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ABSTRACT The image caption generation algorithm necessitates the expression of image content using
accurate natural language. Given the existing encoder-decoder algorithm structure, the decoder solely
generates words one by one in a front-to-back order and is unable to analyze integral contextual information.
This paper employs a Bi-LSTM (Bi-directional Long Short-Term Memory) structure, which not only draws
on past information but also captures subsequent information, resulting in the prediction of image content
subject to the context clues. The visual information is respectively fed into the F-LSTM decoder (forward
LSTM decoder) and B-LSTM decoder (backward LSTM decoder) to extract semantic information, along
with complementing semantic output. Specifically, the subsidiary attention mechanism S-Att acts between
F-LSTM and B-LSTM, while the semantic information of B-LSTM and F-LSTM is extracted using the
attention mechanism. Meanwhile, the semantic interaction is extracted pursuant to the similarity while
aligning the hidden states, resulting in the output of the fused semantic information. We adopt a Bi-LSTM-s
model capable of extracting contextual information and realizing finer-grained image captioning effectively.
In the end, our model improved by 9.7% on the basis of the original LSTM. In addition, our model effectively
solves the problem of inconsistent semantic information in the forward and backward direction of the
simultaneous order, and gets a score of 37.5 on BLEU-4. The superiority of this approach is experimentally
demonstrated on the MSCOCO dataset.

INDEX TERMS Bi-LSTM, image caption generation, semantic fusion, semantic similarity.

I. INTRODUCTION
Image captioning [1], [2], [3], [4] serves as a complex multi-
modal scene understanding task involving two fields of study:
computer vision [5], [6] and natural language processing [7],
[8], whose purpose is to automatically generate proximate
natural language captions for the salient visual content of
input images. This task requires the model to complete the
following actions: First, the model allows for comprehending
the visual content in the image by identifying salient ele-
ments in the image with their mutual correspondence. Sec-
ond, on the basis of these visual understandings, the model
is also able to accurately describe these structured visual
information word by word using natural language. Dynamic
multi-modal analysis and reasoning are performed on the
visual content, as well as generated words in the course of
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caption word generation. At present, the image captioning
model is primarily based on the encoder-decoder [9], [10]
approach, whose model solely examines the image’s global
regionwhile generating the image caption. The encoder trans-
forms the image as the average value of global area fea-
tures, ignoring the image’s local saliency. As a consequence,
the attention mechanism [11] is applied to image captions,
the extracted visual features are normalized into a set of
weight values, and the external visual features of the encoder
are corresponding to its internal semantic features, further
improving the model’s interpretability. In recent years, visual
attention [12], [13], [14] and semantic attention [15] have
proved their superiority in this domain.

The common difficulty with most approaches lies in that
the deep neural network based on LSTM [16] simply con-
siders unidirectional data input while ignoring the impact
of the orientation of the sequence on prediction. Yet the
prediction of a sentence is supposed to be determined by
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the context, it hence is imperative to consider both prior and
subsequent moment information. To address this issue, this
paper employs the Bi-LSTM [17], [18] structure, which com-
prises two LSTM neural networks, featured by one forward
and one backward. In contrast to the traditional unidirec-
tional LSTM network [19], [20], [21], the Bi-LSTM structure
considers the inherent laws of forward with backward data
simultaneously while predicting from both the past and the
future. Besides, it employs two independent hidden layers
to respectively process the forward and backward semantic
information. Then, the forward and backward outputs are
drawn upon summation. The content is extracted from the
forward and backward LSTM. As illustrated in Fig. 1, for-
ward and backward extract semantic features about ‘‘riding’’,
‘‘wave’’, and attention mechanisms extract salient regions.

When Bi-LSTM is employed as the decoder, the image
captions generated by the forward and backward generation
approaches for the same image are prone to vary widely, and
the semantic contents of the same time step barely match.
When the current word is generated in forwarding order,
the backward generation approach fails to offer effective
context information synchronously; similarly.When it is gen-
erated in backward order, the forward generation approach
fails to provide valid context information synchronously
either. Therefore, aiming to fully utilize context information
while addressing the issue of out-of-sync between forward
and backward directions, this paper proposes the S-Att,
which employs the subsidiary attention mechanism between
F-LSTM and B-LSTM, extracting the correlation intensity of
the F-LSTM and B-LSTM semantic information. As a result,
the semantic information is aligned and output complemen-
tary. This method addresses the limitation that forward and
backward synchronization semantics are incompatible and
cannot be produced, contributing to more precise sentence
predictions.

