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ABSTRACT Modern missiles must deal with stringent performance requirements and ensure robustness
across a wide range of operating conditions during flight time. Classic gain-scheduling designs have been
successful in practice, but do not provide theoretically ensured bounds on both performance and robustness.
Controllers are interpolated at intermediate operating conditions and switching them may cause instability.
On the other hand, polytopic linear parameter-varying (LPV) controllers avert this switching and use
real-time information about the plant, in order to smooth out the gain scheduling. We hereby propose
a novel procedure to yield an output feedback LPV controller that ensures robust H∞ performance to
a missile longitudinal autopilot. Our novel approach considers the four-block loop-shaping H∞ control
theory with polytopic LPV weights that use polytopic coordinates of the LPV plant. One is capable of
adjusting the singular values of the open-loop plant individually at the polytope vertices, and benefits from
a trade-off between linear matrix inequalities (LMI) based optimization tools and the designer experience.
This can be construed as a natural extension of the traditional H∞ loop-shaping method that uses linear time-
invariant (LTI) weights. Assuming the scheduling variables are frozen, we also include LMI conditions for
assigning closed-loop poles and hence circumvent controller order reduction. Nonlinear simulations assess
the proposed autopilot, and results show an improved robust stability margin, in addition to an improved
response to the acceleration command, concerning the LTI-based approach.

INDEX TERMS Autopilot, loop shaping, missile, pole assignment, polytopic, robust LPV.

I. INTRODUCTION
Missile autopilot design is a challenging task, because it must
meet strict performance requirements, while ensuring robust-
ness across a wide range of operating conditions [1]. The
H∞ loop-shaping theory [2] offers a good solution for this
multi-objective purpose. Aeronautical applications include
robust autopilots for flexible missiles [3], static controllers
for manned [4] and unmanned helicopters [5], robust autopi-
lots for agile missiles [6], 6-degree-of-freedom controllers
for quadcopters with tilting rotor [7], and robust controllers
for vertical takeoff-and-landing drones [8]. Using LMI opti-
mization techniques [9], the sub-optimal controllers ensure
performance, robustness, control action minimization, and
noise attenuation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mou Chen .

Under a classic gain scheduling scenario, LTI controllers
are designed at selected operating points and interpolated at
intermediate conditions of the flight envelope [1]. Whereas
working well in practice, robustness and performance are
not theoretically ensured [10]. Controllers switching may
cause instability in fast varying systems. LPV controllers
avert switching and provide smooth gain scheduling using
measured variables during flight. Different lines of approach
are based on polytopic representation, linear fractional trans-
formation (LFT) representation, and linearization on a grid-
ded domain. Important results extending H∞ loop shaping
to polytopic LPV systems arise in the design of an autopilot
for a bank-to-turn missile [1], static output feedback control
to missile [11] and unmanned aircraft [12], gain-scheduling
control for a hovering vehicle [13], discrete-time static con-
trol for a vertical takeoff-and-landing aircraft [14], and con-
troller design for a variable stiffness actuator [15].
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In LFT representation, the LPV issue is construed as
a robust performance problem for the nominal LTI plant
along with LFT uncertainty. The uncertainty is a time-
varying matrix-valued parameter that evolves in a convex
polytope [16]. Previously, the translation and scaling of the
scheduling variables were used to describe plant uncertainty
in LFT form, and to generate an LPV model in addition to
the H2/H∞ LPV controller for a missile longitudinal autopi-
lot [17]. Differently, we use here the H∞ loop shaping, taking
into account the time-varying plant as an LPV model, whose
state-space matrices evolve in convex polytopes. Moreover,
a normalized coprime factor stabilization provides robustness
to the closed-loop system. Weights are selected to ensure the
open-loop properties at both high and low frequencies, and
also to maximize the robust stability margin.

Previous work was grounded on a grid-based mixed sensi-
tivity H∞ approach to find an LPV controller for improving
wheelset stability of railway vehicles [18], and for a small
helicopter [19]. The latter linearizes the nonlinear plantmodel
in a grid, which is composed of several operating conditions
of the helicopter dynamics, and uses a common Lyapunov
function to ensure robustness and performance to the entire
flight envelope. The drawback is that the syntheses are only
valid if the dynamics is linear between two design points.
Also, the number of controllers increase with the number of
design points.

