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ABSTRACT Given the growing installed capacity, wind energy will exert a profound impact on the
flexibility of modern energy systems. Wind power forecasting is a practical solution for dealing with
the attributed variations and uncertainties, balancing supply and demand, and improving the reliability
of the system. To achieve more accurate and generalizable forecast models, comprehensive data sets,
supplied by multiple wind farms owing to their spatio-temporal dependencies, are required. In addition, data
aggregation/collaboration across many wind farms scattered around a country is difficult, if not impossible,
due to complex administrative processes, industry competition, and data privacy and security concerns.
This article offers federated learning-based wind energy forecasting as a novel decentralized collaborative
modeling method capable of training a single model on data from many wind farms without jeopardizing the
privacy or security of data. To this end, rather than sending private data across sites, local model parameters
are securely transmitted. A comparison between the proposed private distributed model and non-private
centralized and fully private localized models indicates the high performance of the proposed federated
learning-based wind power forecasting with 87.96% accuracy. Enjoying the smoothing effect, the higher
generalizability of the proposed model with 83.63% accuracy is also substantiated in comparison to localized
and centralized approaches while the privacy of the underlying data is preserved.

INDEX TERMS Wind power forecasting, federated learning, deep learning, distributed collaborative
learning, data privacy and security.

I. INTRODUCTION

Wind energy is now a prominent renewable energy source and
an essential alternative energy solution for energy develop-
ment due to rising energy demand, dwindling global resource
reserves, and environmental protection concerns [1]. It is
clear that the utilization of wind energy has increased dra-
matically in recent years, thereby exerting a profound impact
on the flexibility of modern energy systems. According
to [2], the total capacity of all erected wind turbines globally
reached 837 GW by the end of 2021 indicated in Fig. 1.
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Despite all of the benefits associated with wind energy,
various issues such as variability, internal instability, and
uncertainty limit its high penetration into energy systems [3].
To overcome these difficulties and mitigate existing uncer-
tainties, accurate forecasting of wind power has been offered
as a dependable and low-cost solution [4].

The proposed forecasting techniques, based on methodol-
ogy, are categorized into four broad groups: physical, statis-
tical, intelligent, and hybrid models [5]. The physical models
focus on numerical weather forecasting and use various mete-
orological data collected from observation systems to fore-
cast wind speed. Although useful for long-term prediction
horizons, physical models require additional factors, such
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FIGURE 1. Total installed wind power from 2005 to 2021 worldwide.

as geographic and geomorphic conditions, temperature, and
pressure. Additionally, these techniques necessitate the use
of a lot of measuring sensors, which are not necessarily
economical [6]. Statistical and intelligent models use past
observations to extract time-varying relationships in time-
series [7]. Various statistical models for wind speed forecast-
ing have been introduced, including Kalman filter [8], Box.
Jenkins models (AR, ARIMA models, etc.) [9], and Particle
Swarm Optimization [10]. While statistical techniques per-
form well when estimating basic time series, they are inca-
pable of handling nonlinear data and perform poorly when
processing datasets with complex behavior. To address these
issues, intelligent models are adapted because of their great
capacity for learning volatility and nonlinearity. Data min-
ing methods such as artificial neural networks (ANNs) [11],
machine learning models [12], and deep learning [13] are
used to create those intelligent models. These models have
been widely utilized in recent years for a range of energy
and power system applications and have consistently outper-
formed other models for wind forecasting applications [14].

It has long been observed that the combined (relative)
variability of multiple wind generators (or solar genera-
tors) installed in a wider area is less than the variability
experienced by a single system [15]. Additionally, intel-
ligent models are susceptible to overfitting [16], limiting
their capacity to generalize when deployed to new datasets.
Uncorrelated locations represent a smoothing effect that can
reduce variability associated with wind turbines, and there-
fore, improve the accuracy and generalizability of determin-
istic forecasts [17], [18]. Typically, suggested frameworks
assume that all data records from smart meters are transmitted
over broadband networks to a centralized computing infras-
tructure for model training. Nonetheless, this assumption
creates privacy issues, since data profiles disclose a wealth
of sensitive data, such as the connection of wind turbines
and control centers, the wind farm network, and the turbine
itself. Sending such sensitive data across networks exposes
it to hostile interception and exploitation. Thus, the primary
drawback of both conventional and intelligence methods used
in previous forecasting models is the need for centralized
data. The centralized data is very sensitive since it may readily
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be utilized to infer critical/private information or conduct
cybersecurity attacks [19], [20]. For example, reference [21]
examined the effect of data integrity attacks on the physical
system of a wind farm. As such, companies are becoming
more worried that their information is being utilized (or
worse, misused) without their knowledge or consent. Under
this landscape, collecting and exchanging data across various
energy companies becomes more difficult, if not unfeasible,
while the value of collaboration over data exchange is not
immediately apparent.

