
dCHNED (Ch1,Ch2)= 0.4425 (Please see (25), as shown at

the bottom of the page),
dGCHNED (Ch1,Ch2) = 0.4841 (Please see (24)).
Also by applying the complex hesitant normalized Haus-

dorff distance (CHNHD), we get:

dCHNHHD(Ch1,Ch2) = 0.5000,

dCHNEHD(Ch1,Ch2) = 0.5385,

dGCHNHD(Ch1,Ch2) = 0.5708.

Similarly, utilizing the Complex hesitant Hybrid normal-
ized distances we get:

dCHHNHD(Ch1,Ch2) = 0.3208,

dCHHNED(Ch1,Ch2) = 0.4128,

dGCHHND(Ch1,Ch2) = 0.4691.

Let {w1,w2,w3}, such that, w1 = 0.3, w2 = 0.2 and
w3 = 0.5, be theweighted vector. Then utilizing theweighted
distances we get:

dCHWNHD(Ch1,Ch2) = 0.3719,
dCHWNED(Ch1,Ch2) = 0.2088
dGCHWND(Ch1,Ch2) = 0.2100,
dCHWNHHD(Ch1,Ch2) = 0.1717
dCHWNEHD(Ch1,Ch2) = 0.3191,
dGCHWNHD(Ch1,Ch2) = 0.4046
dCHWHNHD(Ch1,Ch2) = 0.3100,
dCHWHNED(Ch1,Ch2) = 0.4157
dGCHWHND(Ch1,Ch2) = 0.4759.

Now, we determined that Each of the following distance
measures is discrete if the universe of discourse and the
weight of components are both continuous and the weighted
vector of c ∈ C = [a, b] is w(c), where as w(c) ∈ [0, 1], and
b∫
a
w(c)dc = 1. Then a continuous complex hesitant weighted

distance measures are defined.
Continuous complex hesitant weighted Hamming distance

(CCHWHD): Please see (27).

d (X ,Y )

=
1
2

b∫
a

W (c)

(
1
lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣+∣∣wγXk (c)− wγYk (c)∣∣
})

dc (27)

Continuous complex hesitant weighted Euclidean distance
(CCHWED): Please see (28).

d (X ,Y )

=

1
2

b∫
a

W (c)

(
1
lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣2+∣∣wγXk (c)− wγYk (c)∣∣2
})

dc


1
2

(28)

dCHNHD (Ch1,Ch2) =
1

2× 3


1
2 (|0.1− 0.9| + |0.3− 0.7| + |0.3− 0.1| + |0.4− 0.5|)

+
1
2 (|0.8− 0.3| + |0.5− 0.4| + |0.5− 0.1| + |0.1− 0.4|)

+
1
2 (|0.6− 0.1| + |0.9− 0.2| + |0.9− 0.6| + |0.5− 0.9|)

 = 0.3917 (24)

dCHNED (Ch1,Ch2) =

 1
2× 3


1
2

(
|0.1− 0.9|2 + |0.3− 0.7|2 + |0.3− 0.1|2 + |0.4− 0.5|2

)
+

1
2 (|0.8− 0.3|2 + |0.5− 0.4|2 + |0.5− 0.1|2 + |0.1− 0.4|2)

+
1
2 (|0.6− 0.1|2 + |0.9− 0.2|2 + |0.9− 0.6|2 + |0.5− 0.9|2)




1
2

= 0.4425 (25)

dGCHNED (Ch1,Ch2) =

 1
2× 3


1
2

(
|0.1− 0.9|3 + |0.3− 0.7|3 + |0.3− 0.1|3 + |0.4− 0.5|3

)
+

1
2 (|0.8− 0.3|3 + |0.5− 0.4|3 + |0.5− 0.1|3 + |0.1− 0.4|3)

+
1
2 (|0.6− 0.1|3 + |0.9− 0.2|3 + |0.9− 0.6|3 + |0.5− 0.9|3)




1
3

= 0.4841 (26)
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Generalized continuous complex hesitant weighted dis-
tance (GCCHWD): Please see (29),

d (X ,Y )

=

1
2

b∫
a

W (c)

(
1
lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣λ+∣∣wγXk (c)− wγYk (c)∣∣λ
})

dc


1
λ

(29)

where λ > 0, if W (c) = 1
(b−a) , for any c ∈ [a, b], then the

Generalized continuous complex hesitant weighted distance
is reduced to a Generalized continuous complex hesitant
normalized distance, and the continuous complex hesitant
weighted Hamming distance is reduced to a continuous com-
plex hesitant normalized Hamming distance, and the continu-
ous complex hesitant weighted Euclidean distance reduced to
a continuous complex hesitant normalized Euclidean distance
respectively.
Generalized continuous complex hesitant normalized dis-

tance (GCCHND): Please see (30),

d (X ,Y )

=

 1
2(b− a)

b∫
a

(
1
lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣λ+∣∣wγXk (c)− wγYk (c)∣∣λ
})

dc


1
λ

(30)

where λ > 0. if λ = 1 then the continuous complex hesitant
normalized Hamming distance is obtained;
Continuous complex hesitant normalized Hamming dis-

tance (CCHNHD): Please see (31),

d (X ,Y ) =
1

2(b− a)

×

b∫
a

(
1
lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣+∣∣wγXk (c)− wγYk (c)∣∣
})

dc

(31)

if λ = 2 then the continuous complex hesitant normalized
Euclidean distance is obtained.
Continuous complex hesitant normalized Euclidean dis-

tance (CCHNED): Please see (32).

d (X ,Y )