The aforementioned H∞ control references, except [12],
handle LTI parameter-independent weights. Reference [12]
uses weights that are directly dependent on the LPV plant
scheduling variables. The setback is that the weights are
specific for each problem. In the event the problem changes,
the shaped plant must be redesigned. Reference [15] uses
LTI weights and the plant is shaped equally in all polytope
vertices. This is traditional in H∞ loop-shaping LPV control
solutions, and the design is less flexible. Missiles have a wide
range of operating conditions along the interception path that
depend on angle of attack, airspeed and altitude. Our main
motivation contributing is to develop a more flexible and
less conservative synthesis process to yield H∞ loop-shaping
LPV controllers for this kind of parameter-dependent plants.

We propose the use of weights that are not only parameter-
dependent, but are also polytopic. The polytopic weights are
capable of assuming any transfer functions, and are related
to the LPV plant concerning their polytopic coordinates. One
adjusts the singular values of the open-loop plant individually
at the polytope vertices and can benefit from a trade-off
between LMI-based automated design tools, in addition to the
designer experience. We also use LMI conditions for assign-
ing closed-loop poles, for the frozen values of the scheduling
variables, in the desired frequency range. It prevents the fast
dynamics usually present in high-order controllers synthe-
sizedwith LMI optimization tools. Althoughmodel reduction
techniques could be useful (see e.g., [17]), the full-order
controller is desirable to ensure performance and robustness.
Nonlinear simulations assess the proposed polytopic LPV
control applied to a missile longitudinal autopilot. Since just

a few output measurements are available in flight, our focus
is on the output feedback.

We organized the paper as follows. Section II reviews theo-
retical concepts and also states the main problem. Section III
details the missile polytopic LPV model. LMI conditions
and the proposed methodology are presented in Section IV.
Section V registers the autopilot design and its results.
Finally, Section VI brings out the conclusions.

II. PRELIMINARIES
The notation is standard. Rm×n is the set of m × n real
matrices, Rn is the set of n-dimensional real vectors, whereas
C is the set of complex numbers. For matrices or vectors 0,
0T indicates transpose. A > 0 (A < 0) means that matrix A
is a positive (negative) definite. I is the identity matrix con-
taining appropriate dimensions, and In is the identity matrix
∈ Rn×n. The symbol • indicates a symmetric block in the

matrices.G =
[
A B
C D

]
represents a state-space realization of

a continuous-time system whose transfer function is G(s) =
C(sI − A)−1B+ D. The symbol , means ‘‘is defined as’’.
Definition 1 ([20]): Vertex representation.
Co{0i}r is the convex hull of a finite number of vertices

01, 02, . . . , 0r with the same dimensions such that

Co{0i}r ,

{
r∑
i=1

υi0i : υ ∈ 3

}
(1)

υ ,
[
υ1 υ2 . . . υr

]T
∈ Rr (2)

3 ,

{
λ ∈ Rr

: λi ≥ 0,
r∑
i=1

λi = 1

}
. (3)

Definition 2 ([20]): Polytopic LPV system.
An LPV system is called polytopic when state-space matri-

ces are affine-dependent on a time-varying parameter vector
θ (t) that takes values in a convex polytope 2 , Co {ξi}r .
Let us take into consideration a polytopic LPV system such

that θ (t) ∈ Rp with r = 2p. Then, ξi ∈ Rp are the polytope
vertices that bound θ (t), and the state-space matrices also
belong to a convex polytope whose vertices are images of
the ξi [

A(θ(t)) B(θ (t))
C(θ (t)) D(θ (t))

]
∈ Co

{[
Ai Bi
Ci Di

]}
r

(4)[
Ai Bi
Ci Di

]
,

[
A(ξi) B(ξi)
C(ξi) D(ξi)

]
(5)

where A(θ(t)) ∈ Rn×n, B(θ(t)) ∈ Rn×nu , C(θ (t)) ∈ Rny×n,
and D(θ(t)) ∈ Rny×nu . From the vertex representation,
we rewrite θ (t) and the state-space matrices, using the same
polytopic coordinates ai(t)

θ(t) =
r∑
i=1

ai(t)ξi, ai(t) ≥ 0,
r∑
i=1

ai(t) = 1 (6)

