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ABSTRACT To improve the accuracy, reliability and validity of flood prediction models, this study
proposes a regularized broad learning (RBL) model based on an improved variational mode decomposition
(VMD). Firstly, grey correlation analysis was used to improve the endpoint effect of the VMD and the
particle swarm optimisation (PSO) algorithm was used to optimise the VMD parameters. Then, using
orthogonal triangular decomposition (QR), redefining the hidden layer output of BL model and adding
forgettable online sequence learning mechanism (FOS) to construct online sequence BL (FOS-QR-RBL),
which can significantly improve the computational efficiency of BL model. Finally, a flood forecasting
method based on improved VMD-FOS-QR-RBL was constructed by combining the FOS-QR-RBL with
the improved VMD and applying it to regional flood forecasting. The experimental results show that the
computational efficiency of FOS-QR-RBL is improved by 35% and 23.68% compared with RBL and
QR-RBL, respectively. The mean absolute error (MAE) of the coupling model of VMD and FOS-QR-
RBL is reduced by 80.30% and 84.10% respectively, and the nash efficiency coefficient (Ens) is increased
by 15.51% and 28.16% respectively, compared with that of the coupling model of FOS-QR-RBL with
ensemble empirical mode decomposition (EEMD) and adaptive noise complete ensemble empirical mode
decomposition (CEEMDAN). The results of the optimal operation based on VMD-FOS-OR-RBL show that
the model can effectively reduce the economic losses caused by regional flooding.

INDEX TERMS Flood forecasting, broad learning, variational mode decomposition, orthogonal triangular
decomposition.

I. INTRODUCTION
As a key aspect of water hazard control, accurate forecasting
of river runoff is important. Under the influence of chang-
ing environment, the runoff formation process and evolu-
tion mechanism are complex and variable, and the basin
steady-state assumption is no longer valid [1], [2]. Currently,
it is important to explore disaster forecasting models suitable
for different basins to achieve proactive and scientific flood
control [3].

Flood forecasting studies mainly include mechanism-
driven physical methods and statistical methods based on
data science [4], [5]. Physical methods usually use phys-
ical parameters such as weather, runoff, and rainfall to
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construct mathematical models that can effectively capture
hydrological characteristics and desired features [6]. For
example, the Xinanjiang model is widely used for flood
prediction in semi-humid areas because of its solid theoretical
basis and ease of practice. However, the dynamic and non-
smooth nature of hydrological evolution makes the model’s
multi-step accurate prediction accuracy low [7]. The dis-
tributed hydrological model effectively combines geographic
information features and considers the spatial and temporal
distribution heterogeneity of rainfall and subsurface condi-
tions, which is currently one of the research hotspots of
hydrological models. However, with the construction of a
large number of small andmedium-sized reservoirs, the scope
of application of distributed hydrological models has been
gradually restricted [8]. Compared with physical models,
statistical models based on data science usually have the
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advantages of long forecasting period and high accuracy [9],
[10], [11], [12]. Statistical models can be divided into mono-
lithic and hybrid models. Support vector machines (SVMs)
classify and regress samples by finding the optimal classi-
fication hyperplane satisfying constraints. SVMs have been
widely used in several fields, including flood forecasting;
however, SVM models are more sensitive to the choice
of parameters and kernel functions [13]. Long and short
term memory neural networks (LSTM) are widely used for
flood forecasting by continuously storing useful informa-
tion by memory neurons for time series prediction. How-
ever, the choice of hyperparameters for LSTM models has
a large impact on the prediction performance of the models
[14], [15]. Monolithic models usually have the problems
of poor generalization ability and low prediction accuracy,
and hybrid models can effectively solve the limitations of
monolithic models. For example, using discrete wavelet
transform (DWT) to extract signal features and then sim-
ulating the flood process by LSTM can effectively reduce
the prediction error of the model and improve the accuracy
of flood prediction. However, the choice of wavelet basis
has a large impact on the results and is not suitable for
the decomposition of non-smooth signals [16]. Unlike DWT,
empirical mode decomposition (EMD) performs particularly
well in dealing with nonlinear and non-stationary signals
[17]. Combining EMD and SVM to construct an EMD-
SVM model and applying it to regional runoff prediction
can effectively improve the prediction accuracy of SVM. The
results show that the EMD-SVM hybrid model can effec-
tively improve the accuracy of runoff prediction [18]. The
accuracy of flood forecasting can be significantly increased
by combining variational mode decomposition (VMD) with
least squares support vector regression (LSSVR) [19] and
LSTM [20]. However, EMD suffers from mode mixing
problems, and both ensemble empirical mode decomposi-
tion (EEMD) and adaptive white noise overall empirical
mode decomposition (CEEMDAN) mitigate the mode mix-
ing problem of EMD during decomposition by introducing
noise-assisted analysis methods [21], [23]. In contrast to
the EMD-like method, VMD uses the alternating multiplier
method to tackle the variational problemwithout a modemix-
ing issue [24]. Combining the VMD algorithm with the slope
entropy (SloE) method, a model based on VMD and SloE is
proposed for the analysis of hydroacoustic signals. The VMD
is first used to decompose the hydroacoustic signal into a
series of intrinsic mode functions, and then the recognition
rate is calculated by the k-nearest neighbour (KNN) algo-
rithm. The results show that the recognition rate of the hybrid
method of SloE and VMD is the highest under single feature
conditions [25]. The VMD method is used to decompose the
original signal, and the two-way long and short term memory
network (BILSTM) is used to predict the decomposed signal.
The results show that the VMDmethod can effectively reduce
the non-stationary characteristics of the original signal, thus
improving the prediction accuracy of the model [26]. Fusing