The preservation of data privacy in centralized databases
has been the subject of numerous studies in recent years.
For example, methods for securing multi-client decision
trees with vertically partitioned data were presented in [22]
and [23]. Following their work, Vaidya and Clifton developed
secure association mining methods [24], Naive Bayes clas-
sifier [25], and secure k-means [26]. Private Support Vector
Machine methods have been developed for both vertically and
horizontally partitioned data [27]. Secure methods for multi-
group linear regression and classification were suggested in
reference [28]. Using homomorphic encryption, the authors
of [29] devised a privacy-preserving linear regression tech-
nique for horizontally partitioned data. Aono et al. [30] pio-
neered the use of homomorphic encryption to secure logistic
regression. Shokri and Shmatikov [31] suggested training
neural networks with updated parameters for horizontally
partitioned data. With recent advancements in deep learning,
privacy-preserving neural network inference has garnered
considerable academic attention [32], [33].

Despite the efforts made in previous literature, the pri-
vacy issues associated with forecasting systems with multiple
clients have remained a persistent challenge. To solve such a
challenge while expanding the amount and diversity of data
sets, the machine learning community has suggested Feder-
ated Learning (FL) [34]. FL is a decentralized collaborative
approach to machine learning in which each device con-
tributes to the training of a central model without providing
any data. As shown in Fig. 2, the server initially initializes
the model randomly or using publicly accessible data. The
model is then sent to a randomly chosen group of devices
(clients) for local training using their data. Each client updates
the model’s weights on the server, which are then averaged
and utilized to update the global model. This procedure
will be continued until the global model reaches a state of
equilibrium. FL-based frameworks have been proposed for
other applications such as traffic flow forecasting [35], load
forecasting [36], renewable scenario generation [37], behind-
the-meter solar generation disaggregation [38] and solar irra-
diation forecasting [39]. Given the importance of developing
accurate yet generalizable forecasting algorithms based on
data from multiple parties by maintaining data privacy, to our
knowledge, there is no relevant study in the existing literature
that addresses this issue explicitly in wind power generation
applications.

Based on the above discussion, it can be seen that prior
studies have relied mainly on the idea of providing a more
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FIGURE 2. Client-server iterative interactions within federated learning.

accurate model for forecasting by combining different mod-
els of machine learning and deep learning algorithms. Most
suggested techniques have significant flaws since the little
emphasis is placed on preserving the privacy of data associ-
ated with wind farms and meteorological stations. In addition,
the proposed methods are only able to perform forecasting
operations for specific areas where forecasting models are
trained with data related to that area and cannot general-
ize forecasting for adjacent areas. Furthermore, combining
machine learning algorithms with numerical weather predic-
tions and terrain-specific conditions, while can increase the
accuracy of the forecasting, adds to the complexity of the
models, and requires much higher computational time. This
paper proposes the use of FL to train a privacy-preserved wind
power forecasting model. We use Long Short Term Memory
(LSTM), a deep recurrent neural network for predicting time
series, which makes use of historical measurements of the
wind speed to anticipate future values of wind generation.
Our contributions to this study are as follows:

e For the first time, an FL-based wind power forecasting
scheme is proposed to offer a secure method of pro-
tecting data privacy by training the forecasting models
locally and avoiding the exchange of raw data across
various wind farms. The proposed scheme enables fore-
casting to benefit from the improved performance pro-
vided by global model aggregation in the absence of data
exchange (Section II).

e A comparison between the proposed private distributed
model, non-private centralized, and fully private local-
ized models is conducted indicating the high accuracy
of the proposed federated learning-based wind power
forecasting using real-world datasets (Section III).

e Enjoying the smoothing effect, the higher generalizabil-
ity of the proposed model is also substantiated while the
privacy of the underlying data is preserved (Section III).
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Lastly, Section IV concludes the paper and elaborates on
some future research directions.