=

 1
2(b− a)

b∫
a

(
1
lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣2+∣∣wγXk (c)− wγYk (c)∣∣2
})

dc


1
2

(32)

Using traditional Hausdorff metric,we proposed the gen-
eralized continuous complex hesitant weighted distance are
follow as:

Generalized continuous complex hesitant weighted Haus-
dorff distance (GCCHWHD): Please see (33).

d (X ,Y ) =

 b∫
a

W (c)

 max
k

∣∣γXk (c)− γYk (c)∣∣λ+
max
k

∣∣wγXk (c)− wγYk (c)∣∣λ


1
λ

(33)

In particular cases, if we take λ = 1, 2 in above Eq.
(32) and (33), the Continuous complex hesitant weighted
Hamming-Hausdorff distance and a continuous complex hes-
itant weighted Euclidean-Hausdorff distance are obtained
respectively.
Continuous complex hesitant weighted Hamming-

Hausdorff distance (CCHWHHD): Please see (34).

d (X ,Y ) =

1
2

b∫
a

W (c)

(
max
k

∣∣γXk (c)− γYk (ci)∣∣+
max
k

∣∣wγXk (c)− wγYk (c)∣∣
)
(34)

Continuous complex hesitant weighted Euclidean - Haus-
dorff distance (CCHWEHD): Please see (35).

d (X ,Y ) =

1
2

b∫
a

W (c)

 max
k

∣∣γXk (c)− γYk (c)∣∣2+
max
k

∣∣wγXk (c)− wγYk (c)∣∣2


1
2

(35)

If W (c) = 1
(b−a) for any c ∈ [a, b], then the continu-

ous complex hesitant weighted Hamming-Hausdorff distance
becomes reduced to a continuous complex hesitant normal-
ized Hamming-Hausdorff distance.
Continuous complex hesitant normalized Hamming-

Hausdorff distance (CCHNHHD): Please see (36).

d (X ,Y ) =

 1
2 (b− a)

b∫
a

(
max
k

∣∣γXk (c)− γYk (c)∣∣+
max
k

∣∣wγXk (c)− wγYk (c)∣∣
)
(36)

Similarly, for any c ∈ [a, b], if W (c) = 1
(b−a) then the

continuous complex hesitant weighted Euclidean-Hausdorff
distance is reduced to a continuous complex hesitant nor-
malized Euclidean-Hausdorff distance, and a Generalized
continuous complex hesitant weighted Hausdorff distance is
reduced to a Generalized continuous complex hesitant nor-
malized Hausdorff distance.
Continuous complex hesitant normalized Euclidean-

Hausdorff distance (CCHNEHD): Please see (37).

d (X ,Y ) =

 1
2(b− a)

b∫
a

 max
k

∣∣γXk (c)− γYk (c)∣∣2+
max
k

∣∣wγXk (c)− wγYk (c)∣∣2


1
2

(37)
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Generalized continuous complex hesitant normalized
Hausdorff distance (GCCHNHD): Please see (38),

d (X ,Y ) =

 1
2(b− a)

b∫
a

 max
k

∣∣γXk (c)− γYk (c)∣∣λ+
max
k

∣∣wγXk (c)− wγYk (c)∣∣λ


1
λ

(38)

where λ > 0. Combining the above distances, we can
obtained the Generalized continuous complex hesitant
weighted Hybrid distance, which is defined as;
Generalized continuous complex hesitant weighted Hybrid

distance (GCCHWHD): Please see (39),

d (X ,Y )

=


1
2

b∫
a

W (c)


1
2lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣λ+∣∣wγXk (c)− wγYk (c)∣∣λ
}

+
1
2

 max
k

∣∣γXk (c)− γYk (c)∣∣λ+
max
k

∣∣wγXk (c)− wγYk (c)∣∣λ


 dc



1
λ

(39)

where λ > 0.
In special cases, if we take λ = 1 then the GCCHWHD

reduced to CCHWHHD:
Continuous complex hesitant weighted Hybrid Hamming

distance (CCHWHHD): Please see (40).

d (X ,Y ) =
1
2

b∫
a

W (c)

×


1
2lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣+∣∣wγXk (c)− wγYk (c)∣∣
}

+
1
2

(
max
k

∣∣γXk (c)− γYk (c)∣∣+
max
k

∣∣wγXk (c)− wγYk (c)∣∣
)
 dc.

(40)

If take λ = 2 then the GCCHWHD reduced to CCH-
WHED:
Continuous complex hesitant weighted Hybrid Euclidean

distance (CCHWHED): Please see (41).

d (X ,Y )

=


1
2

b∫
a

W (c)


1
2lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣2+∣∣wγXk (c)− wγYk (c)∣∣2
}

+
1
2

 max
k

∣∣γXk (c)− γYk (c)∣∣2+
max
k

∣∣wγXk (c)− wγYk (c)∣∣2


dc


1
2

(41)

If W (c) = 1
(b−a) , then (32),(33) and (34) are reduced to a

Generalized continuous complex hesitant Hybrid normalized
distance, Continuous complex hesitant Hybrid normalized
Hamming distance and a continuous complex hesitant Hybrid

normalized Euclidean distance respectively, for every c ∈
[a, b] .
Generalized continuous complex hesitant Hybrid normal-

ized distance (GCCHHND): Please see (42),

d (X ,Y )

=


1

2(b− a)

b∫
a


1
2lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣λ+∣∣wγXk (c)− wγYk (c)∣∣λ
}

+
1
2

 max
k

∣∣γXk (c)− γYk (c)∣∣λ+
max
k

∣∣wγXk (c)− wγYk (c)∣∣λ


 dc



1
λ

(42)

where λ > 0.
Continuous complex hesitant Hybrid normalizedHamming

distance (CCHHNHD): Please see (43).

