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ABSTRACT Deep embedded clustering (DEC) is a representative clustering algorithm that leverages
deep-learning frameworks. DEC jointly learns low-dimensional feature representations and optimizes the
clustering goals but only works with numerical data. However, in practice, the real-world data to be clustered
includes not only numerical features but also categorical features that DEC cannot handle. In addition,
if the difference between the soft assignment and target values is large, DEC applications may suffer
from convergence problems. In this study, to overcome these limitations, we propose a deep embedded
clustering framework that can utilize mixed data to increase the convergence stability using soft-target
updates; a concept that is borrowed from an improved deep Q learning algorithm used in reinforcement
learning. To evaluate the performance of the framework, we utilized various benchmark datasets composed
of mixed data and empirically demonstrated that our approach outperformed existing clustering algorithms
in most standard metrics. To the best of our knowledge, we state that our work achieved state-of-the-art
performance among its contemporaries in this field.

INDEX TERMS Clustering algorithm, mixed data, deep learning.

I. INTRODUCTION
Currently, because big data has been utilized extensively
in many research fields, data mining experts must analyze
databases from multiple perspectives. However, extracting
potentially useful information from big data remains chal-
lenging. Accordingly, researchers in scientific fields such as
pattern recognition, signal processing, bioinformatics, and
social network analysis, who inherently work with high-
dimensional and large-scale data, utilize various tools such as
dimensionality reduction techniques and clustering analysis
before conducting exploratory data analysis. In particular, the
potential usefulness of clustering analysis cannot be over-
looked, as it may provide a new perspective that data analysts
may have missed or not yet discovered. However, despite
the growing importance of clustering analysis, two problems
remain to be addressed.
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The first problem is that most existing clustering algo-
rithms assume all data features to be numerical. However,
in the real world, data collected from the medical, social, and
industrial fields also include nominal attributes, such as gen-
der, occupation, and blood type (i.e., categorical). Hereafter,
data with both numerical and categorical features are referred
to as mixed data. Before carrying out clustering analysis on
mixed data, data types are attempted to be unified either by
discretizing numerical features into categorical ones or by
encoding categorical features into numerical ones. However,
preserving the relationship between data attributes before and
after transformation and identifying a common evaluation
criterion are other issues.

The second problem is the scalability of the clustering
algorithms. High-dimensional data can be treated as embed-
ding vectors in a relatively low-dimensional latent space
using dimensionality reduction techniques. However, a prob-
lem arises in terms of data scalability. Some hierarchical
clustering algorithms solve this problem by first performing
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coarse clustering and then using the result as an input to
another clustering algorithm. Other algorithms, such as mini-
batch K-means, solve this problem by iteratively optimizing
the clustering objectives by sampling the input data in mini-
batch units. This mini-batch training style is natural for deep
learning-based methods that are highly scalable and general.

Deep embedded clustering (DEC) is a representative algo-
rithm that uses the deep learning framework [1]. The clus-
tering process in DEC can be divided into the following two
steps. In the first step, namely, pre-training, the weights of the
stacked autoencoder (SAE) model are learned by embedding
the input data as latent vectors in a low-dimensional space
and then restoring them. In the second clustering step, with
each embedded data and initial cluster centroids as input,
the clustering objective function is optimized by solving a
classification problem based on a soft assignment that deter-
mines which input data belongs to which cluster. Although
the clustering accuracy reported by DEC is impressive, it can
only handle numerical data, which is a challenge. In addition,
because the learning parameters of the classifier model and
cluster centroids are jointly optimized, the convergence may
be unstable owing to the moving target issue.

In this study, we propose an extended version of deep
embedded clustering that also works with categorical input
features and mitigates the moving target issue with a soft-
target update when optimizing the cluster objective func-
tion. The soft-target update is a technique that improves
deep reinforcement learning methods, such as DDPG [2]
and DQN [3], which helps to train learning parameters in
a more stable manner by frequently updating the behavior
policy network with respect to the target policy network.
When the clustering performance is evaluated on UCI public
datasets, it is empirically verified that the proposed method
performs better than other existing methods operating on
mixed data.

The main contributions of this study are summarized as
follows:

1) We extend the DEC algorithm so that it can handle
categorical data types as well as numerical ones.

2) We improve the convergence stability of the DEC algo-
rithm when optimizing clustering objectives with a
soft-target update.

3) The proposed method outperforms other clustering
methods for mixed data in most standard metrics.