Il. FEDERATED LEARNING

Modern energy systems have recognized the enormous poten-
tial of artificial intelligence as a result of the emergence and
advancement of industry 4.0, and have begun to anticipate
more complex, creative algorithms in a variety of appli-
cations, including forecasting. However, except for a few
industries, others have only restricted and/or poor-quality
data, thereby limiting the full potential of artificial intelli-
gence. Data privacy and security, on the other hand, have
recently become a global concern. Federated learning is a
novel modeling technique that allows a single model to be
trained on data from many sources without jeopardizing data
privacy or security. It can unleash the full potential of arti-
ficial intelligence with promising applications where data
is decentralized, typically unbalanced, and not identically
distributed.

As previously stated, many factors contribute to the issue of
large amounts of data required to train joint machine learning
models. Thus, it is logical to explore methods for developing
machine learning architectures that do not rely on accumu-
lating all data in a single storage place for model training.
A possible approach is to build a model at each location where
a data source is situated, and then to allow those locations
to communicate their unique models in order to reach a
consensus on a global model. To ensure client data security
and privacy, the communication mechanism is meticulously
designed to prevent any site from interfering with the private
data of another site. Simultaneously, the model is constructed
as though the data sources were merged. Therefore, rather
than sending data across sites, model parameters are securely
transmitted, ensuring that third parties would not second
guess the contents of another party’s data.
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FL aims to train a model on decentralized data
Dy, ..., Dy, that is usually imbalanced and not identically
distributed. A centralized approach is to assemble all data as
D = D; U...U Dy to train a model (M,.,). However,
to preserve data privacy, federated learning considers collabo-
rative training of a model (M), such that its accuracy (Afeq)
satisfies

|Afed —Acen| <6 (D

where § is a non-negative real number and A, is the accuracy
of M,.,. This equation conveys the intuition that the joint
model resulted from performs roughly the same as when
all data sources are combined. Because FL data providers
would not disclose their data to a centralized server and other
clients, we enable the FL system to perform somewhat worse
than a joint model. This extra security and privacy assurance
is worth much more than the loss in accuracy for many
applications including wind power forecasting.

For wind power forecasting, we suggest the FL system uti-
lize a central coordinating server, which is utilized to further
create the joint model. The FL architecture may alternatively
be built in a peer-to-peer fashion, eliminating the need for
a coordinator; however, this will result in increased compu-
tational load. Fig. 3 illustrates the proposed FL coordinator
scheme in a wind power forecasting system. The coordinator
in this scenario is a central aggregation server (parameter
server), which distributes an initial model to the local data
owners 1-M (clients or participants). Each one of the data
owners 1-M trains a local model with their own dataset and
updates the model’s weights through the aggregating server.
The aggregation server then combines the model updates
received from the clients (e.g., through federated averag-
ing [40]) and sends them back. This procedure is repeated
until the convergence criterion is satisfied or the maximum
number of iterations is exceeded. Under this architecture,
the original data of the individual providers never leaves the
possession of the local data owners. This method not only
protects user privacy and data security but also eliminates the
communication cost associated with raw data transmission.
To avoid data leakage, communication between the coordi-
nating server and clients may be encrypted (e.g., utilizing
homomorphic encryption [41]).

This is a horizontal federated learning technique in which
several users with the same feature space but different sam-
ples train a model jointly on a server. Algorithm 1 details
the step-by-step procedure proposed as the FL. wind power
forecasting. To begin, a small set of randomly chosen partic-
ipants, referred to as a mini-batch, computes model param-
eters locally, encrypts them, and sends them to the server
encrypted. The server then performs secure aggregation
without jeopardizing any participant’s privacy and returns to
participants the aggregated parameters. Aggregation is a well-
known approach that is based on stochastic gradient descent
and is used in many different applications [42]. Finally, par-
ticipants use the decrypted parameters to update their own
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FIGURE 3. Client-server model of the proposed forecasting model.

models. This approach is repeated until the loss function
converges, at which point the training phase is terminated.