[
A(θ (t)) B(θ(t))
C(θ (t)) D(θ(t))

]
=

r∑
i=1

ai(t)
[
Ai Bi
Ci Di

]
(7)

126 VOLUME 11, 2023



Y. M. Tavares, J. Waldmann: H∞ Loop Shaping Using Polytopic Weights and Pole Assignment to Missile Autopilot

a(t) ,
[
a1(t) a2(t) . . . ar (t)

]T (8)

where ai(t) ∈ R, and a(t) ∈ Rr also belongs to the unit
simplex 3 for each instant t .
Definition 3: Quadratic H∞ performance.
Given γ > 0, a polytopic LPV system has the quadratic

H∞ performance J∞(.) < γ if and only if it is asymptotically
stable and the L2-gain of the input-to-outputmap is lower than
γ along all possible parameter trajectories θ (t) in the polytope
2.
Lemma 1 ( [20]): Bounded Real Lemma with quadratic

H∞ performance.
Consider γ > 0, a polytopic LPV system such as (7) is

asymptotically stable with J∞(.) < γ if and only if there is
a symmetric positive definite matrix X ∈ Rn×n to satisfy the
set of LMI for i = 1, . . . , rATi X + XAi XBi CT

i
BTi X −γ I DTi
Ci Di −γ I

 < 0. (9)

Remark 1: When θ (t) is a frozen p-dimensional vector,
an LPV system reduces to an LTI system, (9) is known as
the Bounded Real Lemma and J∞(.) is the H∞-norm ‖.‖∞.
Lemma 2 ( [21]): Closed-loop pole assignment

constraints.
Consider the vertical strip defined in the complex plane as

ϒ , {d + je ∈ C : − d1 < d < −d2 ≤ 0} (10)

where d1 > 0 and d2 ≥ 0. From [21, theorem 2.2 and
corollary 2.3], a matrix A has all its eigenvalues in ϒ if and
only if there is a symmetric positive definite matrix X with
compatible dimensions such that

ATX + XA+ 2d1X > 0 (11)

ATX + XA+ 2d2X < 0. (12)

The H∞ loop shaping was originally proposed for LTI
systems by [2] and is comprised by two main stages:

1) using a pre-compensatorW1(s) and a post-compensator
W2(s), the open-loop frequency response of the plant
G(s) is shaped with the purpose to yield the desired
singular values, where Gs(s) = W2(s)G(s)W1(s); and

2) the shaped plant Gs(s) is robustly stabilized by K (s).
The final feedback controller to the plant G(s) is
KF (s) = W1(s)K (s)W2(s).

Since the pair M̃ (s) and Ñ (s) is a normalized left coprime
factorization for the shaped plant, we have

Gs(s) = M̃−1(s)Ñ (s) (13)

and the perturbed system is

Gs(s) = (M̃ (s)+1M̃ )−1(Ñ (s)+1Ñ ) (14)

where 1M̃ and 1Ñ are coprime factorization uncertainties.
Controller K (s) solves the normalized left coprime factor

FIGURE 1. Diagram for the output feedback H∞ control problem for
polytopic LPV systems.

robust stabilization problem if and only if it solves the fol-
lowing four-block H∞ control problem [22, lemma 18.4 and
corollary 18.5]:

‖Tzw(s)‖∞ =

∥∥∥∥[K (s)
I

]
H (s)

[
I Gs(s)

]∥∥∥∥
∞

<
1
ε0
= γ (15)

where Tzw(s) is the closed-loop transfer function,H (s) = (I+
Gs(s)K (s))−1, and ε0 is the robust stability margin. Using the
small gain theorem [22, theorem 9.1], the controller design is
robust to small disturbances embedded in the normalized left
coprime factorization if and only if∥∥[1Ñ 1M̃

]∥∥
∞
≤ ε0. (16)

We use this theorem to take into account wind, angle of attack
estimation error, and other disturbance sources in the robust
autopilot design.

