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ABSTRACT Biomedical image segmentation (BIS) task is challenging due to the variations in organ
types, position, shape, size, scale, orientation, and image contrast. Conventional methods lack accurate and
automated designs. Artificial intelligence (AI)-based UNet has recently dominated BIS. This is the first
review of its kind that microscopically addressed UNet types by complexity, stratification of UNet by its
components, addressing UNet in vascular vs. non-vascular framework, the key to segmentation challenge vs.
UNet-based architecture, and finally interfacing the three facets of AI, the pruning, the explainable AI (XAI),
and the AI-bias. PRISMA was used to select 267 UNet-based studies. Five classes were identified and
labeled as conventional UNet, superior UNet, attention-channel UNet, hybrid UNet, and ensemble UNet.
We discovered 81 variations of UNet by considering six kinds of components, namely encoder, decoder,
skip connection, bridge network, loss function, and their combination. Vascular vs. non-vascular UNet
architecture was compared. AP(ai)Bias 2.0-UNet was identified in these UNet classes based on (i) attributes
of UNet architecture and its performance, (ii) explainable AI (XAI), and, (iii) pruning (compression). Five
bias methods such as (i) ranking, (ii) radial, (iii) regional area, (iv) PROBAST, and (v) ROBINS-I were
applied and compared using aVenn diagram.Vascular and non-vascular UNet systems dominatedwith sUNet
classes with attention. Most of the studies suffered from a low interest in XAI and pruning strategies. None
of the UNet models qualified to be bias-free. There is a need to move from paper-to-practice paradigms for
clinical evaluation and settings.
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INDEX TERMS Image segmentation, vascular, non-vascular, UNet classes, UNet variations, UNet-components,
explainable AI, pruning, bias.

I. INTRODUCTION
Segmentation, the branch of computer vision that has shown
its variations in the form of cycles over the last 50 years [1]
from regional-based [2] to boundary-based techniques such
as parametric-based snakes [3] or geometric-based level
sets [4], and just recently in the artificial intelligence (AI)-
based framework [5], [6], [7]. It was exactly 20 years ago that
the geometric-based level set paradigm for segmentation was
introduced by Sethian and extended in medical imaging by
Suri [8], [9].

The concept of level set image segmentation was based
on the paradigm of traversing the zero-level curves using
partial differential equations (PDE) and clamping the final
boundaries at the high gradient edge points [10], [11]. Level
set-based geometric curves suffered due to initialization of
the segmentation curves which was later automated [12],
however, it still needed several speed functions or regular-
ization terms to prevent bleeding of the boundaries of the
segmented organs [13]. This bleeding was due to factors like
local noise, incomplete shape information, poor digitization
or acquisition of target organs in images, leading to lower
performance of Jaccard index or Dice similarities [14]. Thus,
there was a clear need for knowledge-based innovation.

The fundamental concept of deriving knowledge by fusing
the image features extracted from the training database and
corresponding gold standard, and later applying it in the
classification or characterization framework, was tapped by
the machine learning framework [15], [16]. A mammoth of
literature exists in various applications under the class of
computer-aided diagnosis [17], [18], [19], [20] and covers
several medical imaging modalities such as magnetic reso-
nance [21], computed tomography [22], and ultrasound [23].
Although such training models are powerful, they suffer from
(a) the ad-hoc training feature extraction and (b) training
optimization frameworks to prevent gridlock due to noise
while using gradient search for local minima [24]. Thus,
under the class of AI, machine learning (ML) transpired
for some duration, until recently, the power of automated
feature extraction for segmentation was desired in the deep
learning (DL) framework [6], [20], such as UNet [25].
A typical flowchart using UNet-based diagnosis is shown
in Figure 1. The UNet-based segmentation is designed in a
pruning paradigm (removing redundant weights during prop-
agation) and visualized using explainable AI (XAI), with per-
formance evaluated using the mean alignment index (MAI)
where expert rates the error between AI output and Ground
Turth (GT).

While UNet-based DL foundation models have been
evolving for the last five years, the concept of (i) scales,
size, shape, orientation, position, (ii) filter sizes, (iii) feature
extraction using encoders, (iv) image reconstruction using
decoders, (v) fusion of low-level and high-level features via

skip connection, (vi) dimensions of image modalities, and
finally, (iv) covering the spectrum from vascular (angiogra-
phy) to non-vascular paradigms is not well presented [26].
While there are very limited number of UNet-based review
articles, which we will discuss in the benchmarking sub-
section in discussion section, here, we present a classic
framework to better understand these black boxes, which are
adopted in a plug-and-play framework. Further, the computer
vision industry is relentlessly pursuing to cherry-pick the
hybridization process and tailor UNet components for their
niche applications. While the computer vision industry gal-
lops by wearing its own blinkers, there is a need to explore the
scientific validation paradigm using explainable AI (XAI),
which seems to be left behind. Further, these training models
can be large in storage and slow in speed, thus, demand
pruning of redundant weights. Lastly, since AI is prone to bias
due to (i) poor data collection, (ii) low performing models,
and (iii) overemphasis on the accuracy of these UNet models
by memorizing the models, the concept of generalization
needs to be revised in an ‘‘unseen AI’’ framework.

Thus, this study offers special attention to (i) showing the
variations of UNet-based DL into five innovative categories,
namely conventional UNet (cUNet), superior UNet (sUNet),
attention-channel UNet (acUNet), hybrid UNet (hUNet), and
ensemble UNet (eUNet); (ii) eight sUNet types were identi-
fied based on scale, parallel connection, cascade connections,
integration of probability maps, role of residual models, role
of feedback systems, context derivation, high-dimensional
inputs, and finally loss function designs; (iii) understanding
the 81 variations in UNets due to six types of variations in
fundamental cUNet due to changes in encoder, decoder, skip
connection, bridge network, and loss function; (iv) role of
UNet in vascular vs. non-vascular segmentation paradigms in
medical imaging: its architectural characteristics, difference,
and similarities; (v) introducing ‘‘key for segmentation chal-
lenges and corresponding architecture solutions’’; (vi) scien-
tific validation using XAI; (vii) pruning paradigm to reduce
the storage sizes and to improve speed; (viii) biases in UNet-
basedDL architectures; and finally, (ix) the recommendations
ensuring the mapping between the segmentation type and
UNet variations.

The hypothesis of this study states that the variations in the
UNet, such as an encoder, decoder, skip connection, bridge
network, loss function design, or input to the UNet, itself
shall improve the performance of the UNet-based segmen-
tation system. The performance can be in the form of speed,
accuracy, receiver operating curves (ROC), or performance
matrices. Such a variational UNet system can lead to better
design towards XAI, bias, and possible new innovations in
compressing the model size. This is the first study of its
kind, which has spearheaded the understanding of these con-
cepts by expanding the experienced wings of authors while
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FIGURE 1. Flow diagram of UNet-based segmentation process. The pipeline consists of acquisition, segmentation via pruning trained models, XAI,
and MAI.

demonstrating the architectural variations for vascular and
non-vascular applications for the healthcare industry.

II. SEARCH STRATEGY AND STATISTICAL DISTRIBUTION
The statistical distribution of the literature is necessary to
understand the types of UNet in vascular and non-vascular
paradigm distributions, understanding the variations in the
components of UNet, participation of the feature extrac-
tion methods, types of performance parameters, and their
frequency in the selected studies, pruning models for stor-
age reduction, XAI techniques for UNet, and bias in the
AI-based solutions. Thus, we adapt the PRISMA model
for the selection of the studies for the UNet, XAI, prun-
ing, and bias assessment [27], [28], [29], [30], [31], [32],
[33], [34]. Therefore, this section is therefore divided into
two parts: section II.A discusses the study selection criteria
and section II.B presents the statistical distributions.

A. PRISMA MODEL
The selection and searching of the studies for this review
were conducted using the PRISMA model. The keywords
used for the search were ‘‘UNet for vascular studies’’,
‘‘UNet for non-vascular studies’’, ‘‘UNet variations for seg-
mentation’’, ‘‘UNet-based segmentation’’, ‘‘UNet-based seg-
mentation of coronary artery using IVUS’’, ‘‘UNet-based
segmentation of carotid artery’’, ‘‘UNet-based segmenta-
tion of aorta or aortic artery’’, ‘‘UNet-based segmentation
of peripheral artery’’, ‘‘UNet-based segmentation of reti-
nal scans or fundus images’’, ‘‘UNet-based segmentation
of brachial images’’, ‘‘UNet-based segmentation of brain,
liver, kidney, knee, prostate, COVID-19 lesions’’, ‘‘AI-Bias
in UNet’’, ‘‘Pruning methods for UNet’’, ‘‘Storage size of
UNet-based’’, ‘‘Explainable-AI for UNet-based segmenta-
tion methods’’ and combination of these. The different search
platforms used were Science Direct, IEEE Xplore, PubMed,
and Google Scholar. The PRISMA flow chart for selected
studies is shown in Figure 2. An exhaustive search resulted in

a total of 2,672 studies. The three criteria used for exclusion
were (a) non-relevant studies (b) articles removed after search
and screening of the studies (c) records rejected due to insuffi-
cient data. The implementation of exclusion criteria provided
2,307, 88, and 10 studies for exclusion, shown by E1, E2, and
E3 (Figure 2). The important scientific knowledge from these
final studies was gained, and the statistical classification was
drawn. The architecture, their features, UNet classification,
bias estimation, explainable AI, and pruning were used to do
the analysis [35].

FIGURE 2. PRISMA model for selection of the UNet-based CVD studies.

B. STATISTICAL DISTRIBUTION
The statistical distribution was done to analyze the aspect
or feature of UNet-based DL systems. The distribution was
done for the publication per year (Figure 3 (a)), field of
view or application (Figure 3 (b)), UNet types used among
the systems (Figure 3 (c)), and performance parameter used
(Figure 3 (d)) vascular vs. non-vascular (Figure 3 (e)), and
UNet variation types (Figure 3 (f)).
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III. STRATIFICATION OF UNET ARCHITECTURES
A. BASIC UNET ARCHITECTURE AND ITS COMPONENTS
UNet-based DL has recently dominated the medical image
segmentation industry in nearly all body imaging modali-
ties, harnessing the power of automated feature extraction
and reconstruction of desired shapes. It was in 2015 when
Ronneberger et al. [25] first introduced UNet as a way
of image segmentation for benchmarking against standard
conventional segmentation approaches. This UNet architec-
ture is shown in Figure 4. The main components of UNet
architecture are encoders, decoders, bridge network, skip
connection, loss function criteria, and the process of binary
conversion (so-called softmax layer). This historical innova-
tion of down-convolution, and up-convolution, when com-
bined with the ability to pick the highest-level relevant
information or features, so-calledmax pooling, added the fuel
to the fire towards the process of automated feature extraction
[25]. The ability to transfer the feature information from
the encoder to decoder phases of the UNet-based DL model
retains the desired features during the shape reconstruction
(decoder phase). In contrast to level set-based geometric
curves, UNet-based DL does not need manual placement of
the initial curves. However, it requires the gold standard for
training of the UNet-based DL models. Thus, it is supervised
UNet in nature, which is the focus of this study. It was
only a minor improvement in image segmentation, but it has
now dominated the computer vision, image processing, and
artificial intelligence industries.

FIGURE 3. Statistical distribution (a) number of UNet publications per
year; (b) distribution based on field of view or applications; (c) five types
of UNet; (d) performance evaluation parameter of UNet evaluation;
(e) vascular vs. non-vascular; and (f) UNet variation types.

B. FIVE TYPES OF UNET AND THEIR ATTRIBUTES
The dominance of UNet for segmentation is in its infancy
stage, and it is vital to grasp its power of expansion now

FIGURE 4. Basic UNet architecture showing encoder, decoder, bridge
network, and skip connection. Encoder layers (contraction phase): feature
extraction, and Decoder layers (expansion phase): shape reconstruction.

to understand the engraving application path in computer
vision industry. Based on the UNet’s complexity and supe-
riority evolution, we have classified the UNet series for seg-
mentation application into five major classes and attempted
the first time, dubbed cUNet, sUNet, acUNet, hUNet, and
eUNet. Table 1 shows the comparison these five types of UNet
classes having seven cluster of attributes, labeled as (i) C1:
demographics, risk factors, and field-of-view, (ii) C2: UNet
architecture components, (iii) C3: number of UNet types on
each of the five classes, (iv) C4: UNet performance, (v) C5:
statistical tests, (vi) C6: benchmarking, and (vii) C7: clinical
analysis. Note that, even though all attributes of the UNet
classes are important, however, UNet types in each class
(labelled as column UT) is vital to understand since it talks
about the growth or evolution of UNet enveloping image
processing and computer vision industry. Following are the
major and interesting inferences derived from the Table 1:
(i) acUNet used all kinds of medical imaging modalities
such as MRI, CT, X-ray, and US; (ii) cUNet, acUNET, and
sUNet were mainly implemented covering the field of view
(FoV) of immunology, pulmonary affected by COVID-19
[36], odontology (dental), and Angiography such as carotid,
and neurology (brain). Since COVID-19 is a still a major
health crisis [36], [37], [38], [39], [40], [41], so cUNet was
first adopted in this framework. The same reason holds for
the pulmonary FoV; (iii) All UNet classes had four to five
layers, expect sUNet that had up to a maximum of 13 layers
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54]. Note that as the number of layers increase, the
DL system becomes more complex; (iv) Cross-Entropy (CE)
loss function was most common or popular in all the five
types of UNet [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60],
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TABLE 1. Comparison of five types of UNet (cUNet, sUNet, acUNet, hUNet, and eUNet) using seven clusters. (C1, C2, C3, C4, C5, C6, and C7.)