Consequently, our final model employs the CNN-Bi-
LSTM-s encoder-decoder, as indicated in Fig. 2. CNN is
employed to extract features and attention mechanisms to
extract salient regions. Bi-LSTM is employed to extract con-
textual information, with S-Att raised to fuse semantics and
align complementary outputs.

In summary, our main contributions are shown as follows:

• We adopt Bi-LSTM as a decoder to extract different
directional features to obtain more fine-grained contex-
tual information.

• We adopt the subsidiary attention mechanism to fix
the semantic information, and align the forward and
backward hidden states through the similarity module
to improve the output accuracy.

• We fuse the features extracted by visual attention and
subsidiary attention to obtain complementary and pro-
gressively finer grained sentences.

II. RELATED WORKS
Following various generation approaches, the current major
image caption generation algorithms are split into three

types[19]: module-based matching algorithms [22], [23],
[24], migration-based algorithms [25], [26], and neural
network-based algorithms [1], [2], [11].

The module-based matching algorithm first identifies the
objects, attributes, actions, coupled with other information
present in the image using multiple classifiers, and then puts
the detected information into a manually designed sentence
module to generate image captions. Although this algorithm
is considered straightforward and intuitive, it remains diffi-
culties to recognize more sophisticated image information
and unable to generate sentences with more complicated
structures given the constraints of classifiers or sentence
modules [23].

The migration-based algorithm retrieves similar images in
the existing database and then regards the caption of the sim-
ilar image as the caption of the image to be queried. Since the
sentences in the database are entirely human-generated, the
migration-based algorithm produces grammatically correct
sentences. However, considering that the searched image and
the image to be queried are similar instead of being definitely
identical, the sentences directly generated in this casemay not
accurately describe the content of the image to be queried.

In recent years, deep neural networks have been applied
to image retrieval [27] and machine translation [28] with
success. Inspired by this trend, a variety of image caption
generation algorithms based on deep neural networks were
proposed, followed by great breakthroughs. This type of algo-
rithm extracts image features using CNN, and further decodes
image features into fluent sentences using RNN [29]. Unlike
module-based matching algorithms or migration-based algo-
rithms, the neural network-based algorithms not only elim-
inate the limitation of sentence modules, but also generate
novel sentences not available in current databases, which is
due to the characterization capabilities of CNN combined
with the efficient modeling capabilities of RNN for variable-
length sequences. In a novel parallel fusion LSTM structure
[30]. It adopts hidden states which are based on two parallel
LSTMs tomake attributes and visual image information com-
plementary and enhanced at each time step. An innovative
structure eliminates the redundancy that exists in the train-
ing set, increasing adaptive weights to increase the ability
to generalize captions [31]. A more sophisticated attention
mechanism [32] is employed to extract salient region features.
It combines sentence-level attention models with word-level
attention models to generate more accurate captions. Explor-
ing region relationships [33] implicitly explores the relation-
ship between related semantics and dynamically searches the
related visual relationships between multiple regions, making
the description of image captions more accurate. Attribute-
driven image captioning model [34], which selects a specific
area of the image and then decides which Attribute to focus
on. This improves the coverage of visual attributes. The excel-
lent performance of Bi-LSTM in machine translation makes
many tasks try to use bidirectional LSTM. In Automatic lan-
guage identification task [35], Bi-LSTM effectively extracts
‘‘future’’ speech sequences, and the effect is remarkable.
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FIGURE 1. Demonstrates the features of F-LSTM and B-LSTM extracted by the decoder. (a) is the
original image. (b) is the visual feature extracted by F-LSTM, and (c) is the visual feature extracted
by B-LSTM.

FIGURE 2. Indicates our proposed image caption attention framework. The model employs CNN as the encoder to
extract the visual area features of the image, and Bi-LSTM as the decoder to extract the hidden state hf

t−1 at the
previous moment with the hidden state hb

t+1 at the next moment. S-Att is introduced into Bi-LSTM to fuse and
complement the hidden states hf

t and hb
t , thereby making further predictions.