VMD with a least squares support vector machine model
can effectively improve the prediction of the model. First,
the original signal is decomposed using the vmd method.
For each component, a least squares support vector machine
is used for prediction separately; finally, the prediction results
of each sub-series are superimposed and reconstructed to
obtain the final prediction value. The experimental results
show that the prediction results obtained based on this method
have higher accuracy [27].

On this basis, this study proposes a broad learning (BL)
model based on improved variational mode decomposition
(VMD), and applies it to regional flood prediction. Firstly, the
regularised broad learning (RBL) is improved using orthog-
onal triangular decomposition (QR) and forgetful online
sequence learning mechanism (FOS) to construct a FOS-
QR-RBL model to improve the computational efficiency and
generalisation capability of the BLmodel. Then, the endpoint
effect of VMD is solved by grey correlation analysis, and
the parameters of VMD are determined by particle swarm
algorithm. Finally, based on the ’’decomposition-synthesis-
prediction’’ strategy, the improved VMD is combined with
the FOS-QR-RBL to build an improved VMD-FOS-QR-RBL
flood prediction model, which can effectively improve the
accuracy and reliability of flood prediction, and thus enhance
the capability and efficiency of regional disaster prevention
and mitigation.

The rest of the paper is organized as follows. Section 2
presents the relevant theory, Section 3 focuses on the model
construction, Section 4 presents the experimental results and
analysis, and Section 5 focuses on the conclusions and future
prospects of the study.

II. CORRELATION THEORY
A. FOS-QR-RBL
The broad learning model (BL) was proposed by Chen et al.
[28] in 2018. The training process of the BL model does
not require repeated iteration of samples, so compared with
traditional backpropagation neural networks and deep neural
networks, BL has the advantages of simple structure and
accurate modeling [29]. FOS-QR-RBL first introduces regu-
larization items on the basis of BL model [30], then uses QR
decomposition to redefine the output of the BL enhancement
layer [31], and finally introduces an online sequence learning
and forgetting mechanism. Compared with the traditional BL
model, FOS-QR-RBL has the advantages of simple calcula-
tion structure, short training time and strong generalization
ability [32]. Figure 1 shows the topology of the broad learning
model.

For any given training sample X ,Y , after n groups of
feature mapping, the feature matrix Zn can be defined as
formula (1):

Zi = σ (XWei + βei) , i = 1, 2, . . . , n (1)

where X ∈ RN×M , N is the number of input samples, M
is the dimensionality of each sample, Wei and βei are the
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FIGURE 1. Topological structure of broad learning model.

enhancement layer weight and bias, respectively; σ is the
activation function.