[61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71],
[72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82],
[83], [84], [85], [86], [87], [89], [90], [91], [92], [93], [94],
[95], [96], [97], [98], [99], [100], [101], [102], [103], [104],
[105], [106], [107], [108], [109], [110], [111], [112], [113],
[114], [115], [116], [117], [118], [119], [120], [121], [122],
[123], [124], [125], [126], [127], [128], [129], [130], [131],
[132], [133], [134], [135], [136], [137], [138], [139], [140],
[141], [142], [143], [144], [145], [146], [147], [148], while,
Dice loss function was also part of cUNet and sUNet classes
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63],
[64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74],
[75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85],
[86], [87], [89], [90], [91], [92], [93], [94], [95], [96], [97],
[98], [99], [100], [101], [102], [103], [104], [105], [106],
[107], [108], [109], [110], [111], [112], [113], [114], [115],
[116], [117], [118], [119], [120], [121], [122], [123], [124];
(v) sUNet and acUNet were the two sets of classes which
embracedmulticenter studies [49], [55], [56], [57], [58], [59],
[60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70],
[71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81],
[82], [83], [84], [85], [86], [87], [89], [90], [91], [92], [93],
[94], [95], [96], [97], [98], [99], [100], [101], [102], [103],
[104], [105], [106], [107], [108], [109], [110], [111], [112],
[113], [114], [115], [116], [117], [118], [119], [120], [121],
[122], [123], [124], [125], [126], [127], [128], [129], [130],
[131], [132], [133], [134], [135], [136], [137], [138], [139],
[140]. One reason could be the larger data set prompted
for superior UNet designs. Lastly, note that since sUNet
provides an easy pathway for variations, it was, therefore
the most dominant of all the UNet types [49], [55], [56],
[57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67],
[68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78],
[79], [80], [81], [82], [83], [84], [85], [86], [87], [89], [90],
[91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101],
[102], [103], [104], [105], [106], [107], [108], [109], [110],
[111], [112], [113], [114], [115], [116], [117], [118], [119],
[120], [121], [122], [123], [124]. We therefore have pro-
vided an exclusive study on the comparison of sUNet types
ahead.

C. SUPERIOR UNET TYPES – A SPECIAL NOTE
The most well adapted UNet observed in our study was
sUNet, which had evolved from cUNet by adding the vari-
ations in them. These sUNet had evolved based on the
applications of the individual studies. We have taken spe-
cial care by categorizing the sUNet into eight distinct types,
that integrates concepts such as (i) scales (sUNet.Scale)
[57], (ii) parallel connection of convolutions (sUNet.Par)
[57], (iii) cascading (or tandem connection) of convolutions
(sUNet.Cascade) [60], (iv) integration of probability maps
for boundary extraction (sUNet.Bndy) [65], (v) tailoring of
fundamental cUNet by residual network (ResNet) models
(sUNet.Res) [59], [70], [75], [76], (vi) introducing feed-
back system to improve cUNet performance (sUNet.Feed)
[58] (vii) deriving the contextual encoder network infor-
mation during the down sampling process (sUNet.Context)
[74], (viii) change in dimensionality from 2-D to 3-D
(sUNet.Dim) [59], [60], and (ix) adjustment in the loss func-
tion upgrades while up sampling during the reconstruction
process (sUNet.Loss) [76]. The components of UNet that
were changed are encoder (E), decoder (D), skip connection
(SC), bridge network (BgN), and the loss function (LF).
The sUNet tree with variations in E, D, SC, BgN building
blocks were displayed in the Table 2 keeping vascular and
non-vascular frameworks. As for the sUNet, the maximum
variation is in the encoder (E) component for both vascular
and non-vascular. A more detailed analysis for vascular vs.
non-vascular will be presented in section VI.

IV. ANALYZING UNET COMPONENTS:
A MICROSCOPIC LOOK
It is vital to understand the ‘‘components of the UNet archi-
tecture’’ which are responsible for processing the image data
for the objective either in (i) segmentation (S) of medical
organs or (ii) joint segmentation and classification (JSC) of
the disease. Each of the components of the UNet architecture
has a unique role in handling the complex nature of the image
data. These UNet components are either used independently
or jointly to effectively meet the objectives. Thus, we have
now divided the UNet architecture into six types compo-
nents variations, namely, (i) encoder; (ii) decoder; (iii) skip
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connection; (iv) bridge network; (v) incorporating; (vi) loss
functionality, and miscellaneous UNet design. These compo-
nents are used in its entirety or the alterations in UNet that are
categorized by changing the components of UNet, and hence
classified as miscellaneous. Note that each of the components
has its own function to handle shape, position, size, and scale
of image objects in the image domain. Table 3 presents the in-
depth coverage of the variations for each of the components
of the UNet which are now discussed below.

A. ENCODER VARIATIONS
To begin with, the encoder is the most adapted and most
changeable component of the UNet architecture. Since it is
practically not possible to study each of the architectural
variations in the encoder, we have therefore listed here the
23 variations (E1 to E23, representing encoder changes)
along with their references in a tabular format and it is as
follows: (E1) conventional system (Ronneberger) [43], [44],
[45], [46], [47], [48], [49], [50], [51], [52], [90]; (E2) cascade
of convolutions [77], [91], [99], [116], [117]; (E3) parallel
convolutions (multiple convolution network) [57]; (E4) con-
volution with dropout [70], [76], [86], [95], [101], [102],
[134], [138]; (E5) Residual network [76], [78], [105], [129],
[135], [138], [149], [150], [151]; (E6) Xception encoder [56],
[88], [112]; (E7) encoder layers with independent inputs
[104, 140]; (E8) squeeze excitation (SE) network [92], [103],
[138]; (E9) pooling types (max pooling, global average pool-
ing) [95]; (E10) input image dimension change with changing
filter (channels) [47], [74], [79], [99], [136], [152];

(E11) input image dimension 2D to 3D [59, 62, 81, 100,
141]; (E12) cascaded UNets where encoder of second UNet
becomes input from the first decoder [123]; (E13) combi-
nation of exponential ReLU in encoder [89]; (E14) dilated
convolution and activation function [67], [76]; (E15) Dense
layer [68], [87], [91], [100], [102], [114], [122], [142]; (E16)
boundary refinement [65]; (E17) batch normalization [95],
[106], [125], [137], [155]; (E18) patch convolution and trans-
former [66], [94], [100], [105]; (E19) UNet++ type encoder
change [144]; (E20) addition of original image to each layer
[100]; (E21) Inception block [97], [102]; (E22) Ghost [118];
(E23) VGG16 [156]. A set of representative examples will be
discussed in section 5.

B. DECODER VARIATIONS
Decoder plays a critical role in UNet design since it carries
the outflow of the captured features from encoder, while
retaining the image size using bilinear interpolation. The
task of decoder is to ensure that the number of iterations
per epoch are smoothly conducted using the designed loss
function. Note that the decoder receives input in many differ-
ent ways, such as encoder, skip connection or data after data
transmission via bridge network (or bottle neck). Using these
fundamental changes, the decoder variations can be catego-
rized into 16 different type listed as follows: (D1) convolution

TABLE 2. sUNet Tree with variations in E, D, B building blocks.
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with dropout [70, [76], [86], [95], [101], [102], [134], [138];
(D2) UNet++ type of change [130], [144], [154];
(D3) UNet+ + + (UNet 3+) Full scale deep supervision
[157]; (D4) Output from decoders to make a loss function
[104], [140]; (D5) fusion of the decoder outputs for scale
adjustment [59, 107]; (D6) recurrent residual [118], [129],
[138]; (D7) residual block [75], [84], [88], [105], [138],
[150]; (D8) channel attention and scale attention block [65],
[113]; (D9) transpose convolution [66], [88], [94], [95],
[139]; (D10) squeeze excitation (SE) Network [103], [125];
(D11) cascade convolution [99]; (D12) addition of original
image to each layer [100]; (D13) batch normalization [95],
[106], [155]; (D14) inception block [97]; (D15) dense layer
[87], [91], [122]; and (D16) convolution with feature maps
[111], [115], [158]. A set of representative examples will be
discussed in section VI.

C. SKIP CONNECTION AND ITS VARIATIONS
The skip connection is one of the most important components
of the UNet architecture. This is primarily due to the transfer
of image features from article encoder to decoder. The skip
connection has taken many kinds of advances during the evo-
lution of UNet architecture.We have categorized the variation
in the skip connection of theUNet architecture by considering
nine new variations shown in Table 3, namely (S1) direct skip
without any addition [44], [46], [51], [76]; (S2) UNet++with
middle neurons are supported by the encoder layers [130],
[144], [154]; (S3) UNet+ + + (UNet 3+) skip connection
with full scale [157]; (S4) addition of long short-term mem-
ory network (LSTM) [159], recurrent neural network (RNN)
[109], generative adversarial network (GAN), bidirectional
long short-term memory network (BiLSTM), bidirectional
recurrent neural network (BiRNN), bidirectional generative
adversial network (BiGAN) [74], [160]; (S5) skip connection
between two cascaded UNet where skip of one is connected
with skip of second and output of UNet first decoder goes in
the skip of second UNet [81]; (S6) skip of first UNet into the
skip of second UNet [89]; (S7) addition of the channel atten-
tion to improve the feature extraction along with atrous dense
convolution block [65], [66], [71], [75], [82], [113], [119],
[125], [126], [128], [129], [131], [132], [133], [134], [135],
[139], [161]; (S8) squeeze-excitation (SE) network [125],
[133]; and (S9) Res skip [150]. The skip connection offers
the ability to interface the powerful classification paradigms
such as LSTM, RNN, and GAN. It is during the skip connec-
tion framework that the concatenation phenomenon allows
to interface the feature from the encoder along with bilinear
interpolation of the previous layers. It has been observed
that output of the skip connection leads to a loss function
application.

D. BRIDGE NETWORK AND ITS VARIATIONS
The contextual to semantic features are passed ultimately
through the bridge network. Fundamentally, the bridge net-
work is nothing but a cascade of convolution. We have fun-
damentally categorized the batch normalization into twelve

types of variation, namely, (B1) serial cascades of convo-
lutions [95]; (B2) convolutions with dropouts [102], [134];
(B3) dropout in bridge network [80], [134], [138]; (B4) cas-
cade of convolutions in serial and parallel (DAC and RMP
blocks) [108], [153]; (B5) bridge normalization [61], [95];
(B6) flatten block [69]; (B7) atrous spatial pyramid pooling
[135]; (B8) transpose convolution [137]; (B9) patch con-
volution and transformer [66]; (B10) inception block [97];
(B11) dense layer [114], [122]; and (B12) quartent atten-
tion [82]. A set of representative examples will be discussed
in section VI.

E. MISCELLANEOUS VARIATIONS IN UNET BY
EXTERNAL ADDITIONS
The UNet architecture has been modified in some way which
does not correspond to any of the above-mentioned main
components. By improving the quality of feature extraction,
these provide better results in image segmentation and classi-
fication. We have identified 19 such modifications and cate-
gorized them as miscellaneous UNet. Themodifications were
namely, (M1) UNet combined with CNN for feature extrac-
tion and Random Forest for ML classification [63], [124];
UNet-based lung segmentation + feature extraction using
high resolution network (HRNet) + FCN (Softmax) [55],
[63]; (M2) changes after the last decoder with Conv [54],
[162]; (M3) cascade of two plain UNet for segmentation [53],
[72], [73], [93], [148]; (M4) cascade of two 3D UNet [42],
[53], [96], [114], [141]; (M5) patch input to the conventional
CNN [98], [105], [121]; (M6) feedback system to improve
the training [58]; (M7) fusion of parametric (active contour
model) curves with UNet for COVID-19 lesion segmentation
[60]; (M8) combination of different application [146], [151];
(M9) fusion of different classifiers [145]; (M10) linear com-
bination [147]; (M11) UNet training model [64]; (M12) com-
bination of fully convolutional net (FCN) and UNet [143];
(M13) hierarchically-fused multi-task learning (MTL) [83];
(M14) ZNet [85]; (M15) BRAVE-Net [110]; (M16) DilUNet
[115]; (M17) T-Net [117]; (M18) RFARN [119]; and (M19)
CondenseUNet [163]. A set of representative examples will
be discussed in section VI.

F. LOSS FUNCTION VARIATIONS FOR UNET DEEP
LEARNING MODELS
The loss function identified were of two types: (L1) fusion of
cross-entropy (CE) and Dice similarity (DS) [56], [68], [69],
[70], [74], [75], [79], [130], [145]; (L2) CE using the output
of decoders [59], [104], [107], [110], [140], [152].