In the sentiment analysis task [36], Bi-LSTM can effectively
extract the context information and obtain more accurate pre-
diction results. Many studies have demonstrated that features
can be extracted efficiently using Bi-LSTM. In the implicit
discourse relation recognition task [37], the discourse argu-
ments are encoded by Bi-LSTM to preserve contextual infor-
mation, and the final result is better than the performance of
LSTM. In the event detection task [38], the algorithm adopts
the Bi-LSTM model to capture contextual information, and
the final result is better than the result of LSTM.

III. PROPOSED METHOD
A bidirectional LSTM is introduced as a decoder in the image
caption, which efficiently extracts contextual information;
meanwhile, the F-LSTM is aligned with the B-LSTM via
subsidiary attention, followed by semantic complementary
output. The following elaborates on our model, as presented
in Fig. 3. The hidden state extracted by the fixed forward
LSTM and the hidden state of the backward LSTM is seman-
tically aligned by the similarity module.

A. ENCODER-DECODER
When an image I is given, the image caption aims to gen-
erate a sentence Y = {y1, y2 . . . , yT } for describing the
image. Thus, its purpose is to maximize the probability of

FIGURE 3. The S-Att attention model, which we propose in the middle of
the bidirectional LSTM, calculates the relevance by fixing the previous
moment hf

t−1 and the next moment hb
t+1, then outputting the relevance

with the softmax function before aligning.

the formula:

θ∗ = argmax
θ

∑
(I ,y)

log p(Y |I ; θ) (1)

θ represents the image caption parameter, typically applied
in the chain rule to model the joint probabilities:

log p(Y |I ) =
T∑
t=1

log p(yt |I , y1:t−1). (2)
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We employ a unified encoder-decoder framework to generate
captions:

Encoder-CNN: The pixel value of the input image I has
been fixed, and the input image I is encoded as a spatial
vector using CNN, where V = CNN (I ) is CNN function to
obtain the spatial feature V = {v1, v2, . . . ., vz}. z represents
the number of image space regions, and vi ∈ RD denotes the
image space region.

Decoder-LSTM: The conventional recurrent neural net-
work (RNN) comes with the issue of gradient vanishing
while processing time-series tasks; thus, we adopt the long
short-termmemory (LSTM) to replace the conventional RNN
as the encoder. Compared with RNN, LSTM adds three
threshold units (input gate, forget gate, output gate) to control
the flow of data. The forget gate connects the hidden state
ht−1 of the previous moment with the input xt of the current
moment as the total input of the sigmoid activation function
to generate the forget mask ft . The product of ft and the
memory information ct−1 of the previous moment achieves
the purpose of removing the previous moment’s worthless
information. The input gate computes the output mask it
using the sameway, and employs it to filter thememory infor-
mation c̃t at the current moment. Once ct−1 and c̃t are filtered,
they are further summed to obtain comprehensive memory
information ct . The output gate computes the output mask ot
following the same way as the first two threshold units, and
the comprehensive memory information ct is multiplied with
ot after going through the tanh activation function to obtain
the hidden state ht at the current moment. The computational
procedure is as follows:

it = σ (Wixxt +Wihht−1 + bi)

ft = σ (Wfxxt +Wfhht−1 + bf )

ot = σ (Woxxt +Wohht−1 + bo)

c̃t = tanh(Wcxxt +Wchht−1 + bc)

ct = it � c̃t + ft � ct−1
ht = ot � tanh(ct ) (3)

B. VISUAL ATTENTION GUIDE
In order to make the most of semantic and visual information,
we incorporate the two using soft attention [11] in LSTM.
The primary task is to properly integrate semantic and visual
information. Second, more focus is paid to different time
steps under the two elements of information. As a result,
the visual output shifts from the same global image features
to changing image local features as each word is generated.
Attention dynamically extract the attention from images in
response to changes in the visual context. It is defined as
follows:

zit = Wz tanh(WvVi +Whht ) (4)

Wz ∈ R1×k1 , Wv ∈ Rk1×k2 and Wh ∈ Rk1×k3 represent
the trainable parameter (transition matrices), Wv is denoted
as drawing the visual feature Vi into a visual feature map.
Wh refers to plotting the semantic feature ht as a semantic

feature map.

ait = softmax(zi1, z
i
2, . . . ., z

i
t ) (5)

It is normalized via softmax, thereby generating the atten-
tion weight distribution.

