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ABSTRACT It is well known that complex networks are inevitably affected by random disturbances. In the
study of complex network stability, finite-time control has always been a research hot spot. This paper discuss
finite-time synchronization (FTSY) of stochastic multilayer networks (MLNs). First, novel finite-time
stability (FTST) theorems of deterministic complex dynamical system are given, and the expression of
finite stability time is also estimated. Second, sufficient criteria are obtained for FTSY of stochastic MLNs.
Compared with some the existing research results of FTSY in stochastic MLNs, FTSY of stochastic MLNs
is realized by using FTST of deterministic complex dynamical systems, and the relationship between control
intensity and network layers is also discussed under the condition of minimum convergence time, which will
be meaningful to help how to select appropriate in actual complex system control. Lastly, the availability of
the method is checked by numerical simulation base on the theory proposed in this paper.

INDEX TERMS Multilayer networks, finite-time control, synchronization.

I. INTRODUCTION
In the actual system, the influence of random factors is
inevitable, which makes the system show uncertainty. The
existence of random factors makes the systemmore complex.
Therefore, it is very difficult to make quantitative analysis
of this kind of system. People often have paied attention to
its qualitative characteristics and made qualitative research
on it. In the analysis of stochastic systems, stability has
been an important dynamic characteristic and one of the
main objectives of engineering design. In order to ensure the
stability of deterministic systems, pole placement constraints
were widely used. This technology had been deeply studied
[1], [2], [3], [4], [6]. However, in stochastic systems, the
poles of the system can not be determined, and the method
of pole assignment is impossible. Therefore, this method
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could not be used to study stochastic stability. The stability
of stochastic systems has always been a difficult problem
to be solved. In recent years, researchers have done a lot
of work to study the stability of stochastic systems. Some
new research methods have been introduced and many new
achievements have been made. For example, in [7], Sheng
studied output-feedback control of stochastic systems. In [8],
Zhao discussed state estimation of networks under stochastic
protocol. In [9], Yang discussed synchronization of stochastic
networks using a novel hybrid controller. In [10], Wu syn-
chronization of stochastic network by periodically inter-
mittent discrete observation control. In [11], Liu discussed
stochastic nonlinear systems by tracking feedback control.
However, these research results were asymptotically stable
systems in infinite time domain. In fact, in addition to being
interested in the asymptotic stability of stochastic systems,
people have been more care for stochastic systems meeting
certain transient performance requirements. Moreover, due
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to the fractional power term in the finite-time controller,
the finite-time closed-loop control system has better robust-
ness and anti-interference performance compared with the
non-finite time closed-loop system. The finite-time control
method is applied in many fields, such as robot control,
satellite attitude control, motor control, etc [2]. The concept
of FTST for the sake of discussing the transient performance
of the system was proposed earlier in [12], and the suffi-
cient conditions for the existence of solutions of the problem
were proposed by using Lyapunov function method. Sub-
sequently, many new achievements have been made in the
FTST of stochastic systems. For example, in [13], Zhang
discussed FTSY of stochastic networks by adaptive control.
In [14], Yuan discussed FTSY of stochastic networks via
impulsive control. In [15], Wu discussed FTST of stochas-
tic networks via feedback control. In [16], Ren discussed
control of stochastic systems via finite-time sliding control
strategy.

In addition, the structure and behavior of the single net-
work have been deeply studied in the past decade, but in
the context of complex networks, the composition of net-
works usually can not explain multiple interactions in dif-
ferent time and space. For example, transportation networks
between cities (including railway network layer, highway net-
work layer, aviation network layer, water transport network
layer, etc.), commodity trade networks between countries
and regions, metabolic networks between different cells, etc.
A variety ofmulti-layer networks have been seen everywhere.
With the development of network science, many expressions
related to multi-layer networks have appeared in the existing
research, such as interconnected systems, network of network
[17], etc. The emerging research direction ‘‘multi-layer net-
work’’ provides a natural framework for analyzing the com-
plexity of MLNs, which makes more and more scholars take
care the structure and properties of MLNs [18], especially
synchronization of stochastic MLNs [19].