Algorithm 1: Federated Averaging

Define minibatch size B, number of clients m and epochs
E, the rate of learning & and global model wy.

[Client 7]
ClientTraining(i,wi,):
for each epoch j € [1, E] do
for batch k € B do
| wh<—wi —EVY W, k)
end
end

[Server ]
Initialize wg
for each roundt € [1,T] do
Select a random set S; of m clients from N
for each clienti € S; parallely do
wﬁ“ <—ClientTraining(i,w’g)

end
ng = m va: | Diw!  (Averaging aggregation)
end

A. LONG SHORT TERM MEMORY

As a major shortcoming in dealing with sequential data,
traditional neural networks suffers from a lack of memory
to reflect temporal dependencies. Recurrent neural networks
(RNNSs) are proposed to address this issue by allowing infor-
mation to persist through a recursive network. As illustrated
in Fig. 4, the network acts as a memory allowing infor-
mation to be passed from one step of the network to the

VOLUME 11, 2023



A. Ahmadi et al.: Deep Federated Learning-Based Privacy-Preserving Wind Power Forecasting

IEEE Access

Cpy 4

t
Long-term memory Cell state

h,
Hidden state

h,.
Short-term memory

FIGURE 5. Principle architecture of the LSTM memory cell.

next. However, RNNs are not suitable for tackling long-
term dependencies due to their short-term memory originat-
ing from the vanishing gradient problem, during which the
gradient shrinks as it back propagates through time [43]. The
LSTM networks are deep RNNs enabling learning long-term
dependencies through cell state [44]. They are able to regu-
late the flow of information, i.e. remove or add information
to the cell state, through internal mechanisms called gates.
As depicted in Fig. 5, an LSTM consists of three consecu-
tive gates including forget, input and output gates. First, the
forget gate decides whether the information coming from the
previous time stamp is to be remembered or is irrelevant and
can be thrown away from the cell state (forget). Next, the
input gate decides what new information should be added
to the cell state. Finally, the output gate decides what parts
of the updated cell state should be passed from the current
timestamp to the next time stamp.

Each of these gates has unique computational relationships
and functions, the process of calculating each variable at time
t is shown as follows

fo =0 (Wyls + Waphy—1 + by) )
iy = 0 Wiily + Wiy —1 + b;) (3)
0r = 0 (Wiply + Winoht—1 + by) 4
a; = tanh (Wigly + Winghi—1 + ba) (5)
Cr = Cr1 *ft +ip * ay (6)
m; = oy x tanh ¢, (7)

where o is the logistic sigmoid function, f;, i, o;, ¢;, and a;
denotes forget gate, input gate, output gate, memory cell, and
hidden vector respectively. Wi, = (Wyr, Wi, Wia, Wi,) and
Wi = (Wing, Wini, Wina, Wino) represents trainable weights
of the respective gates while by, b;, b,, and b, are output
biases. Lastly, operator * defines the Hadamard product.

B. PERFORMANCE METRICS
To assess the effectiveness of the proposed models, we use
various performance indices with respect to accuracy.
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The following paragraphs introduce those performance
indices.

1) MEAN ABSOLUTE ERROR (MAE)
MAE, which evaluates the mean absolute difference between
predictions and observations, is expressed in (8) as

N

1
MAE:IVZ

i=1

i — vil- (®)

It is worth mentioning that because MAE does not have a
differentiable function, most ML algorithms that use gradient
descent have a hard time incorporating MAE as the evaluation
metric. To compensate for this problem, other performance
metrics should be considered.

2) ROOT MEAN SQUARE ERROR (RMSE)

RMSE, as expressed in (9), can consider the error’s direction
by measuring the root of the mean of the distance between
predictions and observations.

©)

To make the RMSE metric more sensible when it is used
in RESs models, normalized RMSE (nRMSE) is often pro-
posed, whose formula is depicted in (10).

(10)

where Pj,; is the installed capacity of the wind power plant,
which is 1 MW in selected wind farms.