V̄t =
∑
n

aitvi (6)

V̄t represents the generated visual attention feature.

C. BI-LSTM
The conventional LSTM simply predicts the output of the
nextmoment based on the temporal information of the present
moment. However, the output of the current moment is rel-
evant to both the state of the previous moment and the next
moment. Predicting the exact word in a sentence, for instance,
should be judged not only on the prior text but also on the
following content, thereby realizing proper judgments based
on context.

hft = LSTM ([xt ; Ṽt ], h
f
t−1) (7)

hbt = LSTM ([xt ; Ṽt ], hbt+1) (8)

pft (yt |y1, y2, . . . ., yt−1, I ) = softmax(hft ) (9)

pbt (yt |y1, y2, . . . ., yt−1, I ) = softmax(hbt ) (10)

The hidden state hft of the F-LSTM at time t depends on
the hidden state hft−1 and input xt of the previous moment,
while the hidden state of the B-LSTM at time t depends on
the hidden state hbt+1 and input xt at the next moment. pft and
pbt represent the word conditional probability distribution of
F-LSTM and B-LSTM at time t , respectively.

D. SUBSIDIARY ATTENTION GUIDE
The hidden state ht at time t is obtained in Bi-LSTM by sum-
ming the hft−1 and h

b
t+1; the former is obtained with F-LSTM,

while the latter is obtained with B-LSTM. F-LSTM and
B-LSTM output semantics are inconsistent and impossible to
be aligned, resulting in unsatisfactory output. Consequently,
the semantics are fixed as the F-LSTM output hidden state
hft . The fixed semantics facilitates alignment, with the subse-
quent subsidiary attentionmechanism extracting the semantic
similarity of the forward and backward LSTMs. Our semantic
similarity goal is to numerically indicate how similar hbt is to
the individual word vectors of hft . To indicate how much two
vectors point in the same direction, we take a simple inner
product of vectors, and hence utilize the inner product as the
similarity of two vectors.

zst = hft−1 · h
b
t+1 (11)

ast = softmax(zs1, z
s
2, . . . .z

s
t ) (12)

ast represents the weight of similarity degree in the forward
and backward direction at time t .

hmt = hft−1 + h
b
t+1 (13)

hnt = hft−1 + h
b
∗ (14)
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The summation of hft−1 and hbt+1 indicates that Bi-LSTM
extracts past and future information to obtain the hidden state
hmt based on visual attention; the summation of hft−1 and h

f
t−1

corresponding to each position represents the hidden state hnt
of the context aligned by a fixed position via S-Att. Then, the
final hidden state under dual attention is as follows:

ht = λhmt + (1− λ)hnt (15)

The loss function of the bidirectional LSTM includes:

L fXE (θ ) = −
T∑
t=1

log pfθ (yt |y1:t−1) (16)

LbXE (θ ) = −
T∑
t=1

log pbθ (yt |y1:t−1) (17)

L = L fXE + L
b
XE (18)

L fXE and LbXE stand for the loss functions of the F-LSTM
and B-LSTM, respectively. The conventional cross-entropy
error training strategy is employed, with L as the final loss
function. There is a distinction between training and testing
conventional image captioning models, with testing relying
on words previously generated by the model. When the pre-
ceding period’s results are incorrect, the errors would accu-
mulate and succeeding words cannot be generated correctly.
To address these issues, we approach image caption produc-
tion as a reinforcement learning problem, directly optimizing
sentence generation based on the model’s evaluation metrics,
with the ultimate goal of minimizing the following negative
expected returns:

LRL(θ ) = −EY s∼pθ [r(Y
s)] (19)

r(Y s) serves as the reward obtained via CIDEr [39], BLEU
[40] and other computing methods when the prediction is
over; besides, LSTM updates its internal hidden state atten-
tion weights and other states.