In the existing research, the FTST theorem of stochastic
system is generally used to judge FTSY of stochastic net-
work. For example, in [20], for dµ(t) = f1(µ)dt+f2(µ)dω(t),
if the differential operator Lυ(µ) ≤ −a1υp(µ), then the
zero of stochastic ODE was FTST. In [21], if Lυ(µ) ≤
−a1υp(µ) − a2υr (µ), then the zero of stochastic ODE was
FTST, where, a1,2 > 0, 0 < p < 1, r > 1 . In [22],
if Lυ(µ) ≤ −a1υp(µ) − a2υ(µ), then the zero of stochastic
ODE was FTST, where a1,2 > 0, p > 0. In addition to the
above methods, is there any other method to realize FTST of
stochastic nonlinear systems?

Encouraged by the above discussion, the main contribution
of this paper attempts to focus on the following two aspects:

(i) New FTST theorems for deterministic dynamical sys-
tems are proposed, and the FTSY criterion for stochastic
MLNs is given by using new FTST theorems, and the expres-
sions of finite settling time are estimated respectively.

(ii) Under the condition of minimum convergence time, the
relationship between control intensity and network layers is
gained.

The structural arrangement of this paper is as below: the
second part describes the research model, some necessary
assumptions, definitions and lemmas. In Section 3, some
FTSY conditions for MLNs are given. An example of numer-
ical simulation is given in Section 4. The conclusions are
discussed in Section 5.

II. SOME PRELIMINARIES
The stochastic MLNs is considered

µ̇i(t) = h (µi(t))+
∑m

k=1

∑N

j=1
d (k)ij 4kµj(t)

+ σ i (t, µi(t)) ω̇i(t) (1)

where µi = (µi1, µi2, . . . , µin)T ∈ Rn, h (µi (t)) =
(h1 (µi1 (t)) , . . . , hn (µin (t)))T .D(k) = (d (k)ij )N×N , (k = 1,

2, . . . ,m) is irreducible and satisfies d (k)ii = −
∑N

j=1,j6=i d
(k)
ij ,

i = 1, 2 . . .N . 4k means the kth layer’s inner cou-
pling matrix. ω (t)=(ω1 (t) , ω2 (t) , . . . , ωn (t))T is the
n-dimensional Brownmoment,ωi = (ωi1, ωi2, . . . , ωin)T εRn,
and σ = (σij)n×n : R+×Rn×Rn→ Rn×n is the noise intensity
matrix.

The response stochastic MLNs is constructed from the
drive systems (1) as follows:

ϑ̇i (t) = h (ϑi (t))+
∑m

k=1

∑N

j=1
d (k)ij 4kϑj (t)

+ σi (t, ϑi (t)) ω̇i (t)+ πi (t) (2)

where ϑi = (ϑi1, ϑi2, . . . , ϑin)T ∈ Rn, the controller is
πi (t) = (πi1 (t) , πi2 (t) , . . . , πin (t))T ∈ Rn.

Let$i = ϑi (t)−µi(t),$ (t)= (($1 (t))T , . . . ,$N (t))T )T

∈ RnN , H (µ (t))= (h (µ1(t))T , . . . , h (µN (t))T )T , π (t)=
(π1 (t) , . . . , πN (t))T , the stochastic error system from
MLNs (1)-(2) can be gained:

dω̄ (t) =
[
H (ϑ (t))− H (µ (t))+

∑m

k=1
(D(k)

⊗4k )$ (t)

+ π (t)] dt + ϕ (t) dϕ(t) (3)

Definition 1 [23]: Considering the stochastic system as
follows

dµ (t) = g1 (µ) dt+g2 (µ) dω(t) (4)

where µ (t) ∈ Rn, g1 : Rn → Rn and g2 : Rn → Rn×m,
ω(·) means the m-dimensional Brown moment. g1 (0) = 0,
g2 (0) = 0, the system (4) has a unique global solution,
expressed as µ (t,µ0) , 0 ≤ t < ∞, where µ0 is the initial
state.

For each υ ∈ C2,1(Rn × R+,R+), the operator Lυ relative
to Eq. (4) is

Lυ =
∂υ

∂µ
· g1 +

1
2
trace

(
gT2 ·

∂2u
∂µ2 · g2

)
,

where ∂υ
∂µ
= ( ∂υ

∂µ1
, ∂υ
∂µ2
, . . . , ∂υ

∂µn
), ∂

2u
∂µ2 = ( ∂

2u
∂ujuk

)n×n(j, k =
1, 2, . . . , n).
Definition 2: If

lim
t→T (µ0)

E|µ(t)|p ≤ `,∀µ0 ∈ Rn, ` > 0, p > 0,
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then the equilibrium point of system (4) is quasi-stable with
finite time pth moment, where T (µ0) is interrelated to the
starting value.
Remark 1: If p = 2, definition 2 means quasi-stable with

finite time mean square moment. In definition 2, when the
convergence time T is independent of the initial value, we call
it fixed-time quasi-stable.
Hypothesis 1 (H1): Suppose h(·) satisfies

|h(ϑi(t))− h (µi(t))| ≤ γ1$i (t) , γ1 > 0.