Then connect Zn to the enhancement layer node
for nonlinear transformation. The output matrix Hm of
the j-th group of enhanced nodes can be defined as
formula (2):

Hj = ξ
(
ZnWhj + βhj

)
, j = 1, 2 . . . .,m (2)

where, ξ is the activation function of the enhancement layer
and Whj and βhj are the output weight and bias terms of the
enhancement layer, respectively. Therefore, the final output
of BL can be defined as follows:

Y = (Z1,Z2, . . . ,Zn,H1,H2, . . . ,Hm)W = (Zn,Hm)W

(3)

where Y ∈ RN×C ,C is the dimensionality of the
corresponding output and W is the weight connecting
the feature node layer and the enhanced node layer to
the output layer, which can be obtained by calculating
the ridge regression of (Zn,Hm) and Y [33], [34], [35],
[36], [37].

W = (Zn,Hm)+Y (4)

The standard BL model is based on the principle of empir-
ical risk minimization, and the training process is prone
to overfitting. Regularization theory effectively solves this
problem [38]. The mathematical model of regularized broad
learning (RBL) can be expressed as:

W =
(
Zn,Hm)T[(Zn,Hm) (Zn,Hm)T

+
I
C

]+
Y (5)

Among them, C is the regularization coefficient, and I is the
sample size [39], [40].

In the process of determining the output of the RBL
enhancement layer, QR decomposition is used to redefine the[
(Zn,Hm) (Zn,Hm)T + I

C

]+
solution scheme. Compared

with the standard RBL model, QR-RBL has the advantages

of simple calculation structure and fast convergence
speed [41], [42]. Among them, the output of the enhancement
layer of QR-RBL is defined as follows.

E+ = R−1l+1Q
T
l+1

=

[
R−1l −R

−1
l rl+1r

−1
l+1,l+1

0 r−1l+1,l+1

][
QTl
qTl+1

]
=

[
fl − R

−1
l rl+1f Tl+1
f Tl+1

]
(6)

where,Q is the orthogonalmatrix andR is the upper triangular
matrix; E+ =

[
(Zn,Hm) (Zn,Hm)T + I

C

]+
is the output of

the enhancement layer [43], [44], [45].
Forgetting mechanism is an effective method to gradu-

ally remove obsolete information and error data. Reference
[46] combined forgetting mechanism in OS-ELM algorithm
and proposed forgetting mechanism FOS-ELM algorithm.
In this paper, we introduce the forgetting mechanism into
OS-QR-RBL and propose the online sequence broad learn-
ing FOS-QR-RBL method based on the forgetting mecha-
nism, so that OS-QR-RBL can effectively remove the error
information and obsolete information data. FOS-QR-RBL is
mainly divided into two parts. The first part initializes the
output weight W with a small number of training samples;
the second part is the online learning stage [47]. When a new
sample is input, the weights W ,P of the new sample in the
hidden layer are obtained recursively, and the k-th iteration
calculates the definition ofW k as follows:

W k
= W k−1

+ PkETk
[
Yk − EkW k−1

]
(7)

where Pk is defined as formula (8):

Pk = Pk−1 − Pk−1ETk
(
Iu + Ek−1Pk−1ETk

)−1
EkPk−1 (8)

where Iu is the identity matrix [48], [49], [50].
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FIGURE 2. VMD decomposition of original runoff series.

B. VMD
VMD is an adaptive and completely non-recursive mode vari-
ation and signal processing technology, which overcomes the
problem ofmode component aliasing existing in the empirical
mode decomposition method and has a more solid mathe-
matical theoretical foundation [51], [52]. Figure 2 shows the
decomposition effect of the VMD method on the original
runoff series, where signal is the original waveform, IMFi is
the ith component signal, and R is the residual component,
and its implementation can be described as follows:

For a given sample X , the variational problem is described
as using the centre frequency to solve the mode function
uk (t) , k = 1, 2, . . . , k to minimize the sum of bandwidth
estimates for each mode. The sum of all mode functions is
equal to the original sample X , and the specific expression is
as follows:

min
{uk },{ωK }

{
k∑

k=1

∥∥∥∥∂t [(δ (t)+ j
π t

)
uk (t)

]
e−jωk t

∥∥∥∥2
2

}

s.t.