The gradient can be approximated by the following
formula:

∇θLRL(θ ) ≈ −(r(ys)− r(y∗))∇θ log pθ (ys) (20)

y∗ represents the baseline score obtained at test time with
beam search decoding.

IV. EXPERIMENTS
In order to demonstrate the effectiveness of the proposed bidi-
rectional LSTM model, we perform extensive experiments
to test the model while also comparing it with the advanced
models. The elaboratedmaterial of the experiment is included
as follows, ranging from the dataset to assessment metrics,
implementation details, and testing approach.

A. DATASET
We evaluate our model on the widely-used mscoco [41]
dataset, which acts as a large-scale dataset with diversi-
fied object identification, segmentation, and captioning; each

image is collected from daily life, making it the primary
experimental dataset for image captioning. the individual
image contains a multi-entity target with five manual labels
for labeling the caption. this dataset includes 91 targets,
328,000 images, and 2.5 million labels. the largest dataset
with semantic segmentation provides 80 categories, over
330,000 images, 200,000 of which are annotated, and over
1.5 million individuals in the entire dataset. we adopt 110,000
photos for training, 5,000 images for validation, and 5,000
images for testing [1].

B. EVALUATION METHODS
In experiments, we adopt bleu1-4 [40], meteor [42], rouge-l
[43], cider [39], and spice [3] to evaluate our model perfor-
mance metrics, which are widely used in image captioning.

C. DATA PRE-PROCESSING
In this paper, we implement a bidirectional LSTM with a
subsidiary attention mechanism. Our parameter settings and
experimental details are as followers.

First, we replace all words in the dataset with lowercase,
and truncate the sentence caption length to 16, among which
the words with a frequency of less than or equal to 5 are
deleted, and finally a word list with a number of 9500 is
obtained.

Second, we adopt the pre-trained Resnet-101 [44] to
encode the image in the encoding phase, which encodes
the image into a visual feature map of size 14 × 14 with
2048 dimensions. The visual feature map is mainly applied
to represent the fine-grained information of the image.

D. DECODING PHASE
We employ a Bi-LSTM-s structure to decode visual feature
maps into image captions with word embedding of dimension
as 512. The forward LSTM, backward LSTM, and attention
dimension are set to 512.

Finally, during the training phase, we train our model
with the Adam [45] optimizer under the cross-entropy loss.
We fine-tune Resnet-101’s last convolutional layer to adjust
the appropriate training parameters. The learning rate is 1 ×
10−5, which decreases by 0.5 every six epochs. The batch
size is set to 64, and the model is trained for 30 epochs.
Subsequently, building on the training model, we employ
reinforcement learning-based methods in order to optimize
the CIDEr assessment metrics. At this phase, the learning rate
is set to 5× 10−5, the batch size is set to 64, and the training
runs for 30 epochs. During the training phase, we evaluate
our model on the validation machine at the conclusion of each
epoch and save the model with the best current result. Then,
the next phase of training will continue on the model with
the best performance from the previous phase. In terms of
testing, we select the model with the greatest CIDEr score
on the validation set, and we utilize beam search to produce
phrases with the beam size set to 5.

If the performance fails to improve after 6 training epochs,
the training would be terminated.
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TABLE 1. Verifying the performance of optimized CIDEr and auxiliary attention mechanism using MSCOCO.

TABLE 2. Verifying the performance of Bi-LSTM and parallel double-layer LSTM using MSCOCO.

E. EXPERIMENTAL RESULTS AND ANALYSIS
We design ablation experiments to evaluate the effectiveness
of our proposed model in image captioning; all metric scores
are designed using the MSCOCO Karparthy test segmenta-
tion.

First, as shown in Table 1, the improvement brought by
CIDEr optimization is validated on our model. XE repre-
sents training under the cross-entropy loss function, and RL
indicates the result of optimizing the scoring index based on
the optimal XE training model. Second, two sets of models,
Bi-LSTM and Bi-LSTM-s, are set to verify the effective-
ness of our auxiliary attention mechanism. Bi-LSTM solely
employs the visual attention mechanism, while Bi-LSTM-
s incorporates S-Att into Bi-LSTM. The following training
results ensure that the parameters are consistent in order to
maintain fairness.