The remainder of this paper is organized as follows. The
related research section introduces clustering methodologies
using categorical data and describes the clustering algorithms
used for comparatively evaluating the performance of the
proposed method. The methodology section describes the
proposedmethod in detail regarding how it usesmixed data as
input and improves the convergence stability of DEC. In the
experiments section, the performance of the proposedmethod
is evaluated on UCI public datasets and compared with exist-
ing methodologies. Finally, we provide concluding remarks
on the proposed algorithm in the discussion & conclusion
section.

II. RELATED RESEARCH
Various investigations have been conducted to apply cluster-
ing analysis to mixed data, which can be categorized into the
following three categories [4].

In the first category, various approaches have been used
to transform the categorical features into numerical ones.
The simplest transformation method would be 0-1 encoding,
which encodes each categorical feature value with a 0-1
indicator vector [5]. Although it is intuitive and can be easily
converted back to the original data, it assumes that every
categorical feature value is independent of each other; all
pairwise distances are 1 and inner products are 0, which is
often violated in real-world data. In addition, as the number of
items in the categorical features increases, this approach suf-
fers from high dimensionality [6]. To alleviate this issue, one
can apply dimensionality reduction techniques, such as prin-
cipal component analysis (PCA) [7], or use another embed-
ding method, such as binary encoding, zero-appearance
encoding [8], etc. Additionally, by leveraging deep learning
frameworks, the distributed representation learning model
of Word2Vec-style that yielded record-breaking success in
the past decade in the natural language processing field can
be used [9].

In contrast, in the second category, algorithms inversely
transform numerical features into categorical ones via various
discretization methods. This method utilizes similarity-based
metrics, graph partitioning, or information entropy when
discretizing categorical features [10], [11], [12], [13], [14].
However, as a combination of numerical features is trans-
formed into a single nominal value, a loss of information is
inevitable, e.g., the difference between the numerical features
in the original space.

The third category attempts to design a generalized clus-
tering criterion that applies to both numerical and categorical
features. For example, [15] utilized Gower’s distance as a
dissimilarity metric for mixed data and applied k-prototypes
algorithms for clustering. In another approach, the Goodall
similarity metric was used to quantify the similarity between
objects [16]. Alternatively, the distance between categorical
values can be measured using Hamming distance, Ahmad’s
distance [17], context-based distance [18], etc. [19]. A deep
learning model based on an autoencoder architecture can
be utilized to find a suitable feature map that transforms
both categorical and numerical features into a common space
using locality-preserving projection [20]. A general cluster-
ing framework based on unified object-cluster similarity has
been proposed recently in the literature [21].

In this study, we mainly conducted experiments using
our suggested algorithm on two methods that belong to
the first category: one-hot encoding and embedding layer.
One-hot encoding was used to verify whether the superior-
ity of the DEC model still holds when categorical features
were added with minimal modification. For the embedding
layer counterpart, a simple embedding-lookup operation is
added just before concatenating all input features at the
pre-training step.
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A. CLUSTERING METHODS FOR COMPARISON
We measured the quality of the clusters created using the
proposed method in terms of the rand index (RI) and nor-
malized mutual information (NMI) to quantitatively compare
the proposed method with some of the existing clustering
methods for mixed data reported in [20].

This type of method, called subspace clustering, aims to
identify the features of interest that the true clusters might
reside in. [22], a.k.a. WKM, proposed a modified version of
the K-means by iteratively updating the weights of features
based on the current data partitions. By incorporating the
weighted entropy along with the clustering objective func-
tion, [23] extends the WKM framework, which we denote
as EWKM. The OCIL algorithm in [21] is based on object-
cluster similarity, which is computed separately for numerical
and categorical features. [4], denoted by WOCIL, improves
OCIL algorithm by considering the varying contribution of
different features when forming the clusters. In this approach,
the weights of the features for each cluster are dynamically
updated when optimizing the object-cluster similarities.

III. METHODOLOGY
In this section, we introduce the proposed network architec-
ture and training process for clustering in detail. First, for a
better understanding, we explained the overall network archi-
tecture. To implement clustering in the latent data space, our
approach utilized an autoencoder structure based on a deep
neural network for non-linear mapping. The reason for clus-
tering in a latent data space was that it is difficult to directly
cluster mixed data using general distance or density-based
clustering methods, and a latent data space can efficiently
prevent the high dimensionality problem [6]. Therefore, clus-
tering in our method was conducted in the latent vector space
instead of the original data space. The original data in space
X were converted to a latent vector in Z using the non-
linear mapping method fθ :X → Z , where θ is the trainable
parameter and Z is the latent space. Second, all training steps
were covered. The training steps mainly comprised two parts,
namely, the pre-training and clustering steps. In each step,
the mixed data were utilized for pre-training the network, and
clustering was implemented using the soft assignment [1] and
soft-target update methods [2] for better performance.