Now, consider the main problem illustrated in Fig. 1.
Given the shaped plant Gs(θ (t)) in the form of (7) with
D(θ(t)) = 0, and its generalized plant P(θ (t)) in the
four-block loop shaping framework [12]

ẋz
v

 =
P(θ(t))︷ ︸︸ ︷

r∑
i=1

ai(t)

 Ai B1i B2i
C1i D11 D12
C2i D21 0

xw
u

↔

ẋ
z1
z2
v

 = r∑
i=1

ai(t)


Ai

(
0 Bi

)
Bi(

0
Ci

) (
0 0
I 0

) (
I
0

)
Ci

(
I 0

)
0



x
w1
w2
u

(17)
that maps exogenous inputs w ,

[
w1 w2

]T
∈ Rnw and con-

trol inputs u ∈ Rnu to the controlled outputs z ,
[
z1 z2

]T
∈

Rnz , and measured outputs v ∈ Rnv , find a controller

K (θ (t)) ,
r∑
i=1

ai(t)
[
Aki Bk
Ck 0

]
(18)

containing matrices Aki ∈ Rk×k , Bk ∈ Rk×nv , and Ck ∈
Rnu×k so that the output feedback law is u(t) = K (θ (t))v(t),
and the closed-loop transfer function from w to z

Tzw(θ (t)) ,
r∑
i=1

ai(t)
[
Acl,i Bcl,i
Ccl,i Dcl

]
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=

r∑
i=1

ai(t)

 Ai B2iCk B1i
BkC2i Aki BkD21
C1i D12Ck D11

 (19)

satisfies quadratic H∞ performance 0 < J∞(Tzw(θ (t))) < γ

for all θ (t) ∈ 2.

III. MISSILE POLYTOPIC LPV MODEL DERIVATION
From now, explicit time dependence of variables is omit-
ted to ease the notation. Aerodynamic coefficients and their
derivatives of the missile aerodynamics model are nonlinear
functions of angle of attack α between −20o and 20o and
Mach number M between 2 and 4. We now focus on the
approaching end game, as the missile pursues the target using
its onboard seeker, and the rocket motor has been completely
burnt. The plant is nonminimum phase due to the actuators
being at the rear of the missile. From the rigid-body dynamics
equations, the missile nonlinear longitudinal model is

α̇ = q+
SmQdincos(α) ·

(
Cz0 +

Czqqdm
2VsM

+ Czδδp

)
mVsM

(20)

q̇ =
SmdmQdin ·

(
Cm0 +

Cmqqdm
2VsM

+ Cmδδp

)
Iy

(21)

amz =
SmQdin ·

(
Cz0 +

Czqqdm
2VsM

+ Czδδp

)
m

(22)

where:
• α is the angle of attack (rad);
• q is the pitch rate (rad);
• δp is the pitch actuator (rad);
• amz is the missile acceleration in the body-z axis (m/s2);
• Qdin = 0.5ρV 2

s M
2 is the dynamic pressure (N/m2);

• ρ is the air density (kg·m3);
• Vs is the speed of sound (m/s);
• M is the Mach number;
• Sm = 0.0216 is the missile reference area (m2);
• dm = 0.1660 is the missile reference length (m);
• m = 56.3 is the missile mass (kg);
• Iy = 48.16 is the pitch moment of inertia (kg·m2);
• Cz0 and Cm0 are aerodynamic coefficients;
• Czq, Czδ , Cmq, Cmδ are aerodynamic coefficient deriva-
tives (rad−1);

and airspeed matches the missile ground speed (neglecting
wind). We begin by assuming cos(α) ≈ 1 and

Zα(α) ,
QdinSmCza(α)

mVsM
(23)

Zq(α) , 1+
QdinSmdmCzq(α)

2mV 2
s M2 (24)

Zδ(α) ,
QdinSmCzδ(α)

mVsM
(25)

Cz0(α) , Cza(α) · α (26)

Mα(α) ,
QdinSmdmCma(α)

Iy
(27)

Mq(α) ,
QdinSmd2mCmq(α)

2IyVsM
(28)

Mδ(α) ,
QdinSmdmCmδ(α)

Iy
(29)

Cm0(α) , Cma(α) · α. (30)

Hence, (20) – (22) are rewritten as a affine parameter-
dependent dynamic model

α̇ = Zα(α) · α + Zq(α) · q+ Zδ(α) · δp (31)

q̇ = Mα(α) · α +Mq(α) · q+Mδ(α) · δp (32)

amz = VsMZα(α) · α + (VsMZq(α)− VsM ) · q

+VsMZδ(α) · δp. (33)