Ill. SIMULATION RESULTS

This section evaluates the FL forecasting method’s perfor-
mance using real-world datasets, and the findings are com-
pared to centralized models operating under non-shared data
situations. Additionally, the influence of the participation
ratio on FL accuracy is examined using ten clients. The results
indicate that the proposed FL scheme delivers competitive
performance while ensuring data privacy.

A. DATA ANALYTICS

Geographically, Iran is located in a mountainous region with
great potential for wind power generation. As illustrated
in Table 1, nine different wind farms scattered around the
country are considered here as: Abadan, Chabahar, Kahrizak,
Khaf, Zahedan, Mahshahr, Neyshabur, Nikouyeh, Songor,
and Tabriz. Datasets with a 10-min sampling measured at the
height of 40 m were collected from these wind farms, whose
statistical information is provided in Table 2. Moreover, Fig. 6
depicts the Weibull distribution of these wind farms for data
measured at the height of 40 m. As can be seen, multiple wind
farms with different profiles can provide representative data
for the country due to their spatio-temporal dependencies.
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TABLE 1. Selected wind farms located in Iran.

Location Longitude Latitude
Kahrizak 51°21’36.45"E 35°31°2.68"N
Tabriz 38°7 86" N 46° 28’ 8"E
Songor 45°1° 04" N 70°28° 29" E
Abadan 30°20°21.12"N  48°18’15.48"E
Mahshar 49°13’ E 30°36° N
Chabahar 25°29° 27" N 60° 64’ 96" N
Zahedan 29°1’ 28" N 60° 1’ 53" N
Khaf 35°32°36.6"E  -75° 12’ 21.6"E
Neyshabour 45°01° 04"E 70° 28” 29"N
02 T *
a8 © Abadan
é - Chabahar
2 Kahrizak
05 T Khaf
A + Zahedan
>z * Mahshahr
.‘? « Neyshabur
é 0.1 + Sonqor [
1 + Tabriz
Z 0.05 .
E
2
U 0 | |
0 5 10 15 20 25 30 35

Wind Speed [m/s]

FIGURE 6. Weibull distribution for selected wind farms.

B. PREPROCESSING

Data preprocessing is a critical component of machine learn-
ing, as it prepares data for knowledge discovery by cleaning,
integrating, reducing, transforming, and discretizing it. Data
cleaning tries to fill in missing values, smooth out noise, dis-
cover and eliminate outliers, and resolve data inconsistencies.
Data integration attempts to resolve issues such as entity iden-
tification, tuple duplication, data value conflict, and redun-
dancy and correlation. By compressing data and lowering
its dimensionality and numerosity, data reduction aims to
produce a reduced representation of the data. Through data
normalization, aggregation, and generalization, data transfor-
mation assists in the translation of data into a suitable format,
whereas data discretization replaces raw data values with
ranges. The preprocessing stage is described in this article as
follows: Missing values are replaced with the median using
the Simple-Imputer function, outliers are found and elimi-
nated using the Z-score metric, duplicates are simply deleted,
and data is normalized using the MinMaxScaler function.

C. CASE STUDY SCENARIOS

We offer comparisons against centralized learning, localized
learning, and federated-based cases to evaluate the efficacy
of using FL to wind power forecasting. Table 3 summarizes
these various scenarios.

To begin, we created a centralized, non-distributed learning
method that is most often used in situations when data privacy
is not a significant issue during training. This case consoli-
dates individual wind farm information and conducts training
in a single place. Also, centralized training establishes a base-
line for the capabilities of a single, collaborative forecasting
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model in a non-private environment. We train models for
35 epochs with early stopping depending on the lowest error
obtained on the validation set.

The second scenario is an entirely private localized learn-
ing environment in which each dataset is trained indepen-
dently, and the training process is isolated from every other
wind farm. This technique results in forecasting models that
are specifically customized to each wind farm and cannot
profit from the information contained in other wind farms’
data. In accordance with the centralized learning method,
training was performed for a maximum of 35 epochs. It is
essential to emphasize that in localized situations, individual
datasets are private and unobservable to other data owners.

Next, we offer an FL-based approach with the same objec-
tive as centralized learning: to train a single, joint model that
generalizes well enough to give accurate predictions for all
individual wind farms. However, FL provides advantages that
exceed a localized learning environment as FL has higher
generalizability. Unlike centralized learning, the training data
from each wind farm is not pooled in the FL. The training
data, on the other hand, is kept private by each local client.