A. NETWORK ARCHITECTURE
The entire network architecture of the proposed algorithm
is illustrated in Figure 1. The embedding layer automati-
cally transformed categorical data into machine-interpretable
data. In the encoding part, the autoencoder architecture com-
pressed the data information so that it represented in latent
space. The compressed latent vector was restored in the
decoding part. The numerical features were reconstructed
using the linear activation function, and categorical features
were restored using the Softmax activation function when
the one-hot encoding was used for an embedding method.
Additionally, trainable parameters indicating cluster centers

FIGURE 1. The complete network architecture.

existed in the latent space. These parameters were utilized
for clustering using the Student’s t-distribution [24]. The
parameters in the autoencoder and latent spacewere trained to
minimize the sum of the reconstruction and clustering losses.

B. TRAINING STEPS
The training processes are mainly composed of two steps: the
first step is the pre-training step and the second step is the
clustering step. This is depicted in Figure 2 in detail.

1) PRE-TRAIN STEPS
In the pre-training step, a deep autoencoder was pre-trained
to represent the original data in the latent vector space. The
datasets with mixed data were composed of numerical and
categorical data transformed in a machine-interpretable for-
mat using an embedding layer or one-hot encoding method.
The losses for optimizing the deep autoencoder were differ-
entiated according to the input data type. In our approach,
the reconstruction losses were composed of the mean cross-
entropy loss and mean squared error based on the input data
type. To calculate the reconstruction loss for categorical
features, we substituted this with a multi-class classifica-
tion problem for better performance. Thus, the mean cross-
entropy was used for this part because cross-entropy or KL
divergence loss was more effective in optimizing the neural
network weights in terms of training efficiency. To update the
weights responsible for t he categorical and numerical inputs
equally, we utilized the mean squared error and mean cross-
entropy loss.

2) CLUSTERING STEPS
In the clustering step, the k-means method [25] was applied
to determine the initial centroids in the latent space. It also
calculated the clustering loss defined as the KL divergence
between a target distribution and soft assignment using Stu-
dent’s t-distribution [1]. The soft assignment, target distri-
bution, and KL divergence between them were computed as
follows:

qij =
(1+ ‖ zi − µj ‖2 /a)−

α+1
2∑

j′ (1+ ‖ zi − µj ‖2 /a)
−
α+1
2

(1)
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FIGURE 2. Training steps: First step is for pre-training, while second step
is for clustering.

pij =
qij/fj∑
j′ q

2
ij′/fj′

where fj =
∑
i

qij (2)

L = KL(P ‖ Q) =
∑
i

∑
j

pij log
pij
qij

(3)

However, we consider that this step probably increased
the reconstruction loss because the latent vector distribution
trained in the pre-training step would be distorted while mini-
mizing the clustering loss. This eventually decreased the clus-
tering performance. To resolve this problem, we introduced
two novel methods. First, we trained our network to minimize
reconstruction and clustering losses simultaneously, while
implementing the clustering step. This would maintain or
change the latent vector distribution in a stable manner even
if the clustering step proceeded. Second, we adopted the soft-
target network method [2] to achieve better convergence.
This is because, to minimize the KL divergence between
the soft assignment and target distribution, we needed to
calculate the target distribution for each epoch or time-step
that we defined. However, if the difference between the target
distribution and soft assignment values was quite large, the
convergence stability of the network parameters decreased.
Therefore, we utilized a soft-target update method using a
target network. The entire training algorithm is described in
Algorithms 1 and 2.