Disregarding the aerodynamic drag, and establishing a sea
level scenario atMach 3, we haveVsM = 1020.8, Zq(α) ≈ 1 ,
Zδ(α) ≈ 0.2, Mq(α) ≈ −2.8, and it is possible to obtain the
following relation between Zα(α) and Mα(α)

Zα(α) = −0.01Mα(α)− 5.75. (34)

Thus, the missile longitudinal polytopic LPV modelGm(θ ) is[
α̇

q̇

]
=

[
−0.01Mα(α)− 5.75 1

Mα(α) −2.8

] [
α

q

]
+

[
0.2

Mδ(α)

]
δp

amz =
[
−10.208Mα(α)− 5869.6 0

] [α
q

]
+
[
204.2

]
δp.

(35)

The model has two time-varying parameters Mα(α(t)) and
Mδ(α(t)), seen in Fig. 2, depending on the single time-varying
measured α(t). Hence,

θ(t) ,
[
Mδ(α(t)) Mα(α(t))

]T (36)

with the following polytope vertices ξi

ξT1 ,
[
Mmin
δ Mmin

α

]
=
[
297.9 −432.4

]
ξT2 ,

[
Mmin
δ Mmax

α

]
=
[
297.9 −212.5

]
ξT3 ,

[
Mmax
δ Mmin

α

]
=
[
365.9 −432.4

]
ξT4 ,

[
Mmax
δ Mmax

α

]
=
[
365.9 −212.5

]
(37)

and polytopic coordinates ai(t)

a1(t) = 1Mδ(t) (1−1Mα(t))

a2(t) = 1Mδ(t) (1Mα(t)) (38)

a3(t) = (1−1Mδ(t)) (1−1Mα(t))

a4(t) = (1−1Mδ(t))1Mα(t)

1Mδ(t) ,
Mmax
δ −Mδ(α(t))

Mmax
δ −Mmin

δ

(39)

1Mα(t) ,
Mα(α(t))−Mmin

α

Mmax
α −Mmin

α

. (40)
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FIGURE 2. Time-varying parameters Mα(α(t)) and Mδ(α(t)) for Mach 3.

IV. POLYTOPIC H∞ LOOP SHAPING WITH POLE
ASSIGNMENT
This section approaches our proposed methodology. Let’s
suppose that a polytopic LPV plant is

G(θ ) ,
[
AG(θ ) BG
CG 0

]
=

r∑
i=1

ai

[
AGi BG
CG 0

]
. (41)

Considering the LTI weightsW1 andW2, only the matrix A(θ )
is parameter-dependent in the shaped plant Gs(θ ), and the
traditionalH∞ loop-shaping control solutions are straightfor-
ward, such as in [15]. Now, consider our proposed method:
weightsW1(θ ) andW2(θ ) described in a polytopic LPV form,
using the same polytopic coordinates of the plant G(θ )

W1(θ ) ,
r∑
i=1

ai

[
Aw1i Bw1i
Cw1i Dw1i

]
(42)

W2(θ ) ,
r∑
i=1

ai

[
Aw2i Bw2i
Cw2i Dw2i

]
. (43)

Thus, the shaped plant Gs(θ ) = W2(θ )G(θ )W1(θ ) is

Gs(θ ) ,
r∑
i=1

ai

[
Ai Bi
Ci 0

]

=

r∑
i=1

ai


Aw1i 0 0 Bw1i

BGCw1i AGi 0 BGDw1i
0 Bw2iCG Aw2i 0
0 Dw2iCG Cw2i 0

 .
(44)

Differently from previous works (see e.g., [11], [14] [15]),
all matrices A(θ), B(θ ), and C(θ ) are parameter-dependent.
By the author’s knowledge, we propose an original solution to
this theoretical difficulty using the strictly proper definitions
of (18) and (41) and employing the Theorem 1, which will
be further detailed. Using the four-block generalized plant
in (17) and Theorem 1, we obtain the gain-scheduled stabi-
lizing controller K (θ ) in (18). The final controller for G(θ )
is

KF (θ ) = W1(θ )K (θ )W2(θ )