The loss function can bemathematically described as given
in Eq. 1 if αBCE represented the BCE-loss function, ai repre-
sented the classifier’s probability utilized in the AI model, xi
represented the input gold standard label 1, (1-xi) represented
the gold standard label 0.

αCE = −[(x i × logai)+ (1− xi)× log(1− ai)] (1)

Here × represents the product of the two terms. The dice
loss is named after the Dice-Sørensen coefficient, a statistic
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developed in the 1940s to evaluate the similarity between two
samples. When X is the input image and Y is the target or
ground truth image, theDice loss employed in thismanuscript
can be represented as given in Eq. 2.

DiceLoss = 1−
2 |X ∩ Y |
|X | + |Y |

(2)

G. UNDERSTANDING MAJOR BLOCKS AFFECTING FOR
UNET MODIFICATION
The different fundamental blocks which were adapted for
UNet modification were (Table 4): (1) residual block [75],
[76], [78], [84], [88], [105], [129], [135], [138]; (2) classifier
in encoder [145]; (3) Xception block [56], [88]; (4) dense
layer block [68], [100], [102], [122], [142]; (5) recurrent
residual block; (6) attention block [65], [66], [71], [75], [113],
[125], [128], [129], [131], [132], [133], [134], [135], [139],
[161]; (7) dropout layer [70], [76], [86], [95], [101], [102],
[134], [138]; (8) dilated convolution [67], [76]; (9) transpose
convolution [66], [88], [95], [137], [139]; (10) SE network
[92], [103], [125], [133], [138], and (11) squeeze and excita-
tion block [92], [103], [125], [133], [138].

The residual block (Figure 5 (a)) mainly consists of pile
weight layers in which the convolution result of a layer was
taken and summed to another deeper layer in the block.
It provides a better feature extraction from the input images.
The addition of classifiers in the encoder layer is a kind
of modification. The different classifiers used were LSTM,
GAN, RNN, bidirectional LSTM, and bidirectional RNN.
Figure 5 (b) shows the LSTM block, which helps in dealing
with the vanishing gradient problems that were encountered
due to traditional RNN. Xception is a profound convolutional
brain network engineering that includes depth-wise separable
convolutions. It does not create any non-linearity and also
provides better segmentation results. A translation of Xcep-
tion modules (Figure 5 (c)) was introduced in convolutional
brain networks just like an intermediate step in-between cus-
tomary convolution and the depth-wise divisible convolution
activity (a depth-wise convolution followed by a point-wise
convolution). The dense layer block (Figure 5 (d)) for bet-
ter feature extraction with feature map, batch normalization
(BN), ReLU, and transition layer in it is another modification.
It improves the parameter efficiency and easy to train.

The recurrent residual block addition is the next type of
modification. It is used for generating the final output by
combining the original input and output from second recur-
rent unit [129], [138]. It is added to obtain a better result
for feature extraction (see Figure 6. (a)). The attention block
addition is the change or modification to the UNet architec-
ture [65], [66], [71], [75], [113], [125], [128], [129], [131],
[132], [133], [134] [135], [139], [161] (Figure 6. (b)). The
attention is of two types, namely, channel attention and spatial
attention. It is added in the skip connection and sometimes in
the encoder.

It is to handle the change in (a) position, (b) shape, (c) size,
(c) scale, and (d) contrast in image segmentation. Dropout

FIGURE 5. (a) Residual block [75], [76], [78], [84], [88], [105], [129], [135],
[138] Copyright 
 2018, IEEE; (b) Classifier in encoder [145]; (c) Xception
block [56], [88] [112] Copyright 
 2020, IEEE; and (d) Dense layer block
[68], [100], [102], [122], [142]. (This figure was published in ‘‘Dilated
densely connected U-Net with uncertainty focus loss for 3D ABUS mass
segmentation., Cao, Xuyang, et al.’’ Computer Methods and Programs in
Biomedicine 209 (2021): 106313.)

layer addition to theUNet architecture is for further extraction
by the mechanisms of dropping out the external noises from
the features and enhancing the feature (Figure 6. (c)). The
dilated convolution is done by expanding the kernel (input)
through the process of insertion of holes in-between each
element [67], [76] (Figure 6. (d)). It is the process of skip-
ping pixel to accommodate a larger area for segmentation.
It generally gets added to the encoder and decoder layers of
the UNet architecture [113].

The Inception block being another kind of modification
for UNet architecture that contains various convolutional
and pooling layers stacked together thereby improving the
results and diminishing calculation costs [164]. Initiation
networks have improved gradually with more up-to-date and
fresher variants and have outperformed different structure
(Figure 7 (a)). The other modification is the transpose con-
volution [46], [64], [71], [113], [115], which is opposite of
the convolution.

In the convolutional layer, a special operation named cross-
correlation is used to obtain the output values, while for the
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TABLE 3. UNet components and its variations.
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TABLE 3. (Continued.) UNet components and its variations.

FIGURE 6. (a) Recurrent residual block [129], [138]; (b) Attention block
[65], [66], [71], [75], [113], [125], [128], [129], [131], [132], [133], [134],
[135], [139], [161]; (c) Dropout layer [70], [76], [86], [95], [101], [102], [134],
[138]; (d) Dilated convolution [67], [76]. (This figure was published in
Lung computed tomography image segmentation based on U-Net
network fused with dilated convolution, Chen, K.B., et al., 2021. Computer
Methods and Programs in Biomedicine, 207, p.106170.)

transpose convolution, the process operates in the reverse
way (Figure 7 (b)). The block 2 represents the transpose
convolution block which was applied three times by taking
the output from block 1. It offers better segmentation results.

V. ADVANCED UNET TYPES
Due to challenges in the time complexity and large num-
ber of parameters in deep learning models, there has been
recent advances which addresses these issues. We have char-
acterized them as ‘‘advanced UNet types’’. The three most
important advanced UNets which is prominently dominated
the UNet industry are Half-UNet, AM-UNet, and Efficient-
UNet discussed in V.A, V.B, and V.C, respectively.

A. HALF-UNET
Half-UNet was invented by Lu et al. [165] which was flushed
with three kid innovations, all geared towards a common

TABLE 4. Blocks adapted for UNet modification.

spirit of reducing complexity while retaining the perfor-
mance of the feature extraction compared to original UNet.
These three ideas were conceptually labeled as (i) unifi-
cation of channels i.e., number of channels in each layer
should be same. Further, removal of the decoders to a single
bar decoder i.e., optimization of the architecture ensuring
performance approximately equivalent to cUNet; (ii) full-
scale feature fusion that consists of different scaled features
maps obtained from contractual path (encoders), which was
fused using an ‘‘addition operation’’ after upsampling, and
(iii) Ghost model for reduction in complexity of convolu-
tion. The spirit of unification of channel was felt after looking
at the complexity of UNet, UNet3+models. In these models,
the number of channels were doubled after every down-
sampling step. In UNet3+, because of an unequal number
of channels 3 × 3 convolution operation is added after every
max pool operation to unify the channel numbers, hence
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FIGURE 7. (a) Inception block [97], [102]. (b) Transpose convolution block
[66], [88], [95], [137], [139]. (This figure was published in A new deep
learning method for blood vessel segmentation in retinal images based
on convolutional kernels and modified U-Net model, Gegundez-Arias
et al., Computer Methods Programs in Biomedicine, 2021. 205: p. 106081.)

increasing the required number of parameters and Floating-
Point Operations per Second (FLOPs). On the contrary,
in Half-UNet, the number of the channel of all feature maps
is unified, which reduces the number of filters in the convolu-
tion operation and contributes feature fusion on the decoder.
This is because the decoder does not need 3× 3 convolution.
This can be seen in Figure 8, where the decoder layers are
removed by a single stacked decoder, which received the
input from the bottleneck and subsequently inputs via skip
connection. This reduces the complexity in Half-UNet. The
second important feature of Half-UNet was the Full-Scale

FIGURE 8. Full-scale aggregated feature map of 3rd decoder layer –
concept used in the design of Half UNet [165].

Feature Fusion. Note that in the original UNet and UNet3+
use concatenation operation for feature fusion. Concatenation
operation is a great choice as it provides better results but
it also takes more memory and time and hence complexity
increases. He et al. [166] proposed a ResNet, which uses
addition operation as a feature fusion method. In this oper-
ation, the authors perform identity mapping and add their
outputs to the outputs of the stacked layer. This operation
does not increase the dimension of an image but increases
the information for each dimension. This operation does not
increase the number of parameters, as a result, does not
increase complexity. This concept is used in Half-UNet and
is shown in Figure 9. It shows the ⊕ sign which signifies
the merger of the skip connections and fused in a single
decoder. The third architectural feature of Half-UNet was
Ghost Module design (Figure 10 (a) and Figure 10 (b)).
The whole idea behind this was the reduction of convolution
complexity (Figure 10(a)). We already know that deep con-
volutional neural networks [166], [167], [168] often consist
of many convolutions that results in massive computational
costs. Although recent works such as MobileNet [169], [170]
and ShuffleNet [171] have introduced depth-wise convolu-
tion or shuffle operation to build efficient CNNs using smaller
convolution filters (floating number operations), the remain-
ing 1× 1 convolution layers would still occupy considerable
memory and FLOPs. The idea behind the Ghost module is
to generate more feature maps while using cheap operations,
i.e., a smaller number of operations. The parameters and
FLOPs can be calculated during convolution operation:

params =
(
k2 ∗ Cin+ 1

)
∗ Cout (3)

FLOPS = 2 ∗ k2 ∗ Cin ∗ Cout ∗ Hout ∗Wout (4)

where k is kernel size, Cin is input size, Cout is output
size, Hout is the height of the output maps and Wout is the
width of output maps, and ∗ represents the arithmetic product.
Han et al. [172] proposed a Ghost module to generate more
feature maps while using cheap operations. In Ghost mod-
ule (s = 2, s represents the reciprocal of the proportion of
intrinsic feature map), half of the feature map is generated
by convolution operation and the other half of the feature
map is generated by depth-wise separable convolution and
finally concatenated to form the output of the same dimension
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FIGURE 9. Half-UNet architecture [165].

FIGURE 10. (a) Convolution module; (b) Ghost module [172].

as input.

params =
(
k2 ∗ (Cin+ 1)+ 2

)
∗
Cout
2

(5)

FLOPS = 2 ∗ k2 ∗ (Cin+ 1) ∗
Cout
2
∗ Hout ∗Wout (6)

For example, if the image size is 128 × 128, 3 × 3 convo-
lution, and both input and output channels are 64 then the
required number of parameters and FLOPS is 36.92K and
12.08G while using the Ghost module required a number of
parameters and FLOPS are 18.78K and 0.61G only. There-
fore, the Ghost module is used in Half-UNet.
Advantage and Application of Half-UNet: We already

know from previous discussions that the variants of UNet
showed to improve model performance without affecting
the U-shape model architecture. In Half-UNet, the encoder
and decoder are simplified. Half-UNet took advantage of
the unification of channel numbers, full-scale feature fusion,
and Ghost module. Authors compared the results of Half-
UNet with UNet and its variants and obtained similar seg-
mentation accuracy results but parameters and FLOPS were
reduced by 98.6% and 81.8% respectively as compared to
UNet. The authors compared the results of Half-UNet with

FIGURE 11. AM-UNet [173]. (Reproduced with permission.)

UNet and its variants across different medical image seg-
mentation like mammography segmentation (non-vascular),
lung nodule segmentation in computed tomography image
(non-vascular), and left ventricle MRI image segmentation
(non-vascular).

B. AM-UNET
This class of advanced UNet was again to simply the com-
plexity of UNet paradigm. AM-UNet is a lightweight and
scalable solution that has achieved state-of-art accuracy.
It reduces the complexity, time required for segmentation.
Albishri et al. [173], [174] proposed an automatic optimized
UNet-based 3D segmentation model named as automated
mini-UNet (AM-UNet), Figure 11, designed as an end-to-
end process for human brain claustrum (CL) segmentation.
AM-UNet was adapted for CL segmentation since it was
challenging due to its thin, sheet-like structure, heterogeneity
of its image modalities and formats, imperfect labels, and
data imbalance. In AM-UNet authors reduced the model
size to half by removing the last two layers of the original
UNet (five vs. three) and expanding the bottleneck layer
of the segmentation model (Figure 11). The system con-
sisted of three steps: preprocessing, segmentation, and post-
processing. In preprocessing step, the 3D-MRI volumes are
converted into a series of 2D slices, and regions-of-interest
is created. In the second step, the preprocessing of region-
of-interest selection is done from the 2D selected slices and
segmentation of CL was conducted. In the third step data
augmentation and normalization are applied to images to 3-D
reconstruct. The postprocessing step was used to ensure high
prediction accuracy for 3D claustrum segmentation.
Applications: The authors have predicted that AM-UNet

is very useful in vascular i.e., for the brain, cardiology, and
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non-vascular i.e. for lung, liver, and kidney medical image
segmentation because it is capable to segment the image even
if it is very thin, heterogeneous in nature, imperfect labels,
and data imbalance.

C. EFFICIENT-UNET
Another advanced UNet where encoders were drastically
altered to improve the computation burden was Efficient
(Eff)-UNet. The birth of this innovation came from the spirit
that when the Indian road and driving environment conditions
are not structured, then such segmentation paradigms are
well suited. They are far superior to semantic scenes using
conventional models of DL and CNN.