As illustrated in the table 1-5, each represents a different
ablation experiment. In Tables 1, we demonstrated that rein-
forcement learning improves significantly in image caption
tasks. In Tables 2 and 3, we proved the superiority of the
our model. In Table 4, we verified the effect of averaging
and taking the maximum input on the result when semantic
fusion occurs. In Table 5, it is the influence of different
hyperparameters on the results of the experiment.

The following evaluation criteria: B@1, B@2, B@3, B@4,
M, R, S, C, represent BLEU1-4, METEOR, ROUGE-L,
SPICE, CIDEr. BLEU: It calculates the similarity and penal-
izes sentences of insufficient length. METEOR: It focuses
on the number of co-occurrences of words and establishes
a penalty mechanism based on word order changes to get
scores. ROUGE-L: The similarity is measured by calculating
the longest common sequence between the predicted sentence
and the standard translation.

SPICE: It encodes images into objects, attributes, and rela-
tionships, and then selects the highest scoring statement based
on scene graphs. CIDEr: It calculates the similarity, which
is based on the frequency of the words.Firstly, as shown
in Table 1. The cross-entropy loss function is compared to
the optimized CIDEr score (using the CIDEr score as an
example), the CIDEr score of our Bi-LSTM model climbed

from 112.5 to 117.9 by 5.4; the CIDEr score of our Bi-
LSTM-S model climbed from 118.6 to 121.3 by 2.7, indi-
cating that the current leading methodologies come with a
significant enhancement in optimizing CIDEr on the basis of
cross-entropy error. Second, the Bi-LSTM-s improved from
112.5 to 118.6 by 6.1 in the cross-entropy loss function
experiment, and 3.4 improved from 117.9 to 121.3 in the
optimized CIDEr experiment. Thus, it reflects that our sub-
sidiary attention can efficiently extract, align, and produce
finer captions from the semantic relations of the forward
LSTM and backward LSTM.

Secondly, as shown in Table 2. Our ablation experiments
are primarily utilized to validate our model’s superiority, with
constant experimental training parameters. To be specific, p-
LSTM denotes the simultaneous superposition of two layers
of structure processing, in which the hidden state h̃1t of the
first layer of p-LSTM is learnt and h̃1t is transferred to the
second layer of LSTM; then, the input gate, forget gate, and
output gate of the second layer of LSTM will all employ h̃1t
as input. The following uncovers the final hidden state:

h̃2t = LSTM (h̃1t , h̃
2
t−1) (21)

The final hidden state at time t is derived from the
first layer’s hidden state h̃1t and the second layer’s previous
moment h̃2t−1. According to the optimized CIDEr score, the
Bi-LSTM model has improved by 10.3 points. In our model,
our hidden state computation ht is related not only to the
current input, but also to hft−1 and h

b
t+1. Bi-LSTM considers

previous and future information simultaneously; thus, it truly
achieves context-based output.

Aiming to demonstrate the superiority of our model,
we evaluate it against eight measures and six prominent
methods. As shown in Table 3. First, the foundational model
is established. The most typical model, NIC, does not include
an attention mechanism. The goal of Soft-Attention is to
introduce a soft attention mechanism into difficult tasks. The
attention mechanism is extended from spatial to channel by
SCA-CNN. SCST is the application of reinforcement learn-
ing to the optimization of sentence-level rewards. Second,
the pLSTM-A-2, DAIC and our model are improved on the
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TABLE 3. Comparison with advanced models on MSCOCO dataset.

TABLE 4. Forward and backward LSTM hidden state fusion on MSCOCO dataset.

TABLE 5. Dual attention weight coefficients.

basis of the abovemodels. pLSTM-A-2 encodes images using
two separate encoders (MIML and CNN) and simultaneously
merges the semantic information of the two decoders, result-
ing in more accurate and richer captions.

DAIC extracts the encoder’s image input to sentence-
level and word-level attention respectively, while the final
output combines sentence-level and word-level information
to generate more accurate captions. Our model employs
bidirectional LSTM as the decoder, accepts both past and
future information simultaneously, and truly achieves pre-
diction based on contextual information. It also employs
two attention mechanisms, one of which will dynamically
extract visual information accompanied by integrating visual
information with semantic information; another auxiliary
attention aligns the semantic information of the bidirec-
tional LSTM, contributing tomore diversified semantic infor-
mation. Our model has displayed significant advantages
in scoring.