Hypothesis 2 (H2): If σ (t) satisfies

trace
(
σ T (t,$) σ (t,$)

)
≤ γ2

∑N

i=1
|$i|

2, γ2 > 0.

Lemma 1[24]: Let α ∈ Rn, β ∈Rn, then

αTβ + βTα ≤ γαTα + γ−1βTβ, γ > 0.

Lemma 2 [25]: For λi ≥ 0, i = 1, . . . , n, χ > 1 then∑n

i=1
λ
χ
i ≥ n

1−χ (
∑n

i=1
λi)χ

Lemma 3 [26]: If κ(t) is a continuous function, and∫ t
0 κ(x)dx ≤ 0, then κ(t) ≤ 0 for t > 0.
Proof: According to the [26], if there is a t0 >0, s.t.

κ(t0) > 0.
As κ(t) is a continuous function, ∃c > 0, making κ(t) >

0 for ∀t ∈ (t0−c,t0+c). From the mean value integral
theorem,∫ t0+c

t0−c
κ(s)ds = 2cκ(h) > 0, h ∈ [t0−c,t0+c],

which is contradiction with
∫ t
0 κ(x)dx ≤ 0, So κ(t) ≤ 0 for

t > 0.
Lemma 4 [27]: For

ς̇= G(ς (t)), ς(0) =ς0, (5)

If 2(ς (t)) is the continuous, positive-definite function, also

2̇ (ς) ≤ −λ1 − λ22(ς)− λ32
q (ς) , (6)

where q > 1,λ1 > 0, λ2 > 0, λ3 > 0. Then, the zero of
system (5) is fixed-time stable,

T ≤
1
λ2

ln
λ1 + λ2

λ1
+

1
λ3 (q− 1)

.

Lemma 5: For

ς̇= G (ς (t)) , ς (0) = ς0 (7)

If 2(ς (t)) is the continuous, positive-definite function, also

2(ς (t)) ≤ 2(ς (0))− λ1t − λ2

∫ t

0
2(ς (s)) ds

− λ3

∫ t

0
2q (ς (s)) ds, (8)

where q > 1,λ1 > 0, λ2 > 0, λ3 > 0. Then, the zero of
system (7) is fixed-time stable,

T ≤
1
λ2

ln
λ1 + λ2

λ1
+

1
λ3 (q− 1)

.

Proof: By inequality (8), there are

2(ς (t))−2(ς (0) ≤
∫ t

0

(
−λ1−λ22(ς (s))−λ32q(ς (s))

)
ds,

thus ∫ t

0
2̇ (ς (s)) ds ≤

∫ t

0
(−λ1 − λ22(ς (s))

− λ32
q (ς (s))

)
ds,

that is∫ t

0

(
2̇ (ς (s))−

(
−λ1−λ22(ς (s))− λ32q (ς (s))

))
ds ≤ 0.

From Lemma 3,

2̇ (ς (t)) ≤ −λ1 − λ22(ς (t))− λ32q (ς (t)) .

According to Lemma 4, the zero of system (7) is FTST, also

T ≤
1
λ2

ln
λ1 + λ2

λ1
+

1
λ3 (q− 1)

.

Lemma 6. If 2(ς (t)) satisfies:

2(ς (t)) ≤ −λ2

∫ t

0
2(ς (s)) ds−λ3

∫ t

0
2q (ς (s)) ds.

(9)

where q > 1,λ2 > 0, λ3 > 0. Then, the zero of system (7) is
fixed-time stable, also

(i) 2(ς (0)) ≥ λ2

e
λ2

(
1− 1

λ3(q−1)

)
−1

,

T ≤
1
λ2

ln
2(ς (0))+ λ2
2(ς (0))

+
1

λ3 (q− 1)
≤ 1.

(ii) 2(ς (0)) < −λ2,

1 ≤ T ≤
1
λ2

ln
2(ς (0))+ λ2
2(ς (0))

+
1

λ3 (q− 1)
.