It was Baheti et al. [175] who proposed an architecture
called Efficient (Eff)-UNet that combined the compound
scaled Eff-Net as the encoder for feature extraction and
decoder having same function as original cUNet for recon-
structing the fine-grained segmentation map. The combina-
tion between the high-level feature information as well as
low-level spatial information was important for the precise
segmentation.

Tan et al. [176] proposed a novel compound scalingmethod
that uniformly scales the network depth, width, and resolution
for improved performance based on a fixed set of scaling fac-
tors. A new architecture called EfficientNetB0 was designed
initially and scaled up to generate a family of Eff-Net by
the compound scaling method. There are eight variants of
the EfficientNets, namely EfficientNetB0 to EfficientNetB7.
Scaling the network systematically improves model perfor-
mance balancing all compound coefficients of the architec-
ture width, depth, and image resolution. The basic build-
ing block of the Eff-Net architecture was mobile inverted
bottleneck convolution (MBConv) [170] with squeeze and
excitation (SE) optimization, shown in Figure 12. The short-
cut connections between the thin bottleneck layers are the
shortcut connections in MBConv are based on an inverted
residual structure. Lightweight depth wise convolutions are
used in the intermediate expansion layer as a source of non-
linearity to filter features.

The best-performing model EfficientNetB7 outperforms
other state-of-art CNNs in terms of accuracy using ImageNet.
It also has 8.4× smaller and 6.1× faster than the best existing
CNN [176]. The network architecture of EfficientNetB7 is
shown in Figure 13. It can be divided into seven blocks,
which were based on filter size, striding, and the number
of channels. The authors used EfficientNetB5, and Efficient-
NetB7 as an encoder with UNet decoder and achieved the best
performance with EfficientNetB7. The authors proposed to
use Efficient-Net as an encoder in the contracting path instead
of a conventional set of convolution layers. The decoder
module is similar to the original UNet. The Eff-UNet showed
in Figure 14. The number of levels, resolution, and number
of channels of each feature map, and the detailed architecture
of blocks in the encoder can be found in Figure 13.
Advantage and Application of Efficient-UNet: The main

advantage of Eff-UNet is its ability to offer strong semantic

FIGURE 12. Squeeze and excite model [170] copyright 
 2020, IEEE.

segmentations in an unstructured environment. Both vascular
and non-vascular medical images are sometimes unstructured
so Eff-UNet is useful in both cases.

VI. UNDERSTANDING VASCULAR AND
NON-VASCULAR APPLICATIONS
One of the innovations of this study is to compare and contrast
UNet architecture in vascular vs. non-vascular applications.
We have attempted this comparison in four different UNet

classes (sUNet, acUNet, eUNet, and hUNet). Further, this
section also presents the similarities and differences between
the vascular vs. non-vascular architectures. All the above
analysis is discussed in graphical representation format.
Sections VI.A–VI.D discuss vascular vs. non-vascular archi-
tectures. Section VI.E presents the UNet characteristics for
vascular vs. non-vascular applications. Section VI.F presents
the key for segmentation challenges and architecture solu-
tions for vascular and non-vascular paradigm. Finally, the
section concludes with similarities and differences between
vascular and non-vascular architectures.

A. SUNET ARCHITECTURE
1) NON-VASCULAR
The sUNet architecture is created for obtaining a better result
of segmentation. The sUNet architecture for the non-vascular
paradigm is displayed by Pezzano et al. [57] (Figure 15 (a)).
There is an addition of multiple convolution block (MCL)
along with max pooling layer, which is a modification in
the encoder layer of the UNet system (shown in light blue
color). It has four layers in it, of which three is mainly for
convolution of the input image, while in the fourth layer is
copied by using the identity function. Finally, all the four
layers are concatenated (represented as ‘‘cat’’) and finally
up-sampled (represented as ‘‘up’’) and convoluted one time
(represented as ‘‘conv’’) (Figure 15 (a)). The filters are
increased to double in each layer. The key factors of this archi-
tecture and study are: (i) use of loss function with a parameter
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FIGURE 13. Architecture of EfficientNetB7 with MBConv as basic building blocks. The overall architecture can be divided into seven blocks which are
shown in different colors. The basic building block of the network is MBConv (mobile inverted bottleneck convolution). Each MBConvX block is shown with
the corresponding filter size and the X = 1 and X = 6 denote the standard ReLU and ReLU6 activation function respectively [175] Copyright 
 2020, IEEE.

FIGURE 14. Architecture of proposed Eff-UNet with EfficientNetB7 framework for semantic segmentation. The decoder consists of a sequence of
Upconvolution and Concatenation layers to obtain the segmentation map [175] Copyright 
 2020, IEEE.

for maximizing sensitivity; (ii) addition of MCL; (iii) a mask
calculation formula used for refining the input by removing
the unitary values only; (iv) post-processing procedure used
for reducing false positives and increase specificity; (v) two
additional levels of depth of the network; and (vi) an extensive
validation.

2) VASCULAR
The sUNet architecture for the retinal-based vascular appli-
cation is described in Figure 15 (b). Chen et al. [66] has intro-
duced patches convolution attention-based transformer UNet
(PCAT-UNet) architecture. This architecture has PCAT block
(Figure 15 (c)) in the encoder for local feature extraction
along with the feature grouping attention modules (FGAM)
(Figure 15 (d)) basically for global information extraction
for getting more detailed feature maps of multiscale char-
acteristics. Note that in the encoder, the size of the image
decreases by half while in the decoder the size the image
increases by twice. This architecture helps in achieving better

results, improves sensitivity and performance. It also involves
attention between different patches and pixels, which in turns
reduces the calculation and increases input resolution. The
encoder extracts spatial and semantic information by the
process of down sampling. The dropout block is added that
suppress over-fitting during training. Overall, the architecture
improves segmentation sensitivity and has a good segmenta-
tion performance.

B. AC-UNET ARCHITECTURE
1) NON-VASCULAR
The acUNet architecture is basically the addition of attention
channel block as a fundamental block into any of the parts
such as encoder, decoder, and skip connection. It is used in
a variety of applications, including liver [71], tumor [71],
lung [50], and neuron segmentation [177]. Generally, it is in
the skip connection to obtain a better transfer of the feature
extracted in the encoder to the decoder layer. Figure 16 (a)
shows the fundamental architecture of the acUNet.
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FIGURE 15. (a) sUNet architecture for non-vascular [57] (This figure was
published in CoLe-CNN+: Context learning-Convolutional neural network
for COVID-19-Ground-Glass-Opacities detection and segmentation,
Pezzano, G et al. Computers in Biology Medicine, 2021. 136: p. 104689);
(b) vascular [66] applications; (c) Two consecutive PCAT blocks. CPCA and
IPCA are multihead self-attention modules with cross and inner patching
configurations, respectively [66]; (d) Feature grouping attention module
(FGAM) block [66]. (d) Feature grouping attention module (FGAM)
block [66].

FIGURE 15. (Continued.) (a) sUNet architecture for non-vascular [57] (This
figure was published in CoLe-CNN+: Context learning-Convolutional
neural network for COVID-19-Ground-Glass-Opacities detection and
segmentation, Pezzano, G et al. Computers in Biology Medicine, 2021.
136: p. 104689); (b) vascular [66] applications; (c) Two consecutive PCAT
blocks. CPCA and IPCA are multihead self-attention modules with cross
and inner patching configurations, respectively [66]; (d) Feature grouping
attention module (FGAM) block [66]. (d) Feature grouping attention
module (FGAM) block [66].

Wang et al. [127] have added a convolution block attention
module (CBAM) into the architecture (light blue color).
The addition was made after each convolution layer and
up sampling layer. It provides a better segmentation effect.
The feature graphs were generated at the last layer and then
maximized, average pooled, for obtaining spatial context
descriptors. These descriptors were made to enter into the
shared network called multi-layer perceptron (MLP) and
the final eigenvectors are merged by using a summation
process. The ‘‘Res connect’’ (depicted by solid lines) called as
jump connection is used in each convolution layer and upper
sampling layer (for the same dimensions) that provides better
segmentation results (Figure 16 (a)).

2) VASCULAR
The acUNet architecture (Figure 16 (b)), the self-attention
mechanism in CNN-Transfer hybrid network was imple-
mented by Shen et al. [133]. It helps the system to learn the
correlation between any two pixel-wise feature maps. Also,
the residual attention block (bottom left) was constructed to
improve the process of feature extraction. The third block
added was the squeeze-excitation (SE) block for constructing
a more efficient multi-head attention process by focusing
on effective weights and neglecting invalid weights of the
attention heads. This process is carried out by the SE block
in the SE transformers. The SE transformer is the length of
value vectors in the transformer layers. The SE transformer
decreases the weights of weak correlation embedding vectors
massively. It helps in distinguishing the strong and weak
correlation vectors, and hence helps in focusing on vascular
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FIGURE 16. acUNet architecture. (a) Non-vascular using Resconnect [127] (This figure was published in Hybrid dilation and attention
residual U-Net for medical image segmentation, Wang, Z. et al. Computers in Biology Medicine, 2021. 134: p. 104449); (b) UNet-based
vascular using residual attention and squeeze-excitation transformer [133] (This figure was published in Self-Attentional Microvessel
Segmentation via Squeeze-Excitation Transformer Unet, Shen, X. et al. Computerized Medical Imaging Graphics, 2022: p. 102055);
(c) Channel block attention module and spatial block attention module [140].
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FIGURE 17. Top: hUNet architecture for non-vascular [131]; Bottom:
AtheroEdgeTM 3.0 for vascular [141] applications (This figure was
published in Hybrid deep learning segmentation models for
atherosclerotic plaque in internal carotid artery B-mode ultrasound, Jain,
P.K., Computers in Biology Medicine, 2021. 136: p. 104721.)

connectivity image patches (Figure 16 (b)). The detailed
structure of the convolution block attrition module (CBAM)
in shown in (Figure 16 (c)).

C. H-UNET ARCHITECTURE
1) NON-VASCULAR
The hUNet architecture involves liver [131] and brain
tumor segmentation [131] and has two UNet types. For the
non-vascular domain, the architecture shown here has two
attention module, namely attention module 1 and attention
modules 2 (Figure 17 (top)) [131], labelled as RA-UNet.
It was used for liver and brain tumor [131] for segmentation
map generation.

2) VASCULAR
The hUNet for the vascular paradigm uses SegNet-UNet+,
which is the combination of SegNet and UNet+ (Figure 17
(bottom)) [53], [141], and VGG-UNet [178] and ResNet-
UNet [179]. The same input images were given to SegNet and
UNet+ separately and the outputs were obtained. Finally, the
outputs from both UNets were merged and supplied to the
SoftMax layer of the overall system.

Such a system has application for the cardiovascular field
such as carotid segmentation for carotid ultrasound. Recently,
a non-UNet based segmentation paradigm was attempted
using an encoder-decoder combination [98], [180]. There
have been non-AI based methods, so-called conventional
strategies based on the scale-space paradigm [181], [182],
[183], [184].

D. E-UNET ARCHITECTURE
1) NON-VASCULAR
The eUNet architecture in the non-vascular stands for ensem-
ble UNet architecture. It combines two different UNet types,
two processes, and more than one classifier. Here, the eUNet
non-vascular paradigm in Figure 18 (top) [146] shows dif-
ferent applications like kidney segmentation and renal mass
localization. Two UNets were used, first for kidney segmen-
tation for training and the second for renal mass localization
or identification (Figure 18 (top)).

2) VASCULAR
The eUNet vascular paradigm uses carotid images as the
input. UNet++ was used eight different backbones for seg-
mentation of the carotid artery. Eight different segmenta-
tion maps were generated from each of the backbones of
UNet++. These maps were fused and finally output was
obtained after final segmentation. At last, the total plaque area
(TPA) was evaluated (Figure 18 (bottom)) [144].

FIGURE 18. Top: eUNet architecture for non-vascular [146]; Bottom:
vascular [144] applications Copyright 
 2021, IEEE.