The only way to determine how effectively a model gen-
eralizes to new situations is to test it on unseen data. In this
regard, we hold out client data to assess the generalizability
of the algorithms (centralized, localized, and federated) when
they are exposed to completely new data. We use one client
for testing the model and other clients for training the models.
After the machine learning model has been trained and veri-
fied, a holdout subset is employed to give a final estimate of
its performance. Using client data as a held-out subset allows
to build generalizable models that are applicable to future data
collection, rather than only the data used to train the model.

D. FORECASTING RESULTS OF DIFFERENT SCENARIOS

To evaluate the performance of the representative approaches,
we report the Rz, RMSE, MSE, and MAE metrics obtained
on the test set for each of the 9 wind farms for different
case studies. The average performance indices are also overall
clients (in FL and distributed methods) or over validation
sets (in centralized approaches). The performance results of
Case 1, Case 2, and Case 3 are detailed in Table 4, Table 5,
and Table 6, respectively.

The centralized approach provides access to all databases
gathered from the various clients. As a result, model accu-
racy is anticipated to be higher in comparison to alternative
approaches that utilize far fewer data. Using the root mean
square error as an example, the centralized method performs
24.97 percent better than the localized approach and 5.35 per-
cent higher than the FL. This demonstrates that centralized
models are capable of effective predictions, although with a
high data need and a trade-off in privacy. While centralized
models may allow for the learning of collective behaviors,
they also risk the privacy of the energy facilities since data
must be collected in a single place.

The localized learning method involves training a model
for each client separately, utilizing just the data that is
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TABLE 2. Statistics of datasets measured at the height of 40 m.

‘Wind farm Time interval (10 min) Samples  Min (m/s)  Mean (m/s)  Max (m/s) Std

Kahrizak 25/08/2015 08:30-03/01/2017 13:30 58000 0 39119 22.5 2.7024
Tabriz 02/11/2015 09:40-07/01/2017 14:10 50491 0 52114 254 4.2109
Songor 05/01/2015 18:30-09/12/2017 09:20 109514 0 4.6829 227 3.4069
Abadan 27/09/2015 20:10-31/12/2016 23:50 58704 0 5.3765 21.3 2.743
Mahshahr  27/09/2015 11:10-01/01/2017 01:20 58110 0 6.0038 224 2.7947
Chabahar  23/07/2016 12:40-18/12/2017 15:40 73296 0 5.3839 17.6 2.4691
Zahedan 22/10/2015 18:10-22/02/2017 17:20 57021 0 3.9362 27.2 3.1672
Khaf 07/06/2015 12:40-25/10/2017 09:40 78452 0 9.8017 31.3 5.9815
Neyshabur  11/04/2014 13:40-27/06/2017 18:50 125297 0 7.1062 31.0 3.9829

TABLE 3. Case study scenarios.

Model
Centralized
Loacalized

FL
Centralized with holdout
Loacalized with holdout

FL with holdout

Case Number Privacy of data Generalizability

S TN
NAX S8 Xx
WX SSNX N

TABLE 6. forecasting performance values for the 9 databases and overall
average—Federated (case 3) with privacy.

RZ RMSE MSE MAE
Client 1 0.790412 0.101105 0.010222 0.046193
Client 3 0.889205 0.070981 0.005038 0.035849
Client 5 0.821530 0.108309 0.011731 0.056959
Client 8 0.569000 0.127282 0.016201 0.079118
Avergae 0.767536 0.101919 0.010798 0.0545297

TABLE 4. forecasting performance values for the 9 databases and overall
average—Centralized (case 1) without privacy.

R RMSE MSE MAE
Client 1 0.913340 0.046200 0.002134 0.022918
Client 2 0.929181 0.044452 0.001976 0.017802
Client 3 0.854238 0.083068 0.006900 0.043897
Client 4 0.929228 0.102861 0.010580 0.059779
Client 5 0.820338 0.094974 0.009020 0.052766
Client 6 0.939103 0.042611 0.001816 0.025924
Client 7 0.889405 0.058199 0.003387 0.027474
Client 8 0.920639 0.084182 0.007087 0.050290
Client 9 0.871659 0.076947 0.005921 0.041675
Avergae 0.836947 0.070388 0.005424 0.038058

TABLE 5. forecasting performance values for the 9 databases and overall
average—Localized (case 2) with privacy.