Proof: By inequality (9), there are

2(ς (t))−2(ς (0)) ≤ −2(ς (0))+
∫ t

0
(−λ22(ς (s))

− λ32
q (ς (s))

)
ds.

(i) If 2(ς (0)) > 0, t ≤ 1,

2 (ς (t))−2(ς (0)) ≤ −2(ς (0)) t+
∫ t

0
(−λ22(ς (s))

− λ32
q (ς (s))

)
ds.

thus ∫ t

0
(2̇(ς (s))ds ≤

∫ t

0
(−2(ς (0))− λ22(ς (s))

− λ32
q (ς (s))

)
ds
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that is∫ t

0

(
2̇ (ς (s))− (−2(ς (0))− λ22(ς (s))

− λ32
q (ς (s))

))
ds ≤ 0.

From Lemma 3,

2̇ (ς (t)) ≤ −2(ς (0))− λ22(ς (t))

− λ32
q (ς (t)) .

According to Lemma 4, the zero of system (7) is FTST, also

T ≤
1
λ2
ln
2(ς (0))+ λ2
2(ς (0))

+
1

λ3 (q− 1)
, (10)

Since inequality (10) holds under the condition of
2(ς (0)) > 0, t ≤ 1, so

T ≤
1
λ2
ln
2(ς (0))+ λ2
2(ς (0))

+
1

λ3 (q− 1)
≤ 1,

that is, 2(ς (0)) ≥
λ2

e
λ2

(
1− 1

λ3(q−1)

)
−1

, which meet

2(ς (0)) > 0.
So,

2(ς (0)) ≥
λ2

e
λ2

(
1− 1

λ3(q−1)

)
− 1

,T ≤
1
λ2
ln
2(ς (0))+ λ2
2(ς (0))

+
1

λ3 (q− 1)
≤ 1.

(ii) If 2(ς (0)) > 0, t ≤ 1, similar to (i), the origin of
system (7) is FTST, also

2(ς (0)) < −λ2, 1 ≤ T ≤
1
λ2

ln
2(ς (0))+ λ2
2(ς (0))

+
1

λ3 (q− 1)
.

III. MAIN RESULTS
In the section, the FTSY of stochastic MLNs is discussed by
using FTST theorem of deterministic systems.
Theorem 1: Under H1-H2 and the controller (11), the

stochastic error system (3) is quasi-stable under finite-time
pth moment

πi (t) = −k1$i − k2$
q
i , (11)

and

lim
t→T

E
[
|$i(t)|p

]
≤ 2

q+1
2
k0
k4
,

E [T ] ≤
1
k3

ln
k0 + k3
k0

+
1(

2
q+1
2 k2(Nn)

1−q
2 − k1

)
(q− 1)

,

where k3 = 2k1 − 2γ1 − γ2 − 1 − m8 > 0, υ(0) >
q+1
2
√
k0/k1, 8 =

{
λmax

(
D(k)
⊗4k

) (
D(k)
⊗4k

)T}
, p =

q+1, q > 1,k0 > 0, k1 > 0, k2 > 0, 0 <k4 < 2
q+1
2 k2(Nn)

1−q
2 ,

k1 < 2
q+1
2 k2(Nn)

1−q
2 .

Proof: Choosing the following function

υ (t) =
1
2

N∑
i=1

$ T
i $i.

Based on the Itô’s formula,

dυ (t)= Lυ (t) dt +$ Tσ (t,$) dω (t) ,

and the differential operator

Lν(t) =
∑N

i=1
$i [h (ϑi(t))− h (µi(t))

+

m∑
k=1

∑N

j=1
d (k)ij 4k$j(t)+ πi(t)

]

+
1
2
trace

(
(ϕi(t))T ϕi(t)

)
, (12)

By using (H1) and (H2), yields

Lv(t) ≤
∑N

i=1

[
γ1$

T
i (t)$i(t)

+

∑m

k=1

N∑
j=1

d (k)ij 4k$
T
i (t)$j(t)

− k1$ T
i (t)$i(t)− k2$ T

i (t)$
q
i (t)

]
+

1
2
γ2
∑N

i=1
$ T
i (t)$i(t)

≤

(
γ1 +

1
2
γ2

)
$ T$ +

1
2
$ T$

+

m∑
k=1

(
1
2
$ T

(
D(k)
⊗4k

) (
D(k)
⊗4k

)T
$

)
− k1$ T$ − k2$ T$ q

≤

(
γ1 +

1
2
γ2 +

1
2

)
$ T$ + m8

1
2
$ T$ − k1$ T$

− k2$ T$ q

= − (2k1 − 2γ1 − γ2 − 1− m8)υ − k2$ T$ q. (13)