E. VASCULAR VS. NON-VASCULAR UNET
CHARACTERISTICS
1) UNET FOR SEVERAL FIELD OF VIEW APPLICATIONS
The UNet architecture can be divided into application-based
classes (i) vascular; and (ii) non-vascular. Vascular having
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TABLE 5. Vascular and non-vascular-based UNet characteristics.

the field of view (FoV) of cardiology (includes coronary and
carotid) [53], [68], [69], [70], [71], [74], [75], [113], [131],
[141], [142], [143], [185], ophthalmology [66], vascular neu-
rology [79], and vascular pulmonary, while non-vascular FoV
includes pulmonary [73], immunology (ILD or COVID-19)
[82], urology [62], cancer-neurology [45] such as brain tumor
segmentation, orthopedic [154], gastroenterology [71], [130],
and dental [44]. Table 5 describes the vascular and non-
vascular-based UNet characteristics spanned using 33 UNet
attributes using different UNet architectures. The attributes
belong to the following clusters (i) C1: demographics, risk
factors, and field-of-view, (ii) C2: UNet architecture com-
ponents, (iii) C3: number of UNet types on each of the five
classes, (iv) C4: UNet performance, (v) C5: statistical tests,
(vi) C6: benchmarking, (vii) C7: clinical analysis. It was
observed in the Table 5 that the total patient range was high
for the nonvascular paradigm. The histological types and
clinical stages were used as risk factors only in nonvascular
cases. Point data was used along with image data for the

nonvascular [42], [44], [45], [50], [51], [52], [53], [54], [55],
[56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66],
[67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77],
[78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [89],
[90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100],
[101], [102], [103], [104], [105], [106], [107], [108], [109],
[110], [111], [112], [113], [114], [115], [116], [117], [118],
[119], [120], [121], [122], [123], [124], [125], [126], [127],
[128], [129], [130], [131], [132], [133], [134], [135], [136],
[137], [138], [139], [140], [141], [142], [143], [144], [145],
[146], [147], [148], [153], [154], [161] while only image data
was used for vascular application [43], [46], [47], [48], [49],
[53], [63], [64], [65], [66], [72], [73], [76], [79], [95], [96],
[97], [98], [99], [100], [101], [102], [103], [104], [105], [106],
[107], [108], [109], [110], [111], [112], [114], [115], [116],
[117], [118], [119], [120], [121], [122], [125], [126], [133],
[134], [135], [136], [137], [138], [139], [140], [141], [143],
[144]. More types of performance parameter were applied
for the vascular [43], [46], [47], [48], [49], [53], [63], [64],
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[65], [66], [72], [73], [76], [79], [95], [96], [97], [98], [99],
[100], [101], [102], [103], [104], [105], [106], [107], [108],
[109], [110], [111], [112], [114], [115], [116], [117], [118],
[119], [120], [121], [122], [125], [126], [133], [134], [135],
[136], [137], [138], [139], [140], [141], [143], [144] when
compared to nonvascular [42], [44], [45], [50], [51], [52],
[54], [55], [56], [57], [58], [59], [60], [61], [62], [67], [68],
[69], [70], [71], [74], [75], [77], [78], [80], [81], [82], [83],
[84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94],
[113], [123], [124], [127], [128], [129], [130], [131], [132],
[142], [145], [146], [147], [148], [153], [154], [161]. The
UNet based paradigm was implied for the clinical settings
for the vascular application, while it is lacking for the non-
vascular applications. Similar traits for the vascular and non-
vascular were convolution type i.e., ReLU, loss function
types used (CE, DICE, Soft DICE, hybrid), optimization
techniques (Adam, SGD) and bridge network types (skip con-
nection). The PE parameters common for both vascular and
non-vascular were sensitivity, specificity, accuracy, precision,
F1 score, p-value, Dice similarity, Jaccard index, Mathew’s
correlation coefficient, statistical analysis, power analysis,
and scientific validation.

2) VASCULAR UNET DESIGNS CHARACTERISTICS
David et al. [122] designed a UNet system where the authors
used different scaled image patches for each contractual
layer as input. The idea was to learn more multiscale data.
To obtain more spatial features, the authors used dense
blocks. The color retinal images were first preprocessed to
create enhanced grey images. The image patches around the
vessel pixels were then retrieved and reutilized for UNet
architecture improvement. According to Du et al. [102],
extracted features from an input image for inception multi-
scale convolution and dense block convolution, respectively,
and then fused these features, which were then used in the
subsequent network. The inception network enhanced the
ability to extract features of the thin vessels. The DenseNet
was introduced to enhance the reuse of extracted features
through dense connectivity. It effectively reduced the gra-
dient vanishing problem, enhanced the feature transfer, and
reduced the loss of feature information. In another vascu-
lar network, Guo et al. [139] used structure dropout con-
volution to avoid overfitting problems, and spatial attention
(SA-UNet). The spatial attention module (SAM) was intro-
duced in the bottleneck as a part of the convolutional
block attention module for classification and detection.
Huang et al. [103] introduced SE block to promote use-
ful features and suppresses less valuable features and
also introduced dropout to avoid the overfitting problems.
Jin et al. [186] proposed a (3AUNet) triple attention UNet
combination of spatial attention, channel attention, and con-
text attention. Spatial attention allows the segmentation net-
work to find the blood vessel region that needs attention,
thereby suppressing noise. Channel attention makes the
expression of features more diverse and highlights the feature
channels with key information while the context attention

helps in guiding the attention. Xiao et al. [105] introduced
the ResNet weighted attention mechanism so that model
only pays attention to the target ROI area and discards the
irrelevant noisy background. The authors introduced the con-
trast limited adaptive histogram equalization (CLAHE) oper-
ation as a preprocessing step to enhance the image contrast.
Zhang et al. [106] used multiscale pyramid blocks and a
deep supervision concept. Pyramid scale aggregation blocks
(PSAB) were used in both the encoder and decoder sections
to the reduce loss of information during scaling. For using
PSABs in the encoder, scaled input images were added as
extra inputs. While using PSABs in the decoder, scaled inter-
mediate outputs were supervised by the scaled segmentation
labels. He et al. [187] proposed semi-supervised 3D fine
renal artery segmentation framework, DPA-DenseBiasNet,
which combines deep prior anatomy (DPA), dense biased
network (DenseBiasNet) and hard region adaptation loss
(HRA). Dense biased connection, the DenseBiasNet fuses
multi-receptive field and multi-resolution feature maps for
large intra-scale changes. This dense biased connection also
obtains a dense information flow and dense gradient flow so
that the training is accelerated and the accuracy is enhanced.
DPA features extracted from an autoencoder (AE) are embed-
ded in DenseBiasNet to cope with the challenge of large inter-
anatomy variation and thin structures.

3) NON-VASCULAR UNET DESIGNS CHARACTERSTICS
Chahal et al. [88] proposed an automatic segmentation model
based on UNet and Xception for the prostate regions in MRI
scans. The authors used one convolution and 12 separable
convolutions in the contractual path. Separable convolution
gives similar performance while being much more efficient
in terms of using much fewer parameters and fewer floating-
point operations (FLOPs). In the decoder phase, the authors
used residual and transpose convolution. Chen et al. [89]
proposed a 2D bridge network with a combination of ReLU
and e-ReLU functions for deeper networks. To bridge the net-
works, authors used a concatenation operation that guarantees
the information flow or better feature fusion that merges the
feature at a different encoder and decoder level. In skip con-
nection, the authors used addition to avoid redundancy and
combine low-level features with high-level semantic features.
The authors introduced the concept of a combination of ReLU
and e-ReLU functions to improve segmentation performance.
He et al. [83] proposed the HF-UNet that had two comple-
mentary branches for two tasks, with the novel proposed
attention-based task consistency learning block to commu-
nicate at each level between the two decoding branches.
Therefore, HF-UNet had the ability to learn the shared rep-
resentations hierarchically for different tasks and preserve
the specificities of learned representations for different tasks
simultaneously. Liu et al. [92] proposed an improved 2D
UNet model that integrated the squeeze-and-excitation (SE)
layer for prostate cancer segmentation. The SE layer was used
to extract only the important features. A dropout block was
used to avoid overfitting problems. Machireddy et al. [132]
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FIGURE 19. Similarity through residual block. Top: Vascular [105]; Bottom: Nonvascular [88].

proposed an attention-based UNet for prostate segmentation.
The attention mechanism preserves only the regions of the
feature maps relevant for malignancy detection. The attention

mechanism was incorporated in the form of attention gates
integrated into the UNet architecture before feature concate-
nation. The attention gate takes input from the encoder via
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skip connections and just below the layer information was
also passed as input to the attention gate. Dropout rates of
50% were also introduced to avoid over fitting problems.
Xiangxiang et al. [84] proposed a UNet with eight lay-
ers and a residual block for prostate segmentation. Resid-
ual blocks were used to solve the problem of degradation.
Vacacela et al. [188] proposed prostate segmentation which
was based on two UNet, one for global and another for local.
Global UNet segmented the whole prostate gland while local
UNet segmented the central gland. Umapathy et al. [189]
proposed a cascaded multi-residual UNet (MRes-UNet) for
prostate segmentation. The first MRes-UNET predicts the
mask for the prostate gland. The detected prostate mask was
concatenated to the input image. The second MRes-UNet
CNN used this multi-channel data to predict the central gland
within the prostate. The residual block was introduced to
avoid the problem of vanishing gradients. In skip connection,
instead of using concatenation, the authors introduced feature
addition to avoid redundancies in feature maps.

Zhang et al. [85] proposed Z-Net, which contained five
pairs of Z-block and decoder Z-block with different sizes and
numbers of feature maps assembled in a way similar to that
of UNet. The proposed architecture can capture more multi-
level features by using concatenation and dense connectiv-
ity. Zhu et al. [93] proposed a cascading UNet for prostate
segmentation. Step 1 consisted of segmentation of the whole
prostate gland (WPG), while step 2 consisted of another iden-
tical network to segment the peripheral zone (PZ). According
to the segmented result in step 1, an image that contains the
WPG area was passed as an input to the next UNet (as part
of the step 2), which segmented the PZ area. Based on the
above discussions, we conclude the following similarities and
dissimilarities broadly.

Zeng et al. [190] proposed a 3D UNet with Multi-level
Deep Supervision because 3D-UNet allows segmentation of
3D volumes, with high accuracy and performance and multi-
level deep supervision remove the problem of potential gra-
dient vanishing problem during training.

4) SIMILARITIES BETWEEN VASCULAR AND
NON-VASCULAR UNET PARADIGM
Architectures used in both vascular and nonvascular UNet
paradigms are the different variations of UNet like UNet
with dense block [122], parallel fusion, and serial embedding
multiscale feature dense UNet [102], UNet with spatial atten-
tion [139], the combination of more than one UNet [186],
weighted attention UNet [105], pyramid UNet [106] in the
case of retinal vascular, 3D UNet for renal vascular [191] and
in case of prostate nonvascular UNet variations like UNet
with Xception [88], UNet with residual block [84], [189],
2D bridged UNet [89], UNet with SE block [92], UNet with
attention gate [132], UNet with more layers (8) [84], UNet
with task consistency learning [83], the combination of UNets
(ZNet) [85], and cascaded UNet [93], [189], 3D UNet for
proximal femur [187]; (ii) It is observed that dropout block
[92], [103], [132], [139], residual block [84], [105], [189]

FIGURE 20. Similarity through squeeze-excitation block. Top: Vascular
[103]; Bottom: Nonvascular [92].

FIGURE 21. Similarity through attention block. Top: Vascular [139]
Copyright 
 2021, IEEE; Bottom: Nonvascular [132] Copyright 
 2020, IEEE.

(Figure 19), SE block (Figure 20), attention gate block [103],
[132], [186] (Figure 21), inception block [102], and dense
block [102], [122] are common in both vascular and non-
vascular UNet paradigms; (iii) The augmentation process is
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TABLE 6. Vascular segmentation challenges and corresponding UNet solution.

616 VOLUME 11, 2023



J. S. Suri et al.: UNet Deep Learning Architecture for Segmentation of Vascular and Non-Vascular Images

TABLE 7. Nonvascular segmentation challenges and corresponding UNet solutions.

also common in both vascular and non-vascular paradigms;
and 3D UNet (Figure 22).

5) DIFFERENCES BETWEEN VASCULAR AND
NONVASCULAR UNET PARADIGMS
It is observed that in the case of retinal vascular, multi-
scale input was preferred [102], [122], but in the prostate,
nonvascular multiscale input was not preferred (Figure 23,
Figure 24, Figure 25, Figure 26); (ii) It is observed that
the bottleneck used different mechanisms in the case of
vascular like David et al. [122] introduced dense block

in the bottleneck, Guo et al. [139] introduced spatial
attention, Jin et al. introduced context aggregation block,
Zhang et al. [106] introduced PSAB block. In the case of
nonvascular, was observed that bottleneck, there was no such
change (Figure 21, Figure 22, Figure 23, and Figure 24).Visu-
alization of UNet classification results in the vascular and
non-vascular application are detailed in the Figure 27 and
Figure 28.

The visual superiority of the proposed framework
(DPA-DenseBiasNet). The blue boxes indicate the high
segmentation quality of artery endings via our DenseBiasNet
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FIGURE 22. Similarity through 3D UNet. Top: Vascular [187], [191];
Bottom: Nonvascular [190].

FIGURE 23. Difference through dense block & scale. Top: Vascular [122];
Bottom: Nonvascular [89] Copyright 
 2019, IEEE.

and the yellow boxes indicate the high segmentation quality
of the singular regions brought by our DAP strategy. The
visualization was depicted in the Figure 29.

FIGURE 24. Difference through scale. Top: Vascular [102]; Bottom:
Nonvascular [85] Copyright 
 2019, IEEE.

FIGURE 25. Difference through scale & PSAB block. Top: Vascular [106]
Copyright 
 2021, IEEE; Bottom: Nonvascular [189].

6) SEGMENTATION CHALLENGES: ARCHITECTURE
SOLUTIONS-KEY
a: VASCULAR PROBLEMS AND CORRESPONDING
UNET VARIATIONS AS A SOLUTION
Table 6 below shows the relationship between the ‘‘vascu-
lar problem type’’ and ‘‘UNet architecture solution’’ along
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FIGURE 26. Difference through attention block. Top: Vascular [139];
Bottom: Nonvascular [93].