R RMSE MSE MAE
Client 1 0.908720 0.047415 0.002248 0.023576
Client 2 0.758238 0.082132 0.006746 0.054363
Client 3 0.845407 0.085547 0.007318 0.045549
Client 4 0.928566 0.103341 0.010679 0.062976
Client 5 0.842676 0.088874 0.007899 0.046552
Client 6 0.938765 0.042729 0.001826 0.027266
Client 7 0.891274 0.057706 0.003330 0.025978
Client 8 0.918712 0.085198 0.007259 0.049155
Client 9 0.884263 0.073070 0.005339 0.039869
Avergae 0.879624 0.0740013 0.005849 0.041698

accessible to that particular wind farm. The high value of
R2 score along with lower values of MAE, MSE, and RMSE
indicate a reasonable performance for the localized model.
This means that the LSTM architecture is adequate to learn
complex generation profiles that are specific to each client.
Also, the localized model maintains privacy as there is no
sharing of data between clients. However, this approach lacks
generalizability because the training samples are limited to
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one specific location, and new and unseen data might result
in poor performance of the localized models.

The FL method uses iterative communication between a
supermodel and each client for each round of training. A sub-
set of clients is selected, each of which trains its own local
data separately for a limited number of epochs. As a result,
a pool of local models is created that can be used to further
update the supermodel. The selected clients update/co-train
the supermodel by sending the parameters associated with the
local models. Because of such a training procedure, the feder-
ated model can preserve privacy in contrast to the centralized
model. Additionally, the FL outperforms the localized model
by 7.42%, as measured by the R? score. The average values
of RMSE, MSE, and MAE are also 2.67%, 6.9%, and 32.37%
less than the localized model, respectively.

For scenarios involving a held-out subset with a localized
approach (Case 4, Case 5, and Case 6), we perform the exper-
iments by holding out the worst-performing client model with
the highest errors on the validation set. As such, Client 1,
Client 3, Client 5, and Client 8 are not involved in the training
phase, and we only use them to assess the generalizability of
the representative models during the testing phase. Table 7,
Table 8, and Table 9 show the details of the obtained perfor-
mances over the held-out clients as well as the average metric
scores for different scenarios.

As it is shown, when the models are exposed to previously
unobserved data, their overall performance suffers a degra-
dation. Nonetheless, the centralized method outperforms the
localized approach by a significant margin (e.g., 19.57%
higher R? and 21% lower RMSE), although at the expense
of a large amount of data and a reduction in privacy. This
time, however, the FL shows higher performance compared
to the localized and centralized approaches. For example, the
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TABLE 7. Projected performance metrics for held-out clients and overall
average scores—Centralized (case 1) without privacy.

TABLE 10. Forecasting performance of all representative ML and
proposed models for different clients.

R? RMSE MSE MAE
Client 1 0.790412 0.101105 0.010222 0.046193
Client 3 0.889205 0.070981 0.005038 0.035849
Client 5 0.821530 0.108309 0.011731 0.056959
Client 8 0.569000 0.127282 0.016201 0.079118
Avergae 0.767536 0.101919 0.010798 0.0545297

TABLE 8. Projected performance metrics for held-out clients and overall
average scores—Localized (case 2) with privacy.

R RMSE MSE MAE
Client 1 0.664218 0.127973 0.016377 0.075146
Client 3 0.771841 0.101859 0.010375 0.059884
Client 5 0.652427 0.151148 0.022846 0.097586
Client 8 0.479060 0.139933 0.019581 0.108098
Avergae 0.641886 0.130228 0.017294 0.085179

TABLE 9. Projected performance metrics for held-out clients and overall
average scores—Federated (case 3) with privacy.