=

r∑
i=1

ai


Aw2i 0 0 Bw2i
BkCw2i Aki 0 BkDw2i

0 Bw1iCk Aw1i 0
0 Dw1iCk Cw1i 0

 (45)

which evidently is a polytopic LPV system.
Remark 2: In the event the plant model is not in the form

of (41), it should be augmented with strictly proper sensors
and actuators. The adequate use of filters enables the transfer
of the parameter dependence to matrix A, as per the scenario
suggested in [20].
Theorem 1: Let’s assume thatϒ is the LMI region defined

in (10). Consider the symmetric matrices R ∈ Rn×n and S ∈
Rn×n, matrices F, L, Qi for all i = 1, . . . , r of compatible
dimensions, and γ > 0. Consider also the LMI set[

S I
I R

]
> 0

(46) 9i +9
T
i • •(

BT1i BT1iR+ D
T
21L

T
)
−γ I •(

C1iS + D12F C1i
)

D11 −γ I

 < 0 (47)

2d1

[
S I
I R

]
+9i +9

T
i > 0 (48)

2d2

[
S I
I R

]
+9i +9

T
i < 0 (49)

defined for all i = 1, . . . , r , where

9i =

[
AiS + B2iF Ai

Qi RAi + LC2i

]
(50)

and the convex optimization problem

min
γ,R,S,F,L,Qi

{γ : 46− 49} (51)

The full-order, strictly proper dynamic output feedback poly-
topic LPV controller K (θ ) established by the matrices

Aki = (NT )−1(Qi − RAiS − RB2iF − LC2iS)M−1 (52)

Bk = (NT )−1L (53)

Ck = FM−1 (54)

with NTM = I − RS ensures J∞(Tzw(θ )) < γ for all θ (t) ∈
2. Also, the closed-loop poles of Tzw(θ ) for all frozen values
of θ (t) ∈ 2 remain in ϒ .
Proof: We use a known change of variables for this proof

(see e.g., [23]). Since Lemma 1 ensures 0 < J∞(Tzw(θ )) < γ

for all θ (t) ∈ 2, we start applying the following congruence
transformation to (9) with the closed-loop matrices in (19)T 0 0
0 I 0
0 0 I

T ATcl,iX + XAcl,i • •

BTcl,iX −γ I •

Ccl,i Dcl −γ I

T 0 0
0 I 0
0 0 I

 < 0

(55)T T (ATcl,iX + XAcl,i)T • •

BTcl,iXT −γ I •

Ccl,iT Dcl −γ I

 < 0

(56)
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defined for all i = 1, . . . , r , where

X ,
[
R NT

N V

]
X−1 ,

[
S MT

M E

]
T ,

[
S I
M 0

]
(57)

and consequently

XX−1 =
[
RS + NTM RMT

+ NTE
NS + VM NMT

+ VE

]
=

[
I 0
0 I

]
(58)

X−1X =
[
SR+MTN SNT

+MTV
MR+ EN MNT

+ EV

]
=

[
I 0
0 I

]
(59)

NTM = I − RS (60)

XT =
[
I R
0 N

]
T TX =

[
I 0
R NT

]
(61)

Ccl,iT =
[
C1i D12Ck

] [ S I
M 0

]
=
[
C1iS + D12F C1i

]
(62)

BTcl,iXT =
[
BT1i DT21B

T
k

] [I R
0 N

]
=
[
BT1i BT1iR+ D

T
21L

T
]

(63)

T TXAcl,iT =
[
I 0
R NT

] [
Ai B2iCk

BkC2i Aki

] [
S I
M 0

]
= 9i

(64)

where

F , CkM (65)

L , NTBk (66)

Qi , RAiS + RB2iF + LC2iS + NTAkiM . (67)

Replacing (62) – (64) in (56) yields (47). Now, applying the
following congruence transformation in X > 0

T TXT > 0 (68)

T TXT =
[
S MT

I 0

] [
R NT

N V

] [
S I
M 0

]
=

[
S I
I R

]
(69)

we obtain (46). Again, applying the congruence transforma-
tion on both (11) and (12), and recalling the closed-loop
polytopic matrices in (19), we have

T T (Acl(θ )TX + XAcl(θ ))T + 2d1(T TXT ) > 0 (70)

T T (Acl(θ )TX + XAcl(θ ))T + 2d2(T TXT ) < 0. (71)