d (X ,Y )

=
1

2(b− a)

b∫
a


1
2lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣+∣∣wγXk (c)− wγYk (c)∣∣
}

+
1
2

(
max
k

∣∣γXk (c)− γYk (c)∣∣+
max
k

∣∣wγXk (c)− wγYk (c)∣∣
)
dc

(43)

Continuous complex hesitant Hybrid normalized Euclidean
distance (CCHHNED): Please see (44).

d (X ,Y )

=


1

2(b− a)

b∫
a


1
2lc

lc∑
k=1

{ ∣∣γXk (c)− γYk (c)∣∣2+∣∣wγXk (c)− wγYk (c)∣∣2
}

+
1
2

 max
k

∣∣γXk (c)− γYk (c)∣∣2+
max
k

∣∣wγXk (c)− wγYk (c)∣∣2


dc


1
2

(44)

A. ANALYSIS OF COMPLEX HESITANT FUZZY SET
CHFS ORDERING RELATIONS
In this section,we examine the CHFS ordering relation using
example.
Example 3: Suppose that C = {c}, Ch1(c) =

{0.2ei2π (0.4), 0.9ei2π (0.6), 0.7ei2π (0.8)} and Ch2(c) =

{0.1ei2π (0.3), 0.8ei2π (0.4), 0.3ei2π (0.7)} are two CHFSs on C.
When we use the score function we get, S(Ch1) = 0.60,
S(Ch2) = 0.433 S(Ch1) > S(Ch2) From the above defi-
nition,we have Ch1(c) > Ch2(c). Aggregation operators,
in general, are monotonous increasing functions. Using
the score function to handle the ordering of Ch1(c) and
Ch2(c). TOPSIS can be used to deal with the ordering
relationship between Ch1(c) and Ch2(c). Now the same
result can be derived using the closeness coefficient for-
mula. Let us take the CHF-negative ideal and CHF-positive
Ideal i.e.,, Ch−(c) = {0ei2π (0), 0ei2π(0), 0ei2π (0)} and
Ch+(c) = {1ei2π (1), 1ei2π (1), 1ei2π (1)}. Now we find the
closeness coefficient using the distance formulas which
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TABLE 1. Ranking order of Closeness coefficient by utilizing different distance measures.

are defined above. We apply a complex hesitant normal-
ized hamming distance (CHNHD): dch(Ch1(c),Ch−(c)) =
0.6, dch(Ch2(c),Ch−(c)) = 0.433 apply complex hesi-
tant normalized Euclidean distance (CHNED): dch(Ch1(c),
Ch+(c)) = 0.4, dch(Ch2(c),Ch+(c)) = 0.567 The closeness
coefficient of Ch1(c) and Ch2(c), denoted by CCh1(c) and
CCh2(c) are denoted as,

dch(Ch1(c),Ch−(c))
dch(Ch1(c),Ch−(c))+ dch(Ch1(c),Ch+(c))

= 0.60

dch(Ch2(c),Ch−(c))
dch(Ch2(c),Ch−(c))+ dch(Ch2(c),Ch+(c))

= 0.433

Since, CCh1(c) > CCh2(c) Therefore 0.60 > 0.434 i-e,

dch(Ch1(c),Ch−(c))
dch(Ch1(c),Ch−(c))+ dch(Ch1(c),Ch+(c))

>
dch(Ch2(c),Ch−(c))

dch(Ch1(c),Ch−(c))+ dch(Ch1(c),Ch+(c))
.

from which, Ch1(c) > Ch2(c).
From Table 1, we see that the ranking order by utilizing

the proposed distance measures are the same as compared
with the existing distances. However the distance measures
proposed in [12] and [41] are the special cases of the dis-
tances developed in this paper. Therefore, the proposed dis-
tance measures are the generalization of the existing distance
measures.
Example 4: To make a proper diagnosis, C = C1 (Viral

fever), C2 (Malaria), C3 (Typhoid), C4 (Stomach problem),
C5 (Chest problem) for an affected person (patient) with the
given values of the signs and symptoms, S = S1 (Temper-
ature), S2(Headache), S3(Cough), S4(Stomach pain) and S5
(Chest pain), taking into consideration all possible diagnosis
Szmidt [18] considered all possible diagnoses and symptoms
and signs and symptoms as HFEs. Utilizing CHFSs can
take an a lot of the more data taken into consideration; the
more values, we achieve from affected person, the greater
epistemic reality we have. So, in this paper, we use CHFEs
to deal with such cases. Every symptom is defined through
a CHFE , which is defined by sets (γXi (c) e

i2π
(
wγXk (c)

)
) to

indicate the degree that signs and symptoms characteristic
Si satisfy the considered diagnosis Ci. The data is given in
Table 2. The set of patients is P=Nida, Tania, Dania, Faryal,

Wajiha. The signs and symptoms which may be additionally
defined through CHFEs are given in Table 3. We are seeking
a diagnosis for every affected person.