FIGURE 27. Visualization of classification results in vascular (top) [112]
(Copyright 
 2020, IEEE) and nonvascular (bottom) [144] (Reproduced
with permission) applications [88].

with the ‘‘reference type’’. We conclude that when we have
large intra-scale image, large inter-anatomy variation, and
thin structure, then dense network can we used [102], [106],
[114], [122], [187]. This is because dense network fuses
multi receptive field and multi-resolution feature map. If an
image contains lots of noise, then we can use attention-based
UNet because attention gate chooses the relevant part and
suppresses the irrelevant part [49], [102], [139], [186]. If the
image contains thin blood vessels, then we can use UNet

FIGURE 28. Visualization of classification results in vascular (top); Retinal
images’ segmentation: (a, e) retinal images in color; (b, f) result from
masking; (c, g) human reference; (d, h) result of the proposed U-Net
architecture [122] and nonvascular (bottom) [144] (Copyright 
 2020,
IEEE) applications [132].

with the inception block because inception block has multiple
scale or size of convolution so it extracts more features and
also uses less number of parameters [102]. If image con-
tains thin blood vessels, then we can UNet with multiscale
input because multiscale input provides a way to learn more
multiscale data [102], [106], [122]. If the image contains
low contrast, then residual block can also be used, as in
order to extract more features. This is because residual block
helps in deepening the network and therefore better feature
extraction [108]. But at a certain point, while going to deeper
into network saturation occurs due to which further increase
of layers cannot be made as it causes degradation due to
gradient loss. The residual UNet [53] overcome this problem
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FIGURE 29. Visualization results of 3D. Top: Vascular [187]; and Bottom:
Non-vascular [190].

and are good at low contrast as it adds the skip connection.
By skip connection, the feature map is passes from previous
layer into next layer. This process allows to preserve better
feature map and improved performance when going deeper
into network’’.

Li et al. [192] proposed, a deep learning network frame-
work based on the low-order residual network is to detect low
contrast defects. Especially, a low-order feature extraction
module is designed in order to effectively extract target fea-
tures with low contrast and small size. The size of the convo-
lution kernel directly affects the receptive field of the model.
The kernel size used in the AlexNet is very large, in 2012, for
example 11 × 11 and 5 × 5. At first, it was considered that
the receptive field increases with the enlargement of the con-
volution kernel, so that more picture information and better
features can be acquired. However, large convolution kernels
would lead to a huge increase in computational complexity,
which is not conducive to the increase of model depth, and
reduces the computational performance. Therefore, in VGG
and Inception Networks, the combination of two 3 × 3 con-
volution kernels is better than one 5× 5 convolution kernels,
and the parameters are reduced from 26 (5 × 5 × 1 + 1) to
19 (3 × 3 × 2 + 1). Thus, 3 × 3 kernels are widely used
in various models. The receptive field of 1 × 1 convolution
kernel is 0, so it is generally not used for feature extraction.
However, as for low-contrast features, 3 × 3 convolution
kernel may inhibit the expression of some features at the
beginning of training. Therefore, the convolution kernels with

size 3 × 3 are used as feature extraction part, while low-
order residual blocks with convolution kernels size of 1 × 1
are used to enrich the features to be extracted. Although the
receptive field of a 1 × 1 kernel is 0, it can effectively retain
the feature information for the defective target with low-
contrast and only one pixel size, and is not disturbed by the
neighborhood pixels.

b: NON-VASCULAR PROBLEMS AND CORRESPONDING
UNET SOLUTIONS
Table 7 below shows the challenges in the segmentation of
non-vascular type and the corresponding UNet-based solu-
tion. We conclude that if variations in terms of dynamic
range, voxel size, position, field-of-view as well as anatom-
ical appearance are present, then more than one UNet [85],
[89], [91], [188]with dense block is suitable. For example, the
ZNet (Zhang et al. [85]) is capable of capturingmore features
in a multi-level fashion by using concatenation and dense
connection. Attention-based UNet [83], [92] was suitable
when image contains large background noise as the attention
gate is capable of extracting relevant parts and ignoring irrele-
vant ones. When we need segmentation of the prostate gland
and peripheral zone in one pass, then we can use cascaded
MRes-UNet [189], as the first MRes-UNet predicts the mask
for the prostate gland. The detected prostate mask is then
concatenated to the input image. The second MRes-UNet
CNN uses this multi-channel data to predict the central gland
within the prostate. The peripheral zone is identified using
the central gland prediction as an exclusion mask within the
prostate prediction.

VII. EXPLAINABLE AI IN VASCULAR AND
NON-VASCULAR PARADIGM
DL has dominated the field of image segmentation in both
vascular and non-vascular areas. Our study has shown the role
of five kinds of UNet in both categories, filled with inno-
vative designs demonstrating superior performance against
the conventional models. While the engineering mission of
design and performance meets the objectives, but the black
box nature of DL possesses unanswerable ‘‘Wh’’ questions
like what or why or even how the DL systems performed
and met the objectives. Such challenges are categorized as
a subfield of AI, called ‘‘explainable AI (XAI)’’ [193], [194].
Several studies have been published in XAI, but are limited
in the field of vascular and non-vascular applications for
segmentation utilizing UNet variations. The need XAI is
even more important when building a relationship or cor-
relations or links between the quantified vascular segments
of different kinds of clinical outcomes [16], [195], [197].
There are two reasons, (a) XAI started around the corner
less than seven years ago (2015), and (b) some of the tools
like Shapley Additive Explanations (SHAP) [198], [199] and
UMAP [200] are not integrated with DL packages, which
are typically adapted in the computer vision industry. The
European general data protection regulation (GDPR) has
elaborated on the role of fairness, privacy, transparency, and
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explainability in DL paradigm [201]. Since XAI incorpo-
rates the feedback loop, the customized seven steps of DL
can be exhibited in Figure 30, consisting of DL training,
quality assurance (QA), installation/deployment, prediction,
and cross-validation-based testing (A/B test), monitoring, and
debugging. The few limited UNet-XAI systems are briefly
summarized here [202], [203], [204]. The Heatmap produced
by Grad-CAMhave been used for XAI in several applications
(Figure 31-32) [205], where, the generated heatmaps are the
threshold to compute the lesions, which are then compared
against the gold standard [179], [202], [206], [207].

FIGURE 30. Eight aspects of Explainable AI [201].

A. A NOTE ON EXPLAINABLE ARTIFICIAL INTELLIGENCE
Since DL applications have outperformed humans in many
tasks, including picture and speech recognition, and recom-
mendation systems, they have attracted a lot of attention.
These applications, however, are not reliable or comprehen-
sible. DL models are frequently viewed as opaque, difficult-
to-understand black boxes with complicated underlying
mechanisms. People can’t trust them because they don’t pro-
vide reasons for their choices or predictions. On the other
hand, depending on the application, errors made by artifi-
cial intelligence algorithms could be fatal. More specifically,
a mistake in an autonomous vehicle’s computer vision system
could cause a collision, while in the medical field, patient
lives depend on these choices. Explainable AI (XAI) enters
the scene to address the aforementioned problems. Machine
learning models perform as a black box (Figure 33 (a)) i.e.
model predicts the results only but not able to explain ‘‘wh
family’’ like why do you do that?, why can I trust you?, why
not something else?, when do you success?, when do you fail?
and many more.

Figure 33 (b) shows comparison between deep learning
model and explainable model with the help of example.
In the figure w1b, want to predict the particular object is
car or not. In the deep learning model (2D convolutional
neural network used), gives the prediction 0.89 percent for
particular object is car but not explain why is this a car?
how did you predict that? In explainable model, model
explain it has wheels, lights and also visual features obtained
from the model so that user understands why the particular
object is car.

FIGURE 31. Demonstration of heatmaps demonstrating the symptomatic
lesions in carotid artery. Red zones are vulnerable zones, while green
blue regions are low-risk regions [206].

FIGURE 32. Superposition of heatmaps (representing lesions) with gold
standard (black border regions) for COVID-19 lesions for XAI
demonstration [179].

B. IMAGE SEGMENTATION USING UNET WITH XAI MODEL
There are some deep learning models like GPU-Net [208],
CA-Net [113] are trying to provide explanations of their
predicted outcome, however, most of UNet require expla-
nations. Chaterjee et al. [209] proposed a unified, flexi-
ble and scalable interpretability and explainability pipeline
named TorchEseGeta (Figure 34). The proposed architecture
provided posthoc interpretability and explainability methods
and incorporates all libraries related to interpretability and
explainability like LIME, SHAP and TorchRay and extended
to apply on 2D and 3D deep learning models for images.
Authors used the segmentation model from DS6 [210] paper
and the models were UNet, UNet-MSS(multi-scale supervi-
sion) and UNet-MSS with deformation. In order to evaluate
proposed architecture for segmentation model, vessel seg-
mentation was chosen.

VOLUME 11, 2023 621



J. S. Suri et al.: UNet Deep Learning Architecture for Segmentation of Vascular and Non-Vascular Images

FIGURE 33. (a). Machine learning models perform as a black box.
(b). Comparison of a deep learning and an explainable model.

FIGURE 34. Torchesegeta pipeline architecture [209].

Dasanayka et al. [211] proposed an architecture (Figure 35)
for brain tumor analysis using MRI and whole slide images
[WSI]. Proposed architecture divided into three steps. The
first step was MRI segmentation module in which variational
AutoEncoder (VAE) 3DUNet [212] was used. Input for this
step was 3D MRI volumes and output was segmented 3D
MRI volumes. Second step was MRI classification module
for this DenseNet was used because DenseNet classify the
problem accurately with less number of parameters. For
the interpretability Grad-CAM was included in this step.
The third step WSI classification module. Feature extraction
was carried out by already train ResNet50 model. The output
of ResNet50 model was a feature vector of size 1024 × 1 for
each patch which later send to classification phase carried
out by a model which was composed by densely connected
layers. Melching et al. [213] proposed a model ParallelNet
which was shown in Figure 36 (a). In ParallelNets archi-
tecture original UNet was fused with fully connected neural

FIGURE 35. High level design of web application [211].

FIGURE 36. (a). ParallelNets Architecture (Blue color original UNet and
orange color is added part) [213]. (b). GradCAM method for visualization
of deep neural networks [213].

network (FCNN) at bottleneck. Crack tip segmentation was
performed by UNet and crack tip position perform by FCNN
regressor. Authors employed the Grad-CAM interpretability
approach, as illustrated in Figure 36 (b), to test interpretabil-
ity. The neural network’s internal features were gathered
during the forward pass of input data and aggregated by
weighting the average pooled gradients computed during the
backward pass.

Poudel et al. [214] proposed a novel architecture which
was based on Eff-UNet [176] and focusing on precise seg-
mentation of polyps. The architecture shown in Figure 37.
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The architecture divided into two modules. First module was
UNet encoder that uses Efficient-Net as a backbone that
provides different semantic level details at different stage,
in second module decoder combined all spatial informa-
tion from multiple stage and finally predict the segmenta-
tion mask. Zhang et al. [215] proposed an attention UNet,
an interpretable classification model that can generate high
resolution localization feature maps for predicted class. This
model adopt up-sampling-concatenation-convolution struc-
ture to create fine grained segmentationmap and use attention
pooling over the prior mask for bridging segmentation with
classification. Authors integrate this model with GradCAM
for explainability. The structure shown in Figure 38.

FIGURE 37. Overview of proposed architecture [214].

FIGURE 38. Architecture of attention UNet [215] (Copyright 
2020), IEEE).

Sun et al. [216] proposed a novel architecture SAUNet:
shape attentive UNet for interpretable medical image seg-
mentation, shown in Figure 39 (a). Proposed architecture
comprises two streams. First one is texture stream, which
had similar structure as UNet but encoders was replaced by
dense blocks and decoders are replaced by proposed dual
attention decoder block as shown in figure 39 (b). The second
stream was shape stream, which had gated convolutional
layers and residual layers. The gated convolutional layer used
to fused shape features with texture features and the use of
residual layer was to fine tune the shape features as shown in
Figure 39 (a).

C. APPLICATION
All medical image applications need explainability and
interpretability either vascular or non-vascular applications.

FIGURE 39. (a). Proposed architecture of Attentive UNet [216]. (b). Dual
attention decoder block [216].

In lieu of this UNet with explainability (XAI) gives a new
horizon in medical field both vascular and non-vascular.