As a direct consequence of the vertex property [20, theorem
3.3], (70) and (71) hold if and only if they hold at the vertices
for the same Lyapunov function X

T T (ATcl,iX + XAcl,i)T + 2d1(T TXT ) > 0 (72)

T T (ATcl,iX + XAcl,i)T + 2d2(T TXT ) < 0 (73)

defined for all i = 1, . . . , r . Using the results from (64)
and (69), we obtain (48) and (49). Equations (52) – (54)
are obtained from (65) – (67) where we can assume, with-
out loss of generality, that M and N have full row rank
[21, lemma 4.2], concluding the proof. �

V. AUTOPILOT DESIGN AND SIMULATION RESULTS
To use the proposed methodology in Section IV, the longi-
tudinal model Gm(θ ) is augmented using both the actuator
dynamics S1(s) and the filter S2(s), in order to obtain the
augmented plant Gag(θ ) = S2Gm(θ )S1. A first-order low-
pass filter S2(s), with a 10−3 time constant, is used just
for the design. The actuator S1(s) is a first-order transfer
function, with a 0.05 time constant and a 20o maximum
deflection. We also use unitary negative feedback, of pitch
rate q, to increase the closed-loop damping, without changing
the system polytopic LPV aspect. As a result, the plant G(θ )
to be shaped has the form of (41). We assume ideal inertial
sensors, with accelerometers and rate-gyros providing instan-
taneous, unbiased response. More realistic models of the
inertial sensors instead of filter S2(s) have the disadvantage
of increasing the controller order.

The closed-loop system output requirements are as
follows:

1) rise time to achieve 100% lower than 0.3;
2) settling time (2% criterion) lower than 1;
3) steady-state error lower than 2%;
4) overshoot lower than 20%; and
5) closed-loop poles, referring to the frozen values of θ(t)

in the vertical strip ϒ , such that −1050 < d < 0.
The latter requirement is purposed to avoid high frequencies
in the controller dynamics and to facilitate actual implemen-
tations.

To shape the plant, we choose W1(θ ) as a first-order low-
pass filter 1/(ηs+ 1) andW2(θ ) as a PI filter (µs+ ζ )/s with
realizations

W1(θ ) =
4∑
i=1

aiW1,i ,
4∑
i=1

ai

[
−ηi 1
ηi 0

]
(74)

W2(θ ) =
4∑
i=1

aiW2,i ,
4∑
i=1

ai

[
0 ζi
1 µi

]
(75)

where ηi, ζi, and µi are parameters set using the bellow
procedure:

1) singular values of theGs(θ ) are inspected at all vertices,
and the weights are adjusted;

2) Theorem 1 is used to find K (θ ); and
3) the behavior of the closed-loop system with KF (θ ) is

assessed at all vertices.
We repeat this process until the requirements are met, and

the stability margin achieves an acceptable value. The final
tuned values are η1 = η3 = 150, η2 = η4 = 300, µ1 =

µ3 = 0.003, µ2 = µ4 = 0.0015, ζ1 = 0.10, ζ2 = 0.05,
ζ3 = 0.09, and ζ4 = 0.045. Fig. 3 shows the singular values
of the shaped (red solid lines) and unshaped (magenta dash-
dot lines) plants. Using our proposed method, we obtain very
similar red curves, by means of shaping the singular values
individually at the vertices. Also, the closed-loop response
to an acceleration unitary step input meets the requirements
at all vertices, as seen in Figs. 4 and 5. The pole assign-
ment avoids high frequencies in the controller dynamics
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FIGURE 3. Singular values at all four vertices of the unshaped and
shaped plants.

FIGURE 4. Closed-loop response to acceleration unitary step input at
vertices 1 and 2.

and the performance achieved is J∞(Tzw(θ )) < 2.74 for
all θ (t) ∈ 2 with the stability margin ε0 > 0.364. The
output feedbackKF (θ ) is a four-vertex polytope, eighth-order
controller.