R RMSE MSE MAE
Client 1 0.807401 0.096921 0.009394 0.043524
Client 3 0.898757 0.067852 0.004604 0.032132
Client 5 0.811393 0.111342 0.012397 0.056825
Client 8 0.827760 0.080463 0.006474 0.047635
Avergae 0.836327 0.089144 0.008217 0.045029
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FIGURE 7. Predictions and ground data of wind power generation for
Client 1 on February 22, 2018 between 10AM-3PM.

R? is 8.96% and 23.24% more than those of centralized and
localized methods, respectively. Additionally, the RMSE is
14.33% and 46.08% lower, respectively, than the centralized
and localized methods. The projected values for a 5-hour
forecasting horizon of Client 1 are displayed in Fig. 7 to
help comprehend the capabilities of federated learning in
comparison to centralized and localized techniques.

E. COMPARISON STUDY

This section will compare the suggested strategy to numer-
ous cutting-edge machine learning methods. The purpose of
this study is to get a better understanding of the advantages
and limits of the decomposition-based model in contrast
to powerful and timely techniques such as support vector
machine (SVM), random forest (RF), and multi-layer per-
ceptron (MLP). There are several machine learning models,
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Metric  SVM RF MLP LSTM
Client1 RMSE 14.8 11.7 13.7 132
MAE 18.1 14.2 28.2 21.3
MAPE 9.6 15.4 8.4 7.4
R? 0.751 0.882 0.834  0.845
Client3 RMSE 263 23.3 14.7 19.0
MAE 26.1 314 36.24 44.4
MAPE 139 182  20.15 12.6
R2 0.783  0.734  0.824  0.895
Client5 RMSE 364 337 24.6 41.7
MAE 22.6 21.4 19.4 21.5
MAPE  14.1 132 8.1 8.2
R? 0.588 0.736  0.627  0.769
Client§ RMSE 17.3 19.6 13.7 13.9
MAE 332 23.8 14.6 23.5
MAPE 8.7 8.2 6.2 4.6
R2 0.789 0.722 0956  0.873
Average RMSE 242 22.0 16.1 22.3

MAE 25.2 24.4 26.9 34.7
MAPE 11.9 14.6 12.6 8.6
R? 0.739 0.762  0.773  0.745

each with its own characteristics and uses. These models were
chosen as representative of the most popular and effective
supervised learning techniques. These algorithms provide
very precise, consistent, and interpretable prediction mod-
els. Nonetheless, the proposed method is applicable to the
remaining machine learning models. This section begins with
an overview of the typical ML algorithms. Following the
findings comes the debate. Table 10 displays the performance
of the recommended forecasting models for a six-hour-ahead
forecasting horizon with varied evaluation criteria for various
data sets (Clientl, Client3, Client5, Client8, and average
performance).

As expected, diverse algorithms display a variety of traits
and performance characteristics. While certain algorithms,
such as RF, perform better for some customers, they may
be surpassed by other models in other contexts and on aver-
age. On the contrary, MLP did well in all circumstances.
Both MLP and LSTM are capable of projecting wind power
rather well, with LSTM beating MLP in simulations on
average. Nevertheless, the suggested federated strategy has
shown consistent, high-level performance across all stations,
as indicated by the mean result. The worse performance of
the ML algorithms (in comparison to the suggested mod-
els) is attributable to their inability to account for the non-
stationarity and variability of wind profile data. Although
ML models are capable of learning data, they are unable to
capture the time-dependent characteristics of the wind series.
LSTM, on the other hand, may match datasets better since
it maintains temporal relationships. Using the MAPE as an
example, the suggested method performs 3.4% better than
MLP, 9.4% better than RF, and 6.7% better than SVM on
average.

IV. CONCLUSION
Collective wind energy forecasting is a difficult task, given
the privacy concerns surrounding wind farm data. Here,
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we proposed a privacy-preserving wind power predictor sys-
tem by federating the training of machine learning models
between several wind farms. To our understanding, this is
one of the first studies that examine federated learning in the
context of learning-based wind energy prediction. By using
a federated learning method, we may substantially decrease
the overall communication between clients and the central
server as server-client data transmission is no longer required.
Because the server does not gather data from individual wind
farms, data privacy is preserved. Federated learning outper-
forms localized models in our trials and performs rather well
when compared to centralized approaches. When exposed to
unseen data, federated learning shows higher genralizeability
compared to its counterparts.
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