{
k∑

k=1

uk = X

}
(9)

where {uk} = {u1, u2, . . . , uk} represents the K eigen-
mode components (IMF) obtained by decomposition; {ωk} =
{ω1, ω2, . . . , ωk} represents the centre frequency of the com-
ponent; ⊗ is the convolution calculation, K is the total num-
ber of mode functions, δ(t) is the Dirac distribution, and
e−jωk t is the centre frequency of the mode function on the
complex plane, where K is the centre frequency of the mode
function.

To obtain the optimal solution of the above constraint
variables, the secondary penalty factor α and Lagrange
multiplication operator λ(t) are introduced. The secondary

penalty factor is used to ensure the reconstruction accuracy of
the signal in the presence of Gaussian noise, and the Lagrange
operator is to maintain the constraint conditions as strict, and
are defined as follows:

L ({uk} , {ωk} , λ)=

×

〈
λ(t), fRunoff (t)−

∑
k

uk (t)

〉

+

∥∥∥∥∥fRunoff (t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+α
∑
k

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

(10)

In the formula, the iterative terms {uk} , {ωk} and λ use the
alternating direction multiplier method to obtain the saddle
point of the augmented Lagrangian expression through itera-
tive updating [53],[54], [55], [56], [57], [58], [59], [60], [61].

III. CONSTRUCTION OF THE FLOOD FORECASTING
MODEL
A. END EFFECT IMPROVEMENT SCHEME BASED ON THE
GREY RELATIONAL ANALYSIS
VMD uses the local extrema of the original signal to obtain
the envelope estimation function, and then obtains each IMF
component. Since it is impossible to accurately determine
whether the endpoint is a maximum value or a minimum
value, there is an error in obtaining the envelope estimation
function, which makes the IMF component lose its physical
meaning. At present, the main solution to the end effect is
to extend the signal at both ends, such as the correlation

4210 VOLUME 11, 2023



Y. Liu et al.: Flood Forecasting Method Based on Improved VMD-FOS-QR-RBL

wave extension method, the mirror image extension method,
and the extreme value extension method. This study is based
on grey relational analysis to extend the original signal to
improve the end effect of VMD. The basic realization is as
follows.

Suppose the maximum value sequence of the original sig-
nal x(t) is M (i) , i = 1, 2, . . . ,n, and the minimum value
sequence is N (j) , j = 1, 2, . . . ,m. Assuming that the first
extreme point of the left end point is a maximum value, the
waveform from the left end point x(0) to the first extreme
point M(0) is taken as the research object, which is defined
as W0.
TakeM(i) as the corresponding point ofM(0) respectively

and intercept the waveletWi of the same length asW0. Stan-
dardize W0 and Wi respectively, where the standardization
equation is defined as follows.

W ′i =
Wi(k)
Wi(0)

, k = 1, 2, . . . , l (11)

3) Calculate the gray correlation coefficient ηW0Wi
(k)

between W0 and Wi, as in (12), shown at the bottom of the
page.

Among them, ρ ∈ (0, 1) is the resolution coefficient,
which is usually 0.5. When ηmax (k)=ηW0Wi

(k) is assumed,
several sub-signals before Wi are extended to the left end of
the original signal.

FIGURE 3. Schematic diagram of VMD endpoint extension.

Extend the right end of the original signal in the same
way, then perform VMD decomposition on the extended
signal, and intercept each component according to the time
corresponding to x(t) to obtain a VMD decomposition result
that improves the end effect. Figure 3 shows the schematic
diagram of VMD endpoint extension.

B. OPTIMIZATION OF VMD BY PARTICLE SWARM
OPTIMIZATION
VMD has better decomposition effect on complex data,
strong resistance to noise interference, and higher accuracy of
decomposition results. However, VMD needs to pre-set two
parameters of bandwidth limit α and number of decomposi-
tion k . Therefore, the article adopts particle swarm optimiza-
tion algorithm (PSO) to optimize the parameters of VMD and
introduces fuzzy entropy as the fitness function of particle
swarm to optimize the parameters of VMD for calculation
[62], [63]. The fuzzy entropy can measure the complexity
of the time series, and the larger fuzzy entropy represents
the higher complexity of the series, and the opposite is the
lower complexity of the series. The overall flow of the vmd
parameter optimization is given in Figure 4 and the basic idea
is as follows:

FE (m, n, r) = lim
N→∞

[
ln
∅
m (n, r)
−

ln∅m+1 (n, r)
]

(13)

1) Initialise the parameters of PSO by setting the popula-
tion sizeN to 30, the inertia factorw to 0.5, the learning
factors c1 and c2 to 0.5 respectively, the maximum
number of iterations t to 50, the position and velocity
to random values, and the fuzzy entropy FE (m, n, r)
as the fitness function of the particle swarm algorithm,
defined as follows.

where m, n and r represent the window size, boundary gradi-
ent and width respectively. ∅ is the affiliation function.
2) Randomly generate the particle position (k, α) and par-

ticle velocity Vid in the particle population, then use VMD to
decompose the original data and calculate the fuzzy entropy
value corresponding to each particle position for the signal at
different particle positions (k, α).

3) The size of the fuzzy entropy FE (m, n, r) is updated
by constantly comparing it with the size of the fuzzy
entropy FE (m, n, r), so that the individual extremes and
the global extremes are optimal. The particle popula-
tion consists of n particles in d-dimensional space, and
the position of the ith particle is denoted as Xi =

(xi1, xi2, . . . , xid ) , i = 1, 2, . . . , n; the velocity of the ith
particle is Vi = (vi1, vi2, . . . , vid ) , v = 1, 2, . . . , n; the
optimal solution searched by the ith particle is noted as:
Pbest = (Pi1,Pi2, . . . ,Pid ); the global optimal solution for
the whole population is: gbest =

(
Pg1,Pg2, . . . ,Pgd

)
; and the

particle velocity and position updates are given by:

V t+1
id = W t

× V t
id + C1r1

(
Ptid − X

t
id
)
+ C2r2

(
Ptgd − X

t
gd

)
(14)

X t+1id = X tid + V
t+1
id (15)

ηW0Wi (k) =
1
n

1∑
k=1

min min |W0 (k)−Wi (k)| + ρmax max |W0 (k)−Wi (k)|
|W0 (k)−Wi (k)| + ρmax max |W0 (k)−Wi (k)|

(12)
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FIGURE 4. Flow chart of the PSO-VMD algorithm.

where t is the current number of iterations; r1 and r2 are
uniformly distributed random numbers, and c1 and c2 are
acceleration constants.

4) Loop steps 2 to 3, ending the loop when the number of
iterations reaches a preset maximum, resulting in the optimal
number of decomposition layers and penalty factor (k, α).

C. CONSTRUCTION OF PARALLEL IMPROVED
VMD-FOS-QR-RBL METHOD
By fusing the improved VMD with the FOS-QR-
nRBL model, a flood forecasting model based on the
’’decomposition-synthesis’’ strategy (improved VMD-FOS-
QR-RBL model) is proposed. The flow chart of Improved
VMD-FOS-QR-RBL model construction is shown in Fig-
ure 5, and its basic realization is as follows:

1) Taking the Xiaolangdi Reservoir in the Yellow River
Basin as the experimental object, collect the runoff data of
Xiaolangdi Reservoir in real-time and perform data cleaning
work such as missing value filling, field deduplication and
outlier processing, and normalizing the clean data. The nor-
malization function is defined as follows:

X∗ =
X −min(X )

max (X)−min(X )
(16)

where max (X) is the maximum value of the sample and
min(X ) is the minimum value of the sample.

2) After the data is normalized, the boundary is extended
first, and then the extended data is used to initialize and
optimize the vmd related parameters, which mainly include
balance parameters, noise tolerance, optimal mode number,
and initialized centre frequency. The optimization equation

is defined as follows:

J (θ) =
1
2

m∑
i=1

hθ
(
x i
)
− yi, Jθ (17)

where h (x) represents the reconstruction data after VMD
decomposition, and y represents the true value. According to
the PSO-VMDalgorithm, the balance parameters, noise toler-
ance, optimal mode number, and initialized centre frequency
were set to 8605, 0, 18, and 1, respectively.

The final decomposition results are obtained by intercept-
ing the boundary positions that correspond to the original
signal after the VMD decomposition. The training set, which
makes up 65% of the data for each IMF component, and the
test set, which makes up 35% of the data, are both inputs to
the model. Finally, the historical samples from the previous
n days are used as input, and the samples from the predicted
n+m days are used as output. The prediction results from the
individual components are then added together to produce the
final prediction results.