We applied the existing distances [41] and the pro-
posed distance measure in order to calculate a diagno-
sis for each patient. Tables 4-12 show a list of all the
consequences (results) for the patient under consideration.
In Tables 4, 5, and 6, by utilizing the complex hesitant nor-
malized Hamming distance [41], we found that Nida suf-
fers from stomach problems, which is the same by using
complex hesitant normalized Hamming-Hausdorff distance
(Table 7), complex hesitant normalized Euclidean-Hausdorff
distance (Table 8), complex hesitant normalized generalized-
Hausdorff (Table 9), hybrid complex hesitant normalized
Hamming distance (Table 10), hybrid complex hesitant nor-
malized Euclidean distance (Table 11), and hybrid complex
hesitant normalized generalized distance (Table 12). The pro-
posed distances, on the other hand, are a generalisation of
the distance measure developed in [41] and are spatial cases
of the developed distances. Also, from Table 4, we see that
Tania suffers from stomach problems, but Table 5 and Table 6
show that Tania suffers form malaria. However, by using
complex hesitant normalized Hamming-Hausdorff distance
(Table 7), complex hesitant normalized Euclidean-Hausdorff
distance (Table 8), complex hesitant normalized generalized-
Hausdorff (Table 9), hybrid complex hesitant normalized
Hamming distance (Table 10), hybrid complex hesitant nor-
malized Euclidean distance (Table 11), hybrid complex
hesitant normalized generalized distance (Table 12), Tania
suffers from malaria. Which is the same by utilizing distance
measure proposed in [41] (Table 5 and Table 6). This shows
that the proposed distance measure presents a better result
as compared to the existing distances [41]. Furthermore,
in Table 4, we see that Dania suffers from malaria. The
same result can be seen in Table 5 and Table 6. However, in
Tables 7-12, we found that Dania suffers frommalaria, which
is the same as seen in Table 4-6. Moreover, from Table 4,
we see that Faryal suffers from stomach problems, which is
the same result as presented in Tables 7-12. However, from
Table 5 and Table 6, by utilizing distances developed in [41],
it is found that Faryal suffers frommalaria. Furthermore, from
Table 4, we see thatWajiha suffers from stomach problem, but
Table 5 and Table 6 show that Wajiha suffers from typhoid.
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TABLE 2. Symptoms characteristic of the considered diagnosis.

TABLE 3. Symptoms characters of the considered affected person(patient).

TABLE 4. Result obtained by complex hesitant normalized Hamming distance [41].

TABLE 5. Result obtained by complex hesitant normalized Euclidean distance [41].

TABLE 6. Result obtained by complex hesitant normalized Generalized distance [41].

TABLE 7. Result obtained by complex hesitant normalized Hamming-Hausdorff distance:.

However, from Tables 7-12, we also see that Wajiha suf-
fers from typhoid. From the above discussion, we see that
the proposed distances gives better results as compared to
the distances developed in [41]. The main reason is that
Garg et al. [41] distances give different results, while the
proposed distances give the same results.

V. TOPSIS METHOD FOR MULTI-ATTRIBUTE/CRITERIA
DECISION MAKING APPROACH UNDER COMPLEX
HESITANT FUZZY SETTING
In this section, we described a TOPSIS-based MCDMmodel
for solving a faculty selection decision-making issue using
(CHFs). The MCDM problem may be stated as a decision
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TABLE 8. Result obtained by complex hesitant normalized Euclidean-Hausdorff distance.

TABLE 9. Result obtained by complex hesitant normalized Generalized-Hausdorff.

TABLE 10. Hybrid complex hesitant normalized Hamming distance.

TABLE 11. Hybrid complex hesitant normalized Euclidean distance.

TABLE 12. Hybrid complex hesitant normalized Generalized distance.

matrix (DM), with columns representing the collection of
attributes/criteria and rows representing alternatives. Thus,
for DMZm×n, consider the following set of m choices and
n criteria. The k is the DMs’ unknown weight vector is
denoted by W = (W1,W2, . . . ,Wj)T , such that when weight
is completely unknown and when weight is partially known,

with Wj ∈ [0, 1],
k∑
t=1

Wj = 1. The complex hesitant fuzzy

decisionmaking (CHF-DMs) provided by theDMs is denoted
by Ž (k)

= ([ρij](k))m×n. Since criteria in the decision making
process are of two types (i) cost and (ii) benefit, if the criteria
are of the cost type, we will change the criteria to the benefit
type by normalising the CHF-DMs Ž∗(k) = ([ρ∗ij]

(k))m×n as
follows:

[ρ∗ij]
(k)
=

{
[ρij](k) for benefit criteria,
([ρij](k))c for cost criteria,

where ([ρij](k))c is the complement of [ρij](k) (i =
1, 2, . . . ,m; j = 1, 2, . . . , n).

The steps of the developed approach are as under:
Step 1. Construct CHFs decision matrices.

Step 2.When the criteria’s weights are supplied, use them.
If not, then determine the weight using the optimization
problem approach. The complicated hesitant fuzzy decision
matrix is stated as follows: Because the criteria have vary-
ing degrees of relevance, the weight vector of all the cri-
teria, as determined by the DMs, is specified as by W =

{W1,W2, . . . ,Wj}
T where 0 ≤ Wj ≤ 1,

k∑
t=1

Wj = 1. And Wj

is the important degree for all attribute/criterias. In general,
the significant degrees of the qualities must be established
by the decision-makers. As a result of the complexity and
ambiguity of real decision-making difficulties, as well as
the inherent subjectivity of human thought, information on
criteria weights is frequently inadequate. We believe that the
criteria weight information supplied by the DMs might be
presented in the following ways [42], for i 6= j :
1. A weak ranking:{Wi ≥ Wj};

2. A strick ranking:{Wi −Wj ≥ σi(> 0)};
3. A ranking with multiples: {Wi ≥ σiWj}, 0 ≤ σi ≤ 1;
4. An interval form: {λi ≤ Wi ≤ λi + σi}, 0 ≤ λi ≤

λi + σi ≤ 1;
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5. A ranking of differences: {Wi − Wj ≥ Wk − Wl}, for
j 6= k 6= l.