According to Lemma 2, when q > 1, $ T (t)$ q(t) ≥
2
q+1
2 (Nn)

1−q
2 (υ(t))

q+1
2 , one has

Lv(t) ≤ −k3υ(t)− 2
q+1
2 k2(Nn)

1−q
2 υ(t)

q+1
2 ,

where k3 = 2k1 − 2γ1 − γ2 − 1− m8.
From the Itô’s formula, we have

Eυ (t) = Eυ (0)+ E
∫ t

0
Lυ (θ) dθ = Eυ (0)

+

∫ t

0
E [Lυ (θ)] dθ,

which

E[Lυ(t)] ≤ −k3Eυ(t)− 2
q+1
2 k2(Nn)

1−q
2 Eυ(t)

q+1
2

= −k3Eυ(t)−
(
2
q+1
2 k2(Nn)

1−q
2 − k4

)
Eυ(t)

q+1
2

− k4Eυ(t)
q+1
2 + k0 − k0.
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If Eυ(t)
q+1
2 >

k0
k4
, then

E[Lυ(t)] ≤ −k3Eυ(t)

−

(
2
q+1
2 k2(Nn)

1−q
2 − k4

)
Eυ(t)

q+1
2 − k0

When q > 1, Eυ(t)
q+1
2 ≥ (Eυ (t))

q+1
2 , so

E[Lυ(t)] ≤ −k3Eυ(t)−
(
2
q+1
2 k2(Nn)

1−q
2

− k4)Eυ(t)
q+1
2 − k0.

So,

Eυ (t) ≤ Eυ (0)+
∫ t

0

[
−k3Eυ(θ )−

(
2
q+1
2 k2(Nn)

1−q
2

− k4)Eυ(θ )
q+1
2 − k0

]
dθ,

thus,

Eυ (t)− Eυ (0) ≤ −k3

∫ t

0
E [υ (θ)]dθ

−

(
2
q+1
2 k2(Nn)

1−q
2

− k4)
∫ t

0
(Eυ (θ))

q+1
2 dθ − k0t.

Let 2(ς (t)) = Eυ (t), according to Lemma 5, we can
estimate the following setting time

E [T ] ≤
1
k3

ln
k0 + k3
k0

+
1(

2
q+1
2 k2(Nn)

1−q
2 − k1

)
(q− 1)

.

So, when Eυ(t)
q+1
2 >

k0
k4
, the decrease of υ (µ) in finite-time

stochastic drives the trajectories of the closed-loop system
into Eυ(t)

q+1
2 ≤

k0
k4
, that is,

E ‖ $ (t) ‖p= E ‖ $ (t) ‖q+1= 2
q+1
2 Eυ(t)

q+1
2 ≤ 2

q+1
2
k0
k4
,

where p = q+ 1.
Remark 2: Let the function T (m) ≤ 1

k3
ln k0+k3

k0
+

1(
2
q+1
2 k2(Nn)

1−q
2 −k1

)
(q−1)

, k3 = 2k1 − 2γ1 − γ2 − 1 −

m8. If dT (m)
dm = 0, then the range of layer of network

2k1−2γ1−γ2−1−(e−1)k0
8

< m <
2k1−2γ1−γ2−1

8
can be gained

for getting the minimum value T (m).
Remark 3: From 2k1 − 2γ1 − γ2 − 1 − m8 > 0 and

k1 < 2
q+1
2 k2(Nn)

1−q
2 , we can get that the relationship among

the control intensity k1, k2 and the number of network layers
m is γ1 + (γ2 + 1+ m8) < k1 < 2

q+1
2 k2(Nn)

1−q
2 under

the condition of minimum convergence time T (m), which is
different from the [14].
Remark 4:Although the stochastic disturbance of the sys-

tem affects the stability of the system, the control system is
still robust under the action of the controller.
Remark 5:Compared with some the existing research

results of FTSY in stochastic network in [13], [15], [19], and
[20], FTSY of stochastic network is realized by using FTST

theorems of deterministic complex dynamical systems, which
provides a new analysis method for the stability analysis of
stochastic systems.
Therorem 2: Under H1-H2 and the controller (14), the

stochastic error system (3) is stable under finite-time mean
moment

πi (t) = −k1$i − k2$
q
i , (14)

and

υ ($ (0)) < −k3,

1 ≤ T ≤
1
k3
ln
υ ($ (0))+ k3
υ ($ (0))

+
1

2
q+1
2 k2(Nn)

1− q+12
2

(
q+1
2 − 1

) .
where k3 = 2k1 − 2γ1 − γ2 − 1 − m8 > 0, 8 =

max
k=1,...,N

{
λmax

(
D(k)
⊗2k

) (
D(k)
⊗2k

)T}
, k1 > 0, k2 > 0.