3) SOFT-TARGET UPDATE
During the clustering step, the target network was duplicated
using the autoencoder network. After that, at every training
time-step, the autoencoder provided the target distribution p.
Accordingly, the weights of the target network were updated
gradually [2] following the equation. This update method

Algorithm 1 The Pre-Training Step for Deep Embedding
Clustering With Mixed Data
Input: Mixed data for clustering
Parameter: Autoencoder model weights
Output: Pre-trained autoencoder
1: Initialize autoencoder weights θ
2: Let epoch = 1
3: for epoch = 1 to T do
4: Let step = 1, M = ceiling(data size / batch size)
5: for step = 1 to M do
6: Concatenate input features Xconcat according to the

input data type from current batch of data
7: Perform encoding l = fencoder (Xconcat ) and decod-

ing Yconcat = fdecoder (l)
8: Calculate the reconstruction loss according to input

data type
MSE = 1

n

∑
(Ynumerical − Xnumerical)2

MCE = 1
n

∑
(−Xcateogrical log(Ycategorical))

9: Update autoencoder parameters θ by minimizing
reconstruction loss: Lrecon = MSE +MCE

10: end for
11: end for
12: return pre-trained autoencoder

improved not only the network convergence stability but
also the clustering performance. The difference between the
existing method and soft-target update method is depicted in
Figure 3.

Wtarget← τ ∗Wmodel + (1− τ ) ∗Wtarget (4)

IV. EXPERIMENTS
In this section, the performance of the proposed clustering
method is numerically presented. To verify the cluster-
ing capability of our algorithm, we assess the perfor-
mance of existing clustering algorithms, namely, WKM [22],
EWKM [23], OCIL [21], andWOCIL [4], on public datasets,
and compare the results with that of our clustering method.

A. DATASET
Four public datasets from the UCI machine learning data
repository (URL: http://archive.ics.uci.edu/ml/) were chosen
to validate the performance of our method. The first dataset
was the ‘‘Heart Disease’’ dataset composed of 303mixed data
entries. The features of the ‘‘Heart Disease’’ dataset consisted
of seven categorical variables and six numerical variables
related to the features of heart disease patients. Thus, the
objective of this clustering was to determine whether a person
is healthy or sick. The ground-truth label was also defined as
healthy and sick. The second dataset is the ‘‘Credit Approval’’
dataset. The number of data entries was 690, which had nine
categorical features and six numerical features. The goal of
this clustering was to determine whether a credit card appli-
cation is approved based on related features. Thus, the ground
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FIGURE 3. Target update methods: A) existing method and b) soft-target update method.

truth labels were credit card approval and non-approval.
Third, the ‘‘German Credit’’ dataset was selected to test our
method. It contains 1000 individual information data entries
consisting of thirteen categorical features and seven numeri-
cal features. Similar to the credit approval dataset, the ground
truth labels consisted of whether approved or not. Finally,
the ‘‘Adult’’ dataset was chosen for the experiment. This
dataset consisted of 45222 data entries, each having eight
categorical and six numerical features. The ground truth label
was whether a person earns more than $50K/year based on
census data.

B. PERFORMANCE METRICS
Because the ground truth labels for each dataset exist,
we adopted two metrics, namely, rand index (RI) and normal-
ized mutual information (NMI), to evaluate the performance
of our algorithm against that of existing algorithms. RI values
are defined as follows:

RI =
TP+ TN

TP+ FP+ FN + TN
(5)

where TP, TN, FP, and FN denote the true positive, true nega-
tive, false positive, and false negative, respectively, regarding
the class label. NMI values are represented as follows:

MI(U ,V ) =
|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj|
N

log
N |Ui ∩ Vj|
|Ui||Vj|

(6)

H (U ) = −
|U |∑
i=1

P(i) logP(i) (7)

NMI(U ,V ) =
MI(U ,V )

mean(H (U ),H (V ))
(8)

where |Ui| is the number of samples in cluster Ui and |Vi| is
the number of samples in cluster Vi. N is the total number of
data points.

C. HYPER-PARAMETERS
https: //www.overleaf.com/project/62cf6df01713fed84b516-
281 As shown in Fig. 1, our approach is fundamentally based
on the deep learning framework. Thus, hyper-parameter tun-
ing is a challenging issue when utilizing our approach in
general. This is because even if the clustering performance
is acceptable, the method is difficult to use if the hyper-
parameter tuning process is too complicated. Thus, in our
experiments, to prove the generality of our method, we con-
ducted all experiments with the same hyper-parameters
except the drop-out rate and batch size, which were tuned
according to the data size. This is reported in Table 3.
In all experiments, the autoencoder architecture consisted of
50-50-200-5-200-50-50 layers, and the latent vector size
was 5. Additionally, the learning rate was 0.01, which gener-
ally decreased by a factor of 0.1 every 100 epochs. The soft-
target update parameter was defined as 0.01 as well. Finally,
we prove that our algorithm can be applied to any dataset in
general and shows nearly state-of-the-art performance when
performing clustering on datasets with mixed data.