In MCDM, it is important to evaluate the weight of the
criteria. According to Wang [43], criteria with a large devi-
ation value should be given a high weight in the MCDM
problem, whereas criteria with a small deviation value should
be provided a low weight. In a complicated and hesitant
fuzzy environment, we created an optimization model based
on deviation maximisation approaches to discover the ideal
weights for a set of criteria. For the criteria Ti ∈ T , the
deviation of the criteria can be determined as:

Dij(Wj) =
m∑
k=1

Wjd
(
Xij,Ykj

)
,

d (X ,Y ) =
1
2n

n∑
i=1

[
1
lci

lci∑
k=1

{∣∣γXk (ci)− γYk (ci)∣∣
+
∣∣wγXk (ci)− wγYk (ci)∣∣}] ,

denotes the complex hesitant fuzzy normalizied Hamming
distance between the CHFs X and Y . Let

Dj(W ) =
m∑
k=1

Dij(W )

=

m∑
i=1

m∑
k=1

Wj

(
1
2n

n∑
i=1

[
1
lci

lci∑
k=1

{∣∣γXk (ci)− γYk (ci)∣∣
+
∣∣wγXk (ci)− wγYk (ci)∣∣}])

j = 1, 2, . . . , n then Dj(W ) represents the deviation value of
all alternatives.

M1 =


maxD(W ) =

m∑
i=1

m∑
J=1

m∑
K=1

Wjd
(
Xij,Ykj

)
s.t Wj ≥ 0, t = 1, 2, . . . , n,

m∑
t=1

Wj = 1

∣∣∣∣∣∣∣∣
To solve the above model, we let

L(W , ξ ) =
m∑
i=1

m∑
j=1

m∑
k=1

Wjd
(
Xij,Ykj

)
+
ξ

2

(
m∑
t=1

Wj − 1

)
= 0.

It depicts a constrained optimization’s Lagrange function
(M − 1). Where is a real number that indicates a variable for
the Lagrange multiplier. Next, the partial derivative of L are,

∂L
∂Wt
=

m∑
i=1

m∑
k=1

Wjd
(
Xij,Ykj

)
+ ξWj = 0 (a)

∂L
∂ξ
=

1
2

(
m∑
t=1

Wj − 1

)
= 0 (45)

It follows from above (45) that

Wj =

−

m∑
i=1

n∑
j=1

Wjd
(
Xij,Ykj

)
ξ

, j = 1, 2, . . . , n, (46)

ξ = −

√√√√√ n∑
j=1

 m∑
i=1

n∑
j=1

d
(
Xij,Ykj

)2

(47)

Clearly ξ < 0,
m∑
i=1

n∑
j=1

d
(
Xij,Ykj

)
means the sum of

deviation of all the alternatives with respect to the jth

attribute/criteria, and

√√√√ n∑
j=1

(
m∑
i=1

n∑
j=1

d
(
Xij,Ykj

))2

means the

sum of deviation of all alternatives with respect to all criteria.
Then combining Equation (a) and (b), we can get

Wj =

n∑
j=1

m∑
i=1

m∑
K=1

Wjd
(
Xij,Ykj

)
√√√√ n∑

j=1

(
m∑
i=1

n∑
j=1

d
(
Xij,Ykj

))2
.

By normalizingWj(j = 1, 2, . . . , n),we can convert their sum
into a unit and obtain Eq. (48), as shown at the bottom of the
next page. However, there are times when the information
regarding the weight vector is partially known rather than
wholly unknown. For these cases, we create the following
constrained optimization model (M2) (49), as shown at the
bottom of the next page, based on the set of known weight
information.

The (M2) model is a linear programming model that can
be run using the LINGO 11.0 math software package. The
solution of this model gives the optimal solution W =

(W1,W2, . . . ,Wn), which can be used as a criteria weight
vector.

Step 3. Calculate the complex hesitant fuzzy positive ideal
solution (CHF-PIS), denoted

C̃+ = (C̃+1 , C̃
+

2 , . . . , C̃
+

3 ) (50)

and the complex hesitant fuzzy negative ideal solution (CHF-
NIS), denoted by:

C̃− = (C̃−1 , C̃
−

2 , . . . , C̃
−

3 ) (51)

where

C̃+ = [ρ̃ υ̂ max j] = [∨1 ≤ i ≤ mρ̃ υ̂ij,∧1 ≤ i ≤ mρ̃ φ̂ij],

and

C̃− = [ρ̃ υ̂ min j] = [∧1 ≤ i ≤ mρ υij,∨1 ≤ i ≤ mρ φij].

Step 4. Compute the distance measured from each alterna-
tive to a CHF-PIS and a CHP-NIS by utilizing the proposed
distances.

Step 5. Calculate the closeness coefficient of each alterna-
tive by using the distances of alternatives from CHF-PIS and
CHF-NIS based on the following equations:

CAi =
d+j (C̃j, C̃

+

j )

d+j (C̃j, C̃
+

j )+ d
−

j (C̃j, C̃
−

j )
(52)

Step 6. Ranking the alternatives Ai(i = 1, 2, . . . ,m)
according to the closeness coefficients CAi (i = 1, 2, . . . ,m).
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FIGURE 1. Flowchart of the proposed method.

VI. NUMERICAL EXAMPLES
This section presents an MCDM problem regarding the rank-
ing effectiveness of COVID-19 tests in order to show the
applicability and application of the developed procedure.