VIII. PRUNING STRATEGIES IN UNET-BASED
DEEP LEARNING
While the UNet-based DL has provided a gold mine for seg-
mentation solutions, the inherent ‘‘deep approach’’ in neural
networks has created a bottleneck in the model generation.
Due to many epochs and a large number of training iterations
per epoch, besides the heavy weightlifting of several layers in
UNet during encoder and decoder phases, there is an increase
in both storage space and time during the training paradigm
of UNet-based DL. It poses a threat to real-time processing,
especially in healthcare frameworks. The computer vision
industry has provided alternatives, such as the introduction
of graphical processing units (GPU) and supercomputers;
however, this is a game in which the ‘‘rich get the highest,’’
and several good talents are starving to get their hands on it.
Thus, the computer vision field has now started looking into
methods that can improve training model storage and speed.
This strategy banks on the optimization of hyperparameters
during the deep learning process, where the objective is to
‘‘shave’’ the unlikeable weights in deep neural networks as
the deep cycles churn. Analytical methods cannot be used to
determine a neural network’s weights. Instead, the weights
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must be found using the stochastic gradient descent empirical
optimization method. The optimization problem for neural
networks that stochastic gradient descent attempts to solve is
difficult, and the space of solutions (sets of weights) may con-
tain both many excellent answers (known as global optima)
and simple, low-skill ones that are also easy to find (called
local optima). The ‘‘learning rate’’—also known as the step
size—is the measure of how much the model is altered
throughout each phase of this search process. It is possibly the
most crucial hyperparameter to adjust for your neural network
in order to get optimal performance on your challenge. The
learning rate will nteract with many other aspects of the
optimization process, and the interactions may be nonlinear.
Nevertheless, in general, smaller learning rates will require
more training epochs. Conversely, larger learning rates will
require fewer training epochs. Further, smaller batch sizes
are better suited to smaller learning rates given the noisy
estimate of the error gradient. A robust strategymay be to first
evaluate the performance of a model with a modern version
of stochastic gradient descent with adaptive learning rates,
such as Adam, and use the result as a baseline. Then, if time
permits, explore whether improvements can be achieved with
a carefully selected learning rate or simpler learning rate
schedule. Here optimization of hyper-parameters means opti-
mization of stochastic gradient descent and Adam optimizer.
The computer vision industry has now started using ‘‘evo-
lutionary algorithms’’ to optimize these hyperparameters,
such as (i) differential evolution (DE), (ii) genetic algorithm
(GA), (iii) particle swarm optimization algorithm (PSO), and
(iv) whale optimization algorithm (WO) [207, 217]. It has
been shown recently that such optimization methods can be
embedded in deep learning frameworks such as (i) Fully
connected network (FCN) and (ii) SegNet. There has been
no attempt to fuse such evolutionary methods with UNet-
based DL for vascular applications, but we foresee this in the
near future. Therefore, we have attempted to summarize the
pruning methods into the following categories. The current
pruning literature has been classified into three categories:
(i) channel pruning (so-called filter pruning), (ii) network
pruning, and (iii) hybrid pruning. The main principle of chan-
nel pruning is to cut down the filters at an early stage of the AI
model design [122], [123], [124], [125], [126], [218], [219],
[220], [221], [227].We also call it as early pruning. In the net-
work pruning, we remove the neurons of the network that are
low in weight [228], [229], [230], [231], [232], [233], while
in hybrid pruning, we fuse the process of weight reduction
using temporal and spatial information [234], [235], [236].

A. CHANNEL PRUNING METHOD
Channel pruning (Figure 40), sometimes referred to as filter
pruning, makes use of certain algorithms to identify the cru-
cial and superfluous filters in the model [237]. The model’s
redundant filters are eliminated without compromising qual-
ity. There are two types of filters pruning techniques. One
is unstructured, which means that individual weights have
been removed, and the other is structured, which means that

convolutional channels have been removed [227]. Channel
weights from all layers are reduced to their smallest sums
when non-sequential layers are assessed [238]. Convolutional
inputs are removed from the network through other methods,
such as channel pruning, which have the least influence on
the model output [227].

FIGURE 40. Adaptive channel pruning model [239]. FC: fully connected
network.

B. NETWORK PRUNING METHOD
Network (weight) pruning methods provide condensed rep-
resentation and seek to create a small and faster model. This
pruning strategy’s fundamental tenet is to trim weights using
lp-norm regularization. Additionally, if the weights are not
essential, the model’s accuracy can be maintained without
them [240]. In order to find the low-contributing weights that
may be either trimmed or fine-tuned, a specified threshold is
taken into consideration.

C. HYBRID PRUNING METHOD
Hybrid pruning (Figure 41) is a combination of more than
one pruning technique, either (a) weight pruning with filter
pruning or (b) course-grained channel pruning with fine-
grained weight pruning [241].

FIGURE 41. Hybrid pruning architecture of convolution neural
network [241].

IX. BIAS IN UNET-BASED DESIGNS FOR VASCULAR
AND NON-VASCULAR APPLICATIONS
A. RANKING-BASED RISK OF BIAS SCORE METHOD
There were 54 vascular and 56 non-vascular studies in our
cohort that used UNet-based architecture. For each study,
35 AI-based attributes were created; for a total of
1,890 attributes and 1,960 attributes corresponding to vas-
cular and non-vascular diseases, respectively. These UNet-
based features were initially qualitative and then quantified
by assigning a score between 0 and 5 based on the nature
of attributes by AI scientists with 10 years’ experience [33],
[34], [242], [243], [244], [245]. The study’s aggregate score
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FIGURE 42. Plots for the ranking-bias scores; Top: Vascular studies; Bottom: Non-vascular studies.

is the sum of all attribute values for that selected study.
Using the ranking method, the mean values (Table 8 and
Table 9) of the 110 UNet-based investigations ranged from
2.7 (left) to 1.1 (right) for the vascular and 2.0 (left) to
1.1 (right) for non-vascular studies, respectively. The higher
the mean value, the lower is the risk-of-bias (RoB). Hence,
the studies were arranged in the order of low-, moderate-,
and high-bias, according to the decreasing order of their
aggregate scores. The low-moderate (LM) cutoff was 2.6,
and the moderate-high (MH) cutoff was 2.0 determined for
the non-vascular UNet-based studies for RoB by using the
intersection of the ‘‘cumulative plot and the mean plot curve
of the studies’’ (Figure 42 (bottom)). Similarly, the LM cutoff
for the vascular was 3.1 andMH cutoff of 1.9was determined
(Figure 42 (top)). According to the ranking score graph,
most of the studies had a moderate-bias (ranging from 1.8 to
1.3, in decreasing order left to right, and this accounted
for 35 studies (59%) in the non-vascular framework and
similarly for the vascular, it ranged from 1.9 to 1.5, with
30 studies (46%).

Note that the studies with higher normalized mean values
in the AI attributes were considered as low-bias. These low-
bias studies showed more innovation in the design for vas-
cular diagnosis. On the contrary, the tail-enders showed low
AI attribute mean scores (high-bias) and were not clinically
substantial compared to low-bias or moderate-bias studies.
We will discuss the analysis of the studies between the three
quantitative and innovation methods in next section.

B. RADIAL-BIAS MAP METHOD
Since the UNet technology applied for vascular and non-
vascular diagnosis prevails in different stages such as demo-
graphics, architecture, performance evaluation, and clinical
application, the strengths of different DL attributes were
determined (A1 to A35 in Table 10) in these stages (called
clusters). The DL attributes in each cluster was 9, 7, 12, and 7,
respectively. For estimating the strengths of AI attributes,
we used a pictorial representation of the ‘‘spokes and wheel
model’’ in 360 directions, where each spoke represents the
product of the weight of the attribute times the radius of
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TABLE 8. Ranking table for non-vascular studies. TABLE 9. Ranking table for vascular studies.
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the spoke. The bias value (£radial) measurement pseudo algo-
rithm is summarized as follows: (i) Divide the AI attributes
into four clusters (design, optimization, performance evalu-
ation, and clinical validation) based on the UNet-based DL
pipeline. (ii) Compute the spoke length of each AI attribute
(weight x 80% of half the image size (256)). (iii) Calculate
the sum of spoke lengths corresponding to four clusters (say
6C1, 6C2, 6C3, and 6C4). (iv) Calculate the sum of the top
two and bottom two clusters (say 6A and 6B). (v) Compute
the £radial = |6A-6B|, as the absolute difference between6A
and 6B. (vi) The normalized bias value (£normradial) = ( £radial

α
),

where α is the total number of AI attributes. The weight
matrix (Tables 10 and 11) presents the weights of the AI
attributes based on the experience and judgment of AI pro-
fessionals. In all, each study has 49 attributes corresponding
to every 7.3 (∼360/49) degrees. The Bezier spline curve is
then fitted through the endpoint of each spoke to represent
the smooth curve.

Since the curve has four sectors (corresponding to four
clusters), the radial-bias map resembles butterfly wings,
as shown in Figure 43 (right), laid out in 8×7 grid, represent-
ing 56 non-vascular UNet-based DL studies and 54 studies
for vascular UNet-based DL paradigm, laid in 9 × 6 grid
shown in Figure 43 (left). These studies are arranged from
low to high-bias, where the bias of each study is in the corner
of the radial-bias map (where the name of the bias map is:
‘‘Sn-Name:BiasValue’’, for example, ‘‘S18-Che:10’’, where
‘‘18’’ represents the study number, ‘‘Che’’ is the first three
letter of the last name of the first author in the study, and
‘‘10’’ represents the normalized value of the bias). Note that
the following is the sequence of AI attributes for each of
the four clusters (A1 to A35 in Tables 10 and 11). The AI
demographic cluster (A1-A9) consisted of (i) total patients,
(ii) family history, (iii) type of risk factors, (iv) body
mass index, (v) ethnicity, (vi) hypertension, (vii) smoking,
(viii) data type, (ix) magnetic resonance imaging, (x) CT,
(xi) X-ray, (xii) PET, (xiii) US, (xiv) multicenter, (xv) appli-
cation, (xvi) field of view (FOV), and (xvii) UNet type.
The second cluster (A10-A16) of AI-based attributes are the
nine architecture parameters used in the DL study. These
are the (i) encoder layer, (ii) decoder layer, (iii) convolution
type, (iv) maxpooling type, (v) loss function (LF) was done
or not, (vi) LF type, (vii) optimizer type, (viii) filter size,
and (ix) bridge network type. The third cluster (A17-A28)
of attributes includes the performance evaluation parame-
ters such as (i) number of PE parameters, (ii) sensitivity,
(iii) specificity, (iv) accuracy, (v) precision, (vi) F1-score,
(vii) P-value, (viii) hamming loss, (ix) Dice coefficient,
(x) Jaccard-index, (xi) Mathew’s correlation coefficient
(MCC), (xii) positive predictive value (PPV), and (xiii) Haus-
dorff surface distance (HSD). The last and fourth cluster
(A29-A35) consists of ten benchmarking and clinical val-
idation parameter attributes. These include the (i) statisti-
cal analysis, (ii) power analysis, (iii) scientific validation,
(iv) benchmarking, (v) hazard analysis, (vi) survival analysis,

(vii) paired t-test, (viii) Kruskal-Wallis test, and (ix) FDA
approval.

C. REGIONAL-BIAS AREA METHOD
The regional-bias area (RBA)was estimated by evaluating the
difference in the area of the best DL performing attributes and
the worst performing DL attributes. Figure 44 (left) displays
the RBA for every vascular study, while Figure 44 (right)
shows for the non-vascular studies in the increasing order of
the area of bias (white region). In each of the studies bias
is depicted as: ‘‘Sn-Name:BiasValue’’. For example, in the
non-vascular application, ‘‘S18-Che:149’’, where ‘‘18’’ rep-
resents the study number, ‘‘Che’’ is the first three letters of the
last name of the first author in the study, and ‘‘149’’ represents
the normalized value of the bias. The greater white shaded
area, the grater the area corresponding to bias.

FIGURE 43. Radial-bias Map; Left: Vascular studies; Right: Non-vascular
studies.

D. ROBINS-I
This bias estimation approach aims to imitate non-
randomized trials’ randomization. RoB is studied using
three intervention components namely, ‘‘Pre-Intervention,’’
‘‘During Intervention,’’ and ‘‘post-Intervention. These three
components are further spanned to seven distinct aspects,
namely, (i) bias due to confounding (total patients, risk
factor, and demographic), (ii) bias in selection of participants
(image modality, multicenter, and data type), (iii) bias in
classification of interventions (UNet type, model layers, conv.
type, loss type, and optimizer), (iv) bias due to deviations
from intended interventions (application, and benchmark-
ing), (v) bias due to missing data (FOV Application),’’
(vi) bias in measurement of outcomes (accuracy, Dice, Jac-
card, MCC, and HSD), and (vii) bias in selection of the
reported result (statistical analysis, scientific validation, and
XAI) (Table 12 and 13). We used the ROBINS-I tool on a
total of 54 and 56 studies of the vascular and non-vascular
domains, respectively. Using the low bias cut-off of 3.1 and
2.9, the moderate-high bias cut-off of 2.6 and 2.6 for vas-
cular and non-vascular, respectively. We found that 29.62%
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TABLE 10. Non-vascular radial and area.

TABLE 10. (Continued.) Non-vascular radial and area.

(16 out of 54) and 28.57% (16 out of 56) were low bias,
48.14% (26 out of 54) and 37.71% (20 out of 56) were moder-
ate bias, and 22.22% (12 out of 54) and 37.71% (20 out of 56)
were high bias, for vascular and non-vascular, respectively
(Figure 45 (a) and (b)).

E. PROBAST
This is a clinical prediction tool that was primarily designed
for reviews to help highlight the bias in the studies. It uses

predictors classified into four domains namely, participants
(demographic, image modality, multicentre, and data type),
predictors (model layers, conv. type, loss type, and opti-
mizer), outcome (accuracy, dice, Jaccard, MCC, and HSD)
and analysis (scientific validation, statistical analysis, bench-
marking, and XAI) (Table 14 and 15).