As shown in Table 4. Considering the fusion of the forward
and backward hidden states: Max is the maximum value of
hft−1 and hbt+1, while Mean is the weighted sum of hft−1
and hbt+1. The data reveals that the outcome of taking the
average is slightly better. When fusing forward and backward
semantics using Max, simply considering forward or back-
ward to obtain a single result causes insufficient semantics
and the loss of partial semantics. On the other hand, using
Mean considers the shared scope of forward and backward
while retaining the original semantic information, thereby
achieving fused semantics.

As shown in Table 5. Under the combined effect of dual
attention, an oversized selection of λ results in the extrac-
tion of unaligned semantics before-and-after, worsening the
caption result. Yet, a small selection of λ leads to excessive
reliance on similarity; the prior semantics over-absorb the
following semantics, degrading the caption result.

F. VISUALIZATION
Fig. 4 depicts the visualization results, which allow us to
better represent our proposed approach, including the ground
truth. F-LSTM, B-LSTM, and Bi-LSTM-s fused with seman-
tic features based on contextual output. It also displays the
interaction among Visual-Att focusing on image key regions
and text dependencies, coupled with the extraction of key-
words using an auxiliary attention mechanism. Moreover,
a visualization is presented at the same time. All of the image
elements are derived from the MSCOCO dataset

It reveals that our model can effectively extract fine-
grained information, such as ‘‘polka dot’’, ‘‘wooden
benches’’, and ‘‘red chairs’’. F-LSTM extracts ‘‘polka dot,’’
and the semantic features are fused into Bi-LSTM. F-LSTM
extracts ‘‘wooden benches,’’ with B-LSTM extracting ‘‘red
chairs,’’ and the one is complemented with another for output.
S-Att extracts ‘‘girl’’ and ‘‘women,’’ presenting a dependency
of 0.85; then, they are fused to complement the output.
Also, ‘‘surrounded’’ and ‘‘topped’’ have a dependency of
0.62, while the two are fused to complement the output.
Fig. 5 depicts the fine-grained information extracted by our
model.We set Bi-LSTMas the control groups. The subsidiary
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FIGURE 4. Comparison with ground truth on MSCOCO.
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FIGURE 5. Supplemental experimental simulation diagrams on MSCOCO.

FIGURE 6. Supplementary experimental pictures are from real
photography.

attention mechanism effectively complements the forward
and backward output hidden states with progressive output
to obtain fuller semantics, such as ‘‘very’’, ‘‘red’’, and pre-
dicting the fine-grained information ‘‘stainless steel stove’’,
the action will be more comprehensively such as ‘‘leaning
against’’. Fig.6 shows that all the photos are taken from real
life, and our model can extract fine-grained information.

V. CONCLUSION
At present, the existing mainstream models simply take into
account the impact of the previous information on sentences.

A model Bi-LSTM-s is hence created to efficiently extract
past and future information in order to fully extract context
information. Specifically, Bi-LSTM-s encodes the sentence
context as hidden states of F-LSTM and B-LSTM, respec-
tively. After that, S-Att obtains the word similarity between
the hidden states via the attention mechanism, performing
semantic alignment, semantic complementarity, as well as
semantic fusion output. With extensive experimental analysis
achieved on the MSCOCO dataset, our model allows us
to fully extract contextual information, together with fine-
grained information. Furthermore, we demonstrate the supe-
riority of this strategy using a range of evaluation metrics.

However, bidirectional LSTM still has its limitations.
First of all, bidirectional LSTM has too many parameters,
which may lead to prediction time delay for real-time tasks.
Secondly, two basic LSTM cells still work inside the bidirec-
tional LSTM, and the GRUwith fewer parameters can be con-
sidered to replace the LSTM during training. At present, most
training features encourage the output of words with high
frequency priority, which leads to the restriction of semantic
information. The further study, we will focus on generating
different constraints to produce fine-grained semantic infor-
mation from a global perspective.
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