1) RANKING EFFECTIVENESS OF COVID-19 TESTS
The 2019 Coronavirus (COVID-19) disease is a highly infec-
tious disease caused by the SARS-CoV-2 (Severe Acute Res-
piratory Syndrome Coronavirus-2) [44]. This viral sickness
has been the most serious concern for humanity since it was
first reported to the WHO (World Health Organization) [45]
on December 31, 2019, when multiple cases of an unknown
pneumonia-like disease were recorded in the Chinese city
of Wuhan. Fever, cough, headache, malaise, dyspnea, and
loss of smell and taste are only a few of the symptoms of
COVID 19 [46]. Symptomsmight emerge anywhere from 1 to
14 days after being exposed to the virus [47]. At least one-
third of those afflicted do not show any signs or symptoms.
The majority (81%) of individuals who acquire severe symp-
toms and are categorised as patients have mild to moderate
symptoms (up to mild pneumonia) and 14 have severe symp-
toms (dyspnea). Hypoxia, or lung involvement in imaging
(50% or more), causes significant symptoms in 5% of people
(dyspnea, shock, or multi-organ dysfunction). The chance of
having severe symptoms is higher in older adults. Long-term
organ damage has been seen in some people who continue to

have varied consequences for several months after recovery
(long COVID) [48]. Years of research are being done to
find out more about what this disease will mean in the long
run [49].

COVID-19 is spread through the air when humans inhale
droplets containing viruses or tiny airborne particles. Inhaling
them poses the most risk when individuals are close by, but
they can also be breathed across greater distances, especially
indoors. Infection can also be spread by squirting or spraying
infected fluids into the eyes, nose, or mouth, as well as on
contaminated surfaces in rare cases. People can be infectious
for up to 20 days and spread the virus without showing any
signs of symptoms [50]. Several test techniques have been
established to diagnose the condition.

On March 11, 2020, the WHO Director-General pro-
claimed the COVID-19 outbreak a pandemic due to a signif-
icant increase in cases outside China worldwide. The WHO
has proclaimed the outbreak to be a global health emergency.
This unique and very fatal illness has successfully spread in
all weather conditions and across all health standards (though
a bit slower in certain situations). People who already have
chronic conditions like diabetes, heart disease, or respiratory
difficulties have been shown to be more susceptible to the
virus. This illness affects people of all ages and genders,
leaving no one immune. Children who are not particularly
susceptible to the disease are disproportionately affected by
socioeconomic changes and the dread engendered by the
epidemic. Strict lockdowns, the shutdown of educational
institutions, a scarcity of supplies, and other issues brought
on by the pandemic are also wreaking havoc on businesses
and society.Since its breakout, this illness has proven to be a
game changer, affecting economies, restricting travel, isolat-
ing nations, dramatically increasing casualties, and causing
large demographic shifts. COVID-19 is caused by a rapidly
mutating virus and is therefore unpredictable. COVID-19’s
high transmissibility is one of the causes of its rapid spread,
and there is presently no vaccine or pharmacological therapy
available to protect people against the virus [51]. Although
less deadly than SARS (Severe Acute Respiratory Syndrome)
or MERS-COV (Middle East Respiratory Syndrome Coro-
navirus) [52], COVID-19 has produced a huge worldwide

Wj =

m∑
i=1

m∑
k=1

[
1
2n

n∑
i=1

[
1
lci

lci∑
k=1

{∣∣γXk (ci)− γYk (ci)∣∣+ ∣∣wγXk (ci)− wγYk (ci)∣∣}
]]

n∑
j=1

[
m∑
i=1

m∑
k=1

(
1
2n

n∑
i=1

[
1
lci

lci∑
k=1

{∣∣γXk (ci)− γYk (ci)∣∣+ ∣∣wγXk (ci)− wγYk (ci)∣∣}
])] (48)

(M2)



MaxD(W )

=

n∑
j=1

[
m∑
i=1

m∑
k=1

(
1
2n

n∑
i=1

[
1
lci

lci∑
k=1

{ ∣∣γXk (ci)− γYk (ci)∣∣
+
∣∣wγXk (ci)− wγYk (ci)∣∣

}])]
s.t Wj ≥ 0, j = 1, 2, . . . , n,

m∑
t=1

Wj = 1

∣∣∣∣∣∣∣∣∣∣∣
(49)
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TABLE 13. Complex hesitant fuzzy decision matrix.

health catastrophe because of the overcrowding of hospitals
and healthcare systems. The hospital’s ability to treat the
disabled may be exceeded by the number of active cases.
There have been a large number of people who have needed
to be hospitalised for more than a week and up to two
months [53]. According to the most recent WHO statistics
as of March 20, 2021 [54], there have been 121,969,223 con-
firmed COVID-19 cases worldwide, with 2,694,094 fatalities
documented, and the numbers are continually rising. We do
not have a drug to treat this sickness because it is a unique and
mutating condition. Different nations and institutes claimed
that various drugs were effective in treating COVID-19, but
this was later proven to be false. Individual vaccines are being
produced in several nations to prevent individuals from being
sick, but providing vaccines to each and every personwill take
a long time. Furthermore, these vaccinationsmay not function
with the virus’s new strands and only have an 80% to 90%
effectiveness rate. As a result, it’s critical to keep a close eye
on the progress of the disease so that it doesn’t spread to unaf-
fected or unaffected places. For COVID-19 spread analysis,
test effectiveness is ranked. Currently, a variety of COVID-19
tests are available, each of which plays an important role
in evaluating the disease’s progress and assisting decision-
makers and governments in formulating policies. Let the four
arttibutives is {T1,T2,T3,T4,T5} be the set of available tests
for COVID-19, where

(i): T1 rRT-PCR (Real-time Reverse Transcription Poly-
merase Chain Reaction) is a highly specific and sensitive
COVID-19 diagnostic test. Swabs from the nose or mouth are
used in the test.