4) The flood control operation of reservoirs and hydrolog-
ical stations can be briefly described as finding the optimal
control plan for each reservoir according to its storage capac-
ity and inflow process during the operation period. To satisfy
various constraints, the flood process through the downstream
flood control point of the reservoir should be as flat as pos-
sible and the peak discharge should be as small as possible.
The objective function can be expressed as

Fmin −Min
T∑
t=1

Q2
t =Min

T∑
t=1

(
N∑
i=1

Ri,t−τi

)2

(18)

where Fmin is the flood control benefit; Qt is the flood flow
at the flood control point C during the t period; T is the total
number of periods; and Ri,t−τi is the outflow flow of the i
reservoir during the i− τi period.

D. MODEL EVALUATION
The Nash–Sutcliffe coefficient (Ens), mean absolute error
(MAE), relative error (RE), and run time were selected as
evaluation criteria in the validation process to comprehen-
sively determine the algorithm’s reliability, stability, accu-
racy, and execution efficiency. The Ens was used to evaluate
the reliability of the prediction model. Its value range is
(−∞ , 1]; when Ens is close to 1, the overall results are
credible, but the process simulation error is large. When Ens
is significantly below 0, the model is not credible. The RE
and MAE are used to evaluate the real-time error and overall
error, respectively. Definition of each indicator is as follows:

Ens = 1−


n∑
i=1

(
Qo − Qf

)2
n∑
i=1

(
Qo − Q̄o

)2
 (19)

MAE =
1
n

n∑
i=1

∣∣Qf − Qo∣∣ (20)
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FIGURE 5. Flow chart of Improved VMD-FOS-QR-RBL model construction.

RE =
(
Qo − Qf
Qo

)
∗ 100% (21)

among them Qo,Qf , Q̄o, Q̄f , are the observed value, pre-
dicted value, average observed value, and average predicted
value, respectively.

IV. RESULTS AND ANALYSIS
Xiaolangdi Reservoir is the only integrated water conser-
vancy hub that can control the downstream runoff of the
Yellow River, which has superior natural conditions and a
significant strategic position, out of the 32 hydrological sta-
tions in the Yellow River basin. In a 390,000 data set, the
daily observed runoff data from Xiaolangdi and Tongguan
hydrological stations are used to test the model’s applica-
bility and robustness. The results of the prediction curves
are displayed in Figure 6 and the article uses the benchmark
models QR-ELM, EEMD-FOS-QR-RBL, and CEEMDAN-
FOS-QR-RBL for comparison and validation.

The prediction curves for the observed value curve,
EEMD-FOS-QR-RBL, CEEMDAN-FOS-QR-RBL, QR-
ELM, and the improved VMD-FOS-QR-RBL model are
shown in Fig. 6 in the colours red, blue, green, purple,
and orange, respectively. Figures 6(a) and 6(b) show the
results of the Xiaolangdi hydrological station’s prediction
for the next one and seven days, while Figures 6(c) and 6(d)
show the results of the Tongguan hydrological station’s
prediction for the same time periods. As can be seen from

the figure, the performance of the VMD-FOS-QR-RBL and
CEEMDAN-FOS-QR-RBL models is similar for low latency
future forecasts, but as the number of forecast days increases,
the VMD-FOS-QR-RBL has higher accuracy relative to the
CEEMDAN-FOS-QR-RBL and EEMD-FOS-QR-RBL, QR-
ELM was the least effective, due to the fact that the VMD
method is effective in improving the robustness and gener-
alization of the broad learning model. In addition. Fixing
the number of future days and adjusting the features and
sequence length of the predicted sequence, VMD-FOS-QR-
RBL is highly stable compared to other models.