We compareKF (θ ) to a controller namedKLTI (θ ), obtained
using traditional LTI weights and Ak (θ ), Bk (θ ), Ck (θ ),Dk (θ ).
To ensure a fair comparison, we set the parameters using
the same procedure for both controllers and tried to sat-
isfy the same requirements regarding the closed-loop sys-
tem behavior. The weights have the same structure of (74)
and (75) but the parameters have to be the same for all vertices
(because they are LTI). After several procedure repetitions,
the parameters are set as η = 300, µ = 0.002, and ζ =
0.06. As seen in Figs. 4 and 5, KLTI (θ ) does not achieve
the requirements because the rise time is higher than 0.3 at
vertex 1, and the maximum overshoot is surpassed at vertex 4.
Attempts with faster responses at vertices 1 and 3 surpass
the overshoot constraint at vertices 2 and 4, and vice versa.

FIGURE 5. Closed-loop response to acceleration unitary step input at
vertices 3 and 4.

This is a limitation carried by the traditional method. Shaped
plant singular values have different curves at low frequencies,
please check the blue dashed lines in Fig. 3. The performance
is J∞(Tzw(θ )) < 3.05 and, consequently, displays an eroded
robustness ε0 > 0.327.

Until now, both controllers were designed using the missile
polytopic LPV model, and tested only at the vertices of the
polytope. To validate the proposal and assess both perfor-
mance and robustness, we tested the longitudinal autopilot
in Simulink using 2-degree-of-freedom nonlinear simulations
[see (20) – (22)]. We assumed constant Mach, thus disre-
garding aerodynamic drag. Such an assumption limits the
application to within a specific Mach range. The autopilot is
tested in a supersonic flow regime beyondMach 2. The design
presented in the example is not valid in the subsonic and
transonic airflow regimes. Angle of attack measurements are
assumed available. In practice, α calls for estimation. Wind
and α estimation error are disturbances the proposed design
approach must accommodate. Autopilot is robust to small
disturbances embedded in the normalized coprime factoriza-
tion of the missile dynamics model uncertainty. cos(α) ≈ 1
constrains the polytopic LPV model to small α variations
(−20o to +20o are acceptable).
According to the design, the control was comprised of

the controller output and the q feedback. We compared the
closed-loop response to the 150 m/s2 acceleration step input,
please refer to Figs. 6 and 7. At M = 3.8 (high dynamic
pressure), KF (θ ) obtained a faster response, as expected from
the design, with a damping similar to KLTI (θ ). At M =

2.2 (low dynamic pressure), KF (θ ) yielded a faster and bet-
ter damped response. In both cases, and both controllers,
the actuator deflections were realistic and acceptable. The
numerical integration with fourth-order Runge-Kutta used a
10−3 fixed step.Without the pole assignment, we had to resort
to a 10−7 fixed step, resulting in a much heavier simulation
workload.
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FIGURE 6. Nonlinear closed-loop response and actuator deflection at
high dynamic pressure.

FIGURE 7. Nonlinear closed-loop response and actuator deflection at low
dynamic pressure.

VI. CONCLUSION
We propose a novel procedure to obtain an output feed-
back controller that ensures robust H∞ performance and
stability to a polytopic LPV plant. It is applied to a mis-
sile longitudinal model and uses real-time information of
the plant to smooth out the gain-scheduling. Our approach
is based on polytopic LPV weights, related to the LPV
plant concerning of its polytopic coordinates. This can be
perceived as a natural extension of the traditional method
that uses LTI weights. We also include LMI conditions for
assigning closed-loop poles, referring to frozen values of the
scheduling variables, hence circumventing controller order
reduction such as in [17]. In both high and low dynamic
pressure scenarios, nonlinear simulation results show an
improved robust stability margin and an improved response to

acceleration command, concerning the LTI-weight approach.
Future applications are expected to include robust control to
flexible aircrafts, long range missiles, and unmanned heli-
copters. A synthesis limitation of the proposed method is the
restriction to use a strictly proper stabilizing controller K (θ )
and a strictly proper shaped plant Gs(θ ). Further research
should look into how to circumvent this theoretical issue.
We expect to investigate Mach number as a scheduling vari-
able extending the controller operation to interception paths
with wide ranges. A disadvantage of the method arises when
the number of polytope vertices grow exponentially, with
the number of time-varying parameters taken into consider-
ation in the polytopic LPV plant. Manual tuning becomes
a daunting task. Machine learning techniques seem suitable
and call for further investigation to set the LPV weights
automatically. Another challenge is to extend our polytopic
H∞ loop-shaping approach to static LPV controllers.
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