D. COMPARED ALGORITHMS
We assess the performance of our clustering approach com-
pared with that of existing algorithms, namely, WKM,
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TABLE 1. Clustering performance with respect to RI of different algorithms on various datasets with mixed data.

TABLE 2. Clustering performance with respect to NMI of different algorithms on various datasets with mixed data.

Algorithm 2 The Clustering Step for Deep Embedding
Clustering With Mixed Data Using Soft-Target Network
Input: Mixed data for clustering, pre-trained autoencoder
Parameter: Autoencoder model weights and cluster cen-
troids parameters
Output: Trained autoencoder, clustered data according to the
number of clustering centroids
1: Let epoch = 1, k = number of clusters
2: Implement standard k-means to initialize cluster cen-

troids {µj}kj=1
3: Duplicate pre-trained autoencoder fAE to generate target

network fT
4: for epoch = 1 to T do
5: Let step = 1, M = ceiling(data size / batch size)
6: for step = 1 to M do
7: Follow the pre-train step to get reconstruction loss
8: Compute qij from fAE and pij from fT

qij =
(1+‖zi−µj‖2/a)

−
α+1
2∑

j′ (1+‖zi−µj‖2/a)
−
α+1
2

pij =
qij/fj∑
j′ q

2
ij′
/fj′

9: Calculate clustering loss
Lcluster =

∑
i
∑

j pij log
pij
qij

10: Update autoencoder parameters θ by minimizing
both reconstruction loss and clustering loss
Ltotal = Lrecon + Lcluster

11: Update target network parameters
θT ← τ ∗ θAE + (1− τ ) ∗ θT

12: end for
13: end for
14: Label the data based on argmax(pij)
15: return trained autoencoder, clustered data

EWKM, OCIL, and WOCIL. Each stands for the weighted
K-means algorithm, entropy weighted K-means algorithm,
object-cluster similarity algorithm, attribute-weighted, and
attribute-weighted object-cluster similarity. The perfor-
mances of these algorithms are described in [4]. Cluster-
ing performances are reported in Tables 1 and 2 in detail.

TABLE 3. Used clustering hyper-parameters in each dataset.

FIGURE 4. RI of different algorithms on various datasets with mixed data.

To compare the performance of the method with soft-target
network update and that of the existing one, we implement
an ablation test for each dataset.

E. CLUSTERING PERFORMANCE
Clustering for datasets with mixed data is performed based
on the steps outlined above. In our experiment, we performed
clustering using both a trainable look-up embedding layer and
raw one-hot encoding. However, we found that the weights of
the embedding layer hardly changed from their initial states
even when the reconstruction loss was minimized. Therefore,
in our experiments, we mainly used the one-hot encoding
method for embedding categorical features and report only
the results of it. To prove the generality of our algorithm,
we proceeded with the pre-training step and then performed
the clustering step using the pre-trained model 50 times to
estimate the mean and standard deviation of each dataset.
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FIGURE 5. NMI of different algorithms on various datasets with mixed
data.

From Tables 1 and 2, and in Figures 4 and 5, we can observe
that our proposed algorithm outperforms the existing clus-
tering methods in all datasets. In particular, the NMI metric
performancewasmuch better than that of the comparedmeth-
ods. Additionally, we found that using the soft-target network
strategy is generally better than training without a soft-target
network in terms of bothNMI andRI. This empirically proves
that the soft-target network strategy is effectively applicable
to the proposed approach. Only in credit approval dataset,
the performance of WKM method is better than that of our
approach. The reasonmight be that the fundamental relevance
of the data is more suitable for theWKMmethod than it is for
the mixed DEC method.

V. DISCUSSION AND CONCLUSION
In this study, we proposed a novel deep embedded clustering
framework that is applicable to both numerical and categor-
ical data. This approach successfully extends the established
DEC model, yielding state-of-the-art clustering performance
on datasets with mixed data. In addition, based on the exper-
imental results, we proved that our method can be effectively
used without complicated hyper-parameter tuning and suc-
cessfully overcome the scalability issues.

In future research, similar to [26], our method can be
further extended to constrained clustering, which operates
in a semi-supervised setting to guide clustering and increase
accuracy. Furthermore, there is room for improvement in the
pre-training step, where other efficient embedding methods
for categorical features can be used instead of one-hot encod-
ing and embedding layer methods, such as Cat2Vec [9].
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