Figure 7 provides the box plots of the model’s relative
errors at the two hydrological stations. The relative
errors for forecasting the Xiaolangdi hydrological sta-
tion for the following one and seven days are shown in
Figures 7(a) and 7(b), while the relative errors for forecasting
the Tongguan hydrological station for the following one
and seven days are shown in Figures 7(c) and 7(d). The
median error is indicated by the solid line in the centre of
the box, and the dashed line in the figure represents the
mean value of the errors. As can be seen from the graph,
the VMD-FOS-QR-RBL model has an error interval, median
and mean error within 0.5 overall, followed by the FOS-QR-
RBL model, which is within 3.5 overall. The errors of the
FOS-QR-RBL coupled EEMD and CEEMDAN are larger
when the prediction period is short, and the relative errors
gradually decrease as the prediction period increases. The
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FIGURE 6. Runoff prediction curves of different models at different hydrological stations.

VMD-FOS-QR-RBL model, on the other hand, has a smaller
overall prediction error, higher accuracy and is more stable
compared to the other models. Due to the mode confounding
and endpoint effects of the EEMD and CEEMDANmethods,
themodel suffers from signal distortion during non-stationary
signal processing, which affects the prediction accuracy.

To verify the validity and stability of the models, 50 Monte
Carlo simulations were conducted for each model in this
paper, using different input data as variables. The mean
statistic reflects the average level of the model predictions,
and the variance statistic reflects the degree of bias of the
model predictions. the lower the mean value of MAE and
the higher the mean value of Ens, the better the average
level of the model predictions, and the lower the variance
indicates that the model predictions are more stable. The
means and variances of MAE and Ens predicted by differ-
ent models at different time levels are shown in Table 1.
Compared to the EEMD-FOS-QR-RBL and CEEMDAN-
FOS-QR-RBL models, the improved VMD-FOS-QR-RBL
predicted 80.30% and 84.10% lower mean values for MAE,

15.51% and 28.16 higher mean values for Ens, and 99.72%
and 99.60% lower variances for MAE, respectively. It shows
that the improved VMD method has higher non-stationary
handling and signal analysis capability compared to EEMD
andCEEMDAN, and is better able to improve the validity and
stability of the FOS-QR-RBL model prediction.

The running times of the FOS-QR-RBL model proposed
in the article and the conventional broad learning model are
given in Table 2. Compared with RBL and QR-RBL, the
running efficiency of the FOS-QR-RBL model improved by
35 and 23.68%, respectively, indicating that the incorpo-
rated online sequence forgetting mechanism can effectively
improve the running efficiency of the model.

The reconstruction error of the improved VMD method
based on grey correlation analysis is given in Table 3, and
the results show that the reconstruction error of the improved
VMD is reduced by 94.71%. The grey correlation analysis
method effectively mitigates the endpoint effect of the VMD
method by broadening the original signal and reduces the
reconstruction error.

4214 VOLUME 11, 2023



Y. Liu et al.: Flood Forecasting Method Based on Improved VMD-FOS-QR-RBL

TABLE 1. Comparison of the numerical results for various evaluation indicators.

The combined results shown in Figures 6 and 7,
Tables 1 and 3 show that the improved VMD-FOS-QR-
RBL model exhibits better prediction results compared to the
other benchmark models because the online sequence forget-
ting mechanism and the improved VMD method effectively

improve the accuracy and robustness of the FOS-QR-RBL
model predictions. Compared with the unimproved VMD-
LSTM model, the improved VMD-FOS-QR-RBL model
exhibited higher accuracy, confidence, and smaller error in
the prediction results at different time scales.
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FIGURE 7. Box plots of relative error of different models at different hydrological stations.

TABLE 2. Comparison of the computing time of various models.

TABLE 3. Comparison of the computing time of various models.

V. CONCLUSION
We propose an improved parallel VMD-FOS-QR-RBL-
based flood forecasting model based on the ’’decomposition-
synthesis-forecasting’’ strategy, using forgetting online

sequences, QR decomposition, and parallel computing to
improve the forecasting accuracy and computational effi-
ciency of the broad learning model, and using grey corre-
lation analysis to suppress the endpoint effect of VMD to
overcome the problems of low accuracy, poor credibility, and
low efficiency in flood forecasting. The experimental results
show that the improved parallel VMD-FOS-QR-RBL model
proposed in this paper has a high degree of generalisation
and robustness for various prediction steps. Although par-
allel computing can effectively improve the computational
efficiency of the model, the addition of the VMDmethod and
optimization algorithm requires the model’s overall compu-
tational efficiency to be improved further.
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