Proof: Selecting the following function

υ (t) =
1
2

N∑
i=1

$ T
i $i.

Similar to that of Theorem 1, one have

Eυ(t,$ (t)) ≤ Eυ(t,$ (0))

+

∫ t

0
[−k3Eυ(t)

− 2
q+1
2 k2(Nn)

1−q
2 (Eυ(t))

q+1
2

]
dθ

When υ ($ (0)) < −k3, we have

Eυ(t,$ (t)) ≤ −k3

∫ t

0
E[υ(t)]dθ

− 2
q+1
2 k2(Nn)

1−q
2

∫ t

0
(Eυ(t))

q+1
2 dθ.

Furthermore, according to Lemma 6, let 2(ς (t)) = Eυ(t),
we have

1 ≤ T ≤
1
k3

ln
υ ($ (0))+ k3
υ ($ (0))

+
1

2
q+1
2 k2(Nn)

1− q+12
2

(
q+1
2 − 1

) .
Remark 6: Although controllers (11) and (14) are the same
equation, different conclusions are obtained due to differ-
ent conditions that the theorem satisfies. Compared with
theorem 2, theorem 1 needs to satisfy weaker conditions to
achieve finite time pth moment quasi-stability of the error
system, while theorem 2 is finite time mean square stability
of the error system.
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FIGURE 1. The stochastic Lorenz system.

FIGURE 2. Synchronous evolution curve without the controller.

FIGURE 3. Synchronous evolution curve with q=1.5.

FIGURE 4. The controller evolution curve with q=1.5.

IV. ILLUSTRATIVE EXAMPLE
It is assumed that the node of the network is Lorenz system,
i.e, 

ṡi1 = 10 (si1 − si2)
ṡi2 = 28si1 − si2 − si1si3
ṡi3 = −8si3/3+ si1si2,

By simple calculation [28],

|h (ϑi)− h (µi) | ≤ γ1|$i| ≈ 100.571|$i|

FIGURE 5. Synchronous evolution curve.

If σ (t, ϑ) = 0.1diag {ϑ1, ϑ2, ϑ3}, N = 4, n = 3, 2k = I ,
m = 2, and

D(1) =


−1.5 −0.5 1 1
−0.5 1 0.5 −1
1 0.5 −0.5 −1
1 −1 −1 1

 ,

D(2)
=


−3 1 1 1
1 −2 2 −1
1 2 −2 −1
1 −1 −1 1

 ,
then8 = 2.5206. According to Theorem 1, by simple calcu-
lation, k1 = 104, k2 = 82, k0 = 1, k4 = 100, k3 = 0.7446.
If the initial values of the systems state are assumed to be
rand [0, 5]. Figure 1 shows the stochastical Lorenz system.
Figure 2 means the error systems evolution curve without the
controller. Fig. 3 means the synchronization of the networks
for q= 1.5. Figure 4 shows the controller evolution curvewith
q= 1.5. Fig. 5 means the synchronization of the networks for
q=2.5 and σ (t, ϑ) = 0.01diag {ϑ1, ϑ2, ϑ3} . Fig. 5 shows
that the smaller the random disturbance and the larger the q,
the faster the error systems converges. The effectiveness of
Theorem 1 is tested by numerical simulation.

V. CONCLUSION
The paper had discussed FTSY of MLNs. Novel FTST
theorems have been gained for deterministic dynamical sys-
tem, and novel sufficient criteria are also gained for FTSY
of stochastic MLNs. In particularly, under the condition of
minimum convergence time, the relationship between control
intensity and network layers has been given. Lastly, an exam-
ple is used to check the validity of the theoretical results.
Since the fixed-time stability of the network is independent
of the initial value of the system, it may be better than
the FTST method of the network. Future work will further
discuss the fixed-time stability of random MLNs based on
the deterministic system stability theory.
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