(ii): T2 CBNAAT (cartridge-based nucleic acid amplifi-
cation test) is a diagnostic test that was formerly used to
diagnose tuberculosis but is currently being used in cer-
tain countries to diagnose COVID-19. It is more rapid than
RT-PCR.

(iii): T3 To detect coronavirus as a foreign substance, anti-
gen assays target the spike proteins of the virus. Nasal swabs
are used to collect samples.

(iv): T4 COVID-19 antibody tests, commonly known as
serological testing, identify antibodies produced in the body
against COVID-19. By identifying IgG and IgM antibodies,
this test diagnoses previous and continuing illnesses. This test
requires a blood sample.

(V): T5 The reverse transcription loop-modified isother-
mal amplification test (RT-LAMP) is a type of reverse tran-
scription loop-modified isothermal amplification. We must

calculate the weight using an unknown weight information
approach as described in model. And then let the show
begin (wi). And let the set Ai{i = 1, 2, 3, 4, 5} be the alter-
natives. The evaluation values provided by the experts in the
form of complex hesitant fuzzy elements are presented in
Table 13.

Step 1. Since all criteria are of the benefit type, there is no
need for normalization.

Case I: When the attribute weight is completely
unknown:

Step 2. Since the attribute weight is completely unknown.
Therefore, utilizing Equation 42, we get the following
attribute weight w1 = 0.192,w2 = 0.205,w3 = 0.218,w4 =

0.190,w5 = 0.195.
Step 3. Taking CHF − PIS = {1ei2π (1), . . .} and CHF −

NIS = {0ei2π (0), . . .}, the CHF-PIS and CHF-NIS respec-
tively.

Step 4. Calculate the distance of each alternatives from
CHF−PIS andCHF−NIS by utilizing the proposed distance
measures, we get:

d+CHWNEHD1 = 0.0541, d+CHWNEHD2 = 0.0572,

d+CHWNEHD3 = 0.0487, d+CHWNEHD4 = 0.0461,

d+CHWNEHD5 = 0.0556,

d−CHWNEHD1 = 0.0452, d−CHWNEHD2 = 0.0469,

d−CHWNEHD3 = 0.0566, d−CHWNEHD4 = 0.0588,

d−CHWNEHD5 = 0.0388,

Step 5. Calculate the closeness coefficient of each alterna-
tive from CHF-PIS and CHF-NIS by utilizing Equation 45
we get: CA1 = 0.4552, CA2 = 0.4504, CA3 = 0.5378,
CA4 = 0.4393, CA5 = 0.4112.
Step 6. According to the closeness coefficient, the ranking

of alternatives is: A3 > A2 > A5 > A4 > A1. Hence, the best
alternative is A3.

Case II: When the criteria weight is partially known:
Step 2’. Suppose that the information about the criteria

weight is partially known i.e. w1 ∈ [0.15, 0.2], w2 ∈

[0.2, 0.3], w3 ∈ [0.24, 0.31], w4 ∈ [0.2, 0.32], w5 ∈

[0.2, 0.25].

max(D) = 1.0815w1 + 1.1600w2 + 1.2333w3

+1.0733w4 + 1.1058w5.

such that, CA1 = 0.4552, CA2 = 0.4504, CA3 = 0.5378,
CA4 = 0.4393, CA5 = 0.4112.
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TABLE 14. Result obtained by Generalized complex hesitant weighted normalized Hausdorff distance.

TABLE 15. Result obtained by Generalized complex hesitant weighted normalized Hybrid distance.

TABLE 16. Comparison with other CHFs distances.

By solving this model we get w1 = 0.15, w2 = 0.20,
w3 = 0.25, w4 = 0.2, w5 = 0.2.
Step 3’. This step is similar as Step 3 above.
Step 4’. Calculate the distance of each alternative from

CHF−PIS andCHF−NIS by utilizing the proposed distance
measures, we get:

d+CHWNEHD1 = 0.1205, d+CHWNEHD2 = 0.1143,

d+CHWNEHD3 = 0.0925, d+CHWNEHD4 = 0.0793,

d+CHWNEHD5 = 0.1190,

d−CHWNEHD1 = 0.0795, d−CHWNEHD2 = 0.0856,

d−CHWNEHD3 = 0.1057, d−CHWNEHD4 = 0.1207,

d−CHWNEHD5 = 0.0810,

Step 5. Calculate the closeness coefficient of each alterna-
tive from CHF-PIS and CHF-NIS by utilizing Equation 45
we get: CA1 = 0.3975, CA2 = 0.4281, CA3 = 0.5333,
CA4 = 0.3965, CA5 = 0.4050.
Step 6. According to the closeness coefficient, the ranking

of alternatives is: A3 > A2 > A5 > A4 > A1. Hence, the best
alternative is A3.
Hence, in both cases, the best alternative is A3.

A. IMPACT OF PARAMETER AND RANKING OF
ALTERNATIVES BY UTILIZING THE PROPOSED DISTANCES
As the above result is based on the parameter λ.
Tables 14 and 15 shows a more detailed overview of the
effect of the various parameters by adjusting the parameter λ.
It is seen that corresponding to λ = 1, 2, 3, the order of the
alternatives is A3 > A2 > A5 > A4 > A1.
However, from Tables 14 and 15, we see that if we increase

the value of λ, then the values of the closeness coefficient tend

to increase. But the ranking of alternatives remains the same.
Thus, for different values of parameters, the DMs can pick
the nature of the problem.