We used PROBAST tool on the same set of 54 and
56 studies of vascular and non-vascular domain, respectively.
Using the low bias cut-off of 3.1 and 3.0, moderate-high bias
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TABLE 11. Vascular radial and area weights.

TABLE 11. (Continued.) Vascular radial and area weights.

cot-off of 2.4 and 2.5 for vascular and non-vascular, respec-
tively. We found that 25.92% (14 out of 54) and 12.5%
(7 out of 56) were low bias, 40.74% (22 out of 54) and 41.07%
(23 out of 54) were moderate bias and 33.33% (18 out of 54)
and 33.92% (19 out of 56) were high bias, for vascular and
non-vascular, respectively (Figure 46 (a) and (b)).

F. ANALYSIS OF BIAS
This section represents the Venn diagram (VD) which dis-
plays the relationship among the five adopted innovative

methods (RBM vs. RBA vs. RBS vs. PROBAST vs.
ROBINs-I) for RoB. Figure 47 (a) and (b) depicts the process
of the VD under two categories of bias such as (a) low-bias
and (b) moderate-high-bias, for vascular and non-vascular,
respectively.

For the vascular paradigm, the number of studies in low-
bias for RBS, RBM, RBA, PROBAST, and ROBINS-I were
18 (33.3%), 7 (12.96%), 17 (31.48%), 12 (22.2%), and
16 (29.62%) respectively, the remaining studies under
moderate-high-bias for RBS, RBM, RBA, PROBAST, and
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TABLE 12. Vascular ROBINS-I.
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TABLE 13. Non-vascular ROBINS-I.
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FIGURE 44. Regional-bias Area; Left: Vascular studies; Right:
Non-vascular studies.

ROBINS-I were 36 (66.67%), 47 (87.03%), 37 (65.85%),
42 (77.78%), and 38 (70.37%), respectively. The studies that
fall under the intersection of low-bias 0 and moderate-high-
bias 17 for the five innovative methods.

In the non-vascular paradigm, the number of studies in
low-bias for RBS, RBM, RBA, PROBAST, and ROBINS-I
were 5 (8.9%), 16 (28.57%), 13 (23.21%), 14 (25%), and 16
(28.57%) respectively, the remaining studies undermoderate-
high-bias for RBS, RBM, RBA, PROBAST, and ROBINS-I
were 51 (91.1), 40 (71.42%), 43 (76.78%), 42 (75%), and
40 (71.42%), respectively. The studies that fall under the
intersection of low-bias 0 and moderate-high-bias 16 for the
three innovative methods.

X. CRITICAL DISCUSSION
A. PRINCIPAL FINDINGS
In particular, medical imaging has undergone a wave of revo-
lution in the last five years in the field of segmentation. Since
the introduction of cUNet, there have been nearly 1000 UNet
publications. However, the understanding of such black boxes
is still not felt to the level where the physicians are com-
fortable and confident to adopting them in clinical settings.
We therefore took one level deeper, offering the following
novelties: (i) understanding the statistical distribution post
PRISMA-based study selection, (ii) segregating the UNet and
its variations into five clear classes (cUNet, sUNet, acUNet,
hUNet and eUNet), giving their distinguishing characteristics
along with the applications. (iii) The latest and most powerful
features of deep learning, such as convolution, max/average
pooling, and 81 critical modifications in encoder, decoder,
skip connection, and classification frameworks to get the best
low-level and high-level features, are now better explained.
(iv) Also, segmentation challenges-architecture solutions-
key were provided. Further, we link these UNet extraction
paradigms with the novel AI necessities such as (v) pruning,
(vi) explainable AI, and (vii) AI bias, which are also our novel
and unique contributions. (viii) our review covers the state-
of-the-art references with powerful vascular and non-vascular
applications.

B. BENCHMARKING
The main coverage of 2020 was the modification of basic
cUNet, invented in 2015. Since then, we have had inventions
related to the UNet series leading to into UNet+, UNet++,
UNet+ + +, ZNet, TNet, and WNet (UNet+UNet) [85],
[144], [157]. There are five major components in this small
segmentation structure: encoder, decoder, skip connection,
bridge network, and termination layer for ensuring either
accomplishing segmentation or classification. Such a UNet
structure can be changed using a bag of tools such as filter
deck (channels), convolution, max pooling, ReLU, and fusion
of classifiers for handing the spatial and temporal information
to compensate for handing scale, space, position, and size in
2D/3D. Keeping the above paradigms in mind, we have only
taken the critical UNet reviews from 2020, 2021, and 2022
(Table 16). Note that there was no review of UNet between
2015 and 2020. One reason was due to ‘‘Inertia of Educa-
tion’’, which there was a lag of five years since UNet was first
invented in 2015. Note, Liu et al. [177], Siddique et al. [246],
and Du et al. [247] were the only first three UNet reviews
in 2020, and since then, the problem-solving tools have
evolved along with the challenges. Furthermore, the previ-
ous methods like level sets, and classifiers were either user-
interactive or computationally expensive and still not fully
automated.

Even though the cUNet took a sophisticated turn by under-
going modifications in the five components, we would like to
emphasize that the black box nature of AI is unaddressed.
Further, in the spirit of generality AI training models are
typically larger in size and storage, which makes them nearly
impossible to install on edge devices like the RasberryPi or
JetsenNano, and these are the devices of the future. The third
aspect of AI models is susceptible to bias due to data size,
balance of classes, inconsistencies andmissing values in data,
image acquisition protocol variations, and architecture com-
patibility with the input data sets, cross-validation protocols
in seen and unseen AI models. All the three major compo-
nents of AI models are not discussed in the above reviews
and therefore offer limitations of the above reviews. We have
taken special care to address the above issues in our review.
Note that, besides addressing the above issues, we classify
the UNet series into five categories, namely cUNet, sUNet,
acUNet, hUNet, and eUNet, in a special way by studying
all types of applications, modalities, and architectures. The
importance of these changes is discussed along with their
origin.

In comparison to theUNet reviews published in 2021, these
were specifically focused on (i) radiation therapy planning
[248], (ii) breast tumor cell nuclei segmentation [249], and
(iii) detection and segmentation of tumors in orthopedics
applications [250]. Thus, these reviews do not offer strong
comparisons with other techniques due to lack of generaliza-
tion. In 2022, the following review articles were published,
namely, Punn et al. [251], Yin et al. [252], He et al. [253],
and Wu et al. [254]. Punn et al. [251] covered the same set
of UNets (inception, ensemble, attention) for all the different

632 VOLUME 11, 2023



J. S. Suri et al.: UNet Deep Learning Architecture for Segmentation of Vascular and Non-Vascular Images

FIGURE 45. (a). Vascular ROBINS-I (3.1 and 2.6). (b). Non-Vascular ROBINS-I (2.9 and 2.6).

modalities, which does not offer design variations, but prob-
lems specific to imaging modality and organ segmentation.
In Yin et al. [252], the focus was also on the UNet. However,
the authors introduced the variety due to transformer based
UNet, where the encoder changed to CNN cascaded with the
12 layers of the transformer. Regarding He et al. [253], the
authors offered a hybrid UNet unlike reviews in UNet.

This includes the integration of conditional genera-
tive adversarial networks (Seg-cGAN) with UNet+. Thus,
their innovation was to use cGAN for pattern enhance-
ment and introduction of regularization paradigm for
capturing context-based image features for segmentation.
Wu et al. [254] summarize different developed methods of
UNet for microscopic image analysis along with the compar-
ison of UNet techniques used in other studies.

C. RECOMMENDATION
The study offers the following set of recommendations:
(i) Segmentation complexity and UNet selection: The seg-
mentation complexity and image dimensionality should be
considered when selecting a UNet type. Based on scale,
shape, position, size, and the noise characteristics, it is
recommended to choose an architecture where the UNet

components are altered by several different attention mech-
anisms; (ii) UNet hyperparameters optimization: The choice
of hyperparameters plays an important role in UNet opti-
mization. Therefore, it is recommended to optimize the UNet
architecture in an iterative paradigm. The hyperparameters
include a number of layers in the UNet, filter size during
convolution, learning rate, batch normalization, and number
of epochs, number of iterations per epoch, and the design of
the loss functions; (iii) Explainability of UNet-based AI sys-
tem:All clinical systems using UNet should be explainable or
interpretable based on standardized paradigm such as Grad-
CAM [179], LIME, and SHAPLEY [255], [256]; (iv)Clinical
Evaluation and Scientific Validation: The UNet architecture
should be clinically evaluated and scientifically validated
using previously unseen AI paradigms. This requires the
model to be trained on data different from the test data;
(v) Reduction of AI-bias: For the low bias design of AI
system using UNet, all the attributes such as data demo-
graphics, architecture components, optimization parameter,
and scientific/clinical validation must be taken into account
for reduction [32], [34], [242], [243], [244], [257]; (vi) Gen-
eralization vs. Memorization: The UNet-based design must
be generalizable both in terms of data size, and the variability
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FIGURE 46. (a). Vascular PROBAST (3.1 and 2.4). (b). Non-Vascular PROBAST (3.0 and 2.5).

in the data type. Big data framework can be adapted dur-
ing training having diversity in the database with best gold
standard during supervised learning; (vii) Miscellaneous:
In healthcare databases, demographics such as comorbidity,
and data acquisition must be carefully designed to have the
least impact on AI bias and performance.

D. SHORT NOTE ON UNSUPERVISED UNET PARADIGM
Although, the focus of this study was purely and squarely on
supervised UNet frameworks, one cannot ignore the upcom-
ing wave and innovation in unsupervised learning or self-
learning techniques [258], [259], [260], [261], [262]. The
fundamental difference between a supervised and unsuper-
vised paradigms is the incorporation of pseudo gold standard
in the form of another observation which is similar to original
datasets whose segmentation needs to be determined. Such
a pseudo-observation is typically adapted for training the
model, exactly the way the gold standard does [164], [263],
[264], [265], [266].

E. STRENGTH, WEAKNESS, AND EXTENSION
The system allows selection of the appropriate UNet, given
the segmentation challenge. The study provided a set of five
types of UNet (cUNet, sUNet, acUNet, hUNet, and eUNet)
based on the evolution in the components of the UNet to

handle the complexities of the segmentation process. Thus,
the selected UNet is able to appropriately configure the com-
ponents of the UNet, given the change in shape, size, scale,
and position in the images. Further, the study exclusively
studied 81 configurations which altered the cUNet, leading
to a powerful UNet system for vascular and non-vascular
applications. The strength of the system was to study similar-
ities and differences between the vascular and non-vascular
UNet-based applications. The review also provides a com-
parison between the vascular and non-vascular segmentation
frameworks. Furthermore, the review also gives an insight
into pruning, interpretability, and bias. This was the first time
such a UNet paradigm was demonstrated.

Even though, UNet has opened the door for most seg-
mentation challenges, there is a price to pay when it comes
to speed, storage, portability on edge devices (Raspberry pi
and JetsenNano), and time complexity. As the number of
layers in the UNet increases, encoder paradigms change from
conventional to residual or dilated convolutions, skip connec-
tions are embedded with classifiers such as LSTM or RNN,
decoder alterations for fusing the output led to complex loss
functions – all these affect the computation time demanding a
higher processor such as GPU or multithreaded architecture.

While we have seen nearly 300 UNet variations (some not
included in this review) in a very short span of less than
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TABLE 14. Vascular PROBAST.
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TABLE 15. Non-vascular PROBAST.

636 VOLUME 11, 2023



J. S. Suri et al.: UNet Deep Learning Architecture for Segmentation of Vascular and Non-Vascular Images

TABLE 16. Benchmarking table.

FIGURE 47. (a). Venn diagram for vascular studies. (b). Venn diagram for
non-vascular studies.

half a decade, the process of innovation has just begun in
the computer vision field comprising segmentation and clas-
sification. By modifying UNet components with stochastic
image processing infrastructure, such dynamic growth has a
high potential [17].

XI. CONCLUSION
The need for UNet-based stratification into several unique
classes was deemed necessary, and this study demonstrated
five unique paradigms, namely cUNet, sUNet, acUNet,
hUNet, and eUNet. sUNet was the superior UNet which
underwent several waves of iterations to handle, position,
shape, and object scales in 2-D and 3-D image segmen-
tation. The focus of the study was purely on vascular vs.
non-vascular applications. A thorough investigation was con-
ducted to study certain attention blocks that modified the
conventional UNet architectures, leading to stable and supe-
rior performances. Further, this is the only study of its
kind that introduces explainable AI, pruning and evaluates
AP(ai)Bias 2.0-UNet, further benchmarking with (i) rank-
ing, (ii) butterfly, (iii) regional area, (iv) PROBAST, and
(v) ROBIN’s methods. Most of the studies suffered from poor
attention in XAI and pruning strategies. Also, segmentation
challenges-architecture solutions-key were provided. While
the UNet-based strategy has dominated the field of image
segmentation, more practical aspects of the UNet from paper-
to-practice need to be the focus for better clinical setting
applications.
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