VII. COMPARISON ANALYSIS WITH EXISTING METHODS
A. COMPARISON WITH COMPLEX HESITANT FUZZY SETS
In this section, the proposed method is compared with the
existing methods in the CHFS environment [24]. Table 16
shows how the proposed complex hesitant fuzzy TOPSIS
method and the methods from [24] and [41] were used to rank
the options. From Table 16, we observe that the best alterna-
tive by using the proposed method and existing methods is
the same. The ranking of alternatives by using the CHFWA
operator [24] is A3 > A2 > A1 > A5 > A4, while using the
GCHWNHD we have A3 > A1 > A2 > A5 > A4. The best
alternative in both approaches is the same. However, based
on the CHFWA operator, the ranking order of A1 and A2 is
A2 > A1, while in the proposed approach it is A1 > A2.
The main reason is that while using the existing CHFWA
operator, we have a loss of information. In the same way,
by utilizing the CHFWG operator [24], the ranking result is
A3 > A2 > A5 > A4 > A1. The best alternative is to achieve
the same result by using GCHWNHD. However, the ranking
order of other alternatives by using the CHFWGoperator [24]
is different as compared to the proposed approach, which
is again due to the loss of information. This shows that the
developed approach is more effective in dealing with the
MCDM problem. Moreover, by utilizing CHWNHD [41],
the ranking of alternative is A3 > A2 > A5 > A4 > A1.
The best alternative is the same as what we get by using
GCHWNHD. However, the ranking order of other alterna-
tives is A2 > A5 > A4 > A1 which is different from the
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TABLE 17. Comparison with other HFs distances.

FIGURE 2. Ranking results obtained by the comparison with CHF
operators.

proposed method. The developed GCHWNHD is the gener-
alization of the existing CHWNHD measure [41]. Similarly,
the ranking of alternatives by utilizing CHWNED [41] is
A3 > A2 > A5 > A4 > A1. The best option is the
same as using the proposed GCHWNHD, but the ranking
order of the other options is different. A similar debate exists
for GCHWND [41] and GCHWNHD. From the discussion,
we conclude that the developed approach is more effective
and applicable as compared with existing methods [24], [41].
In our approach, we use the maximize deviation method in
order to find the criteria weight. Further, we utilize the GCH-
WNHD measure, which is the generalization of the existing
distances developed in [41]. It should also be noted that
the existing distances are the special cases of the proposed
GCHWNHD.

B. COMPARISON WITH HESITANT FUZZY SETS
HFS can be considered as a special case of CHFS when DMs
only consider one-dimensional information [7], [8]. For com-
parison, CHFEs can be converted to HFEs [21] by removing
the phase term from the evaluation values. The ranking result
of the proposed method and existing methods is presented
in Table 17.

According to Table 17, the ranking of alternatives by
using the HFWA operator and the HFWG operator [21] are
A3 > A2 > A5 > A4 > A1 and A3 > A2 > A4 >

A5 > A1 respectively. The best alternative is the same as
that obtained by the proposed GCHWNHD. However, the
proposed GCHWNHD deals with the CHF information while
the methods used in [21] only deal with the HF information

FIGURE 3. Ranking results obtained by the comparison with HF operators.

and not two-phase or periodic information. Therefore, the
proposed GCHWNHD gives more accurate results as com-
pared with the HFWA operator and HFWG operator [21].
Also, the ranking of alternatives by utilizing HHWNHD and
HHWNED [12] are A3 > A2 > A5 > A4 > A1 and
A3 > A2 > A5 > A4 > A1 respectively. The best alternative
is found in both the HHWNHD and HHWNED [12] as our
approach. However, HHWNHD and HHWNED [12] can be
utilize only in HFS environment and cannot deal with two
phase information. Moreover, the ranking of alternatives by
utilizing the methods developed in [13], [17], and [35] is
the same as that obtained by proposed method. The existing
methods only deal with theHF information and not two-phase
information. The main advantage of the proposed approach
is that it not only generalizes the existing approaches but also
deals with periodic or two-phase information. Consequently,
we get more accurate results by utilizing the proposedmethod
as compared with the existing approaches.

VIII. CONCLUDING REMARKS
In a range of scientific disciplines, including clustering
analysis, pattern recognition, and decision-making, distance
and similarity measurements are fundamentally significant.
To deal with complex two phase information CHFS is one
of the effective tool and is characterized by complex hesitant
fuzzy membership degree, and complex hesitant fuzzy non-
membership degree. In order to make the best decisions
possible in real-world settings, there are multiple cases where
we must quantify the uncertainty in the data. For handling

13664 VOLUME 11, 2023



M. S. A. Khan et al.: Priority Degrees and Distance Measures of CHFSs With Application to MCDM

the uncertain information that is present in our day-to-day
problems, information measures are crucial tools. Since in
literature no such distances measure were defined for CHFSs.
Therefore, in this paper, we developed priority degree and dis-
tance measures in a CHF setting based on traditional distance
measures such as Hamming distance, Euclidean distance, and
Hausdorff distance. First, a priority degree is developed and
elaborated in order to rank the CHF information. Then a vari-
ety of distances, namely CHNHHD, CHNEHD, GCHNHD,
CHHNHD, CHHNED and GCHHND are proposed to be
examined. Further, the developed distances are applied to a
medical diagnosis problem. Moreover, the TOPSIS method
was developed based on the proposed distance measures with
unknown criteria weight information. Furthermore, a numer-
ical example related to COVID-19 is presented for the appli-
cation and effectiveness of the developed approach. We also
compared the proposed method with the existing methods.
In future, we will extend the proposed work to complex intu-
itionistic hesitant fuzzy sets, complex Pythagorean hesitant
fuzzy sets, complex fermatean hesitant fuzzy sets.
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