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ABSTRACT Target detection in aerial images taken by unmanned aerial vehicles is the most widely used
scene at present. Compared with ordinary images, the background of aerial images is more complex, and the
target size is smaller, which results in inferior detection precision and a high false detection rate. This paper
proposes a new small target detection model TCA-YOLOv5m, which is based on YOLOv5m and combines
the Transformer algorithm and the Coordinate Attention (CA) mechanism. In this model, the transformer
algorithm is added to the end of the backbone of the YOLOv5, which enables themodel tominemore features
information of images. In the neck layer of the TCA-YOLOv5m, the Path Aggregation Network (PANet) and
transformer algorithm are combined to enhance the expression capacity for the feature pyramid and improve
the detection precision of occluded high-density small targets, and CA is introduced to more accurately
locate targets in high-density scenes. In addition, the TCA-YOLOv5m adds a detection layer to improve the
ability to capture small targets. This paper uses VisDrone 2019 as experimental data, and takes experiments
to compare the detection precision and detection speed of the proposed model with baseline models. The
experiment results indicate that the detection precision of the TCA-YOLOv5m reaches 97.4%, which is
5.2% higher than that of YOLOv5; the value of MAP @ 50 reaches 58.5%, which is 14.8% higher than
YOLOv5. The Frames Per Second (FPS) of the TCA-YOLOv5m is 12.96 f/s, which ensures a certain real-
time performance. Therefore, the TCA-YOLOv5m is suitable for the task of detecting dense small targets in
aerial images.

INDEX TERMS Aerial images, small target detection, TCA-YOLOv5m, transformer algorithm, coordinate
attention, path aggregation network.

I. INTRODUCTION
In recent years, deep learning has been broadly applied to
target detection with the rapid development of artificial intel-
ligence and machine vision. Unmanned driving, pedestrian
detection, face recognition, and aerial images have become
hot topics in target detection research. With the popularity
of Unmanned Aerial Vehicles (UAV)s, Silva et al. [1] put
forward a map-building and sharing framework suitable
for the multi-UAV system, in which Edge computing is
used to help UAVs navigate autonomously. Aerial images

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

are usually acquired by UAVs and are widely used in
military reconnaissance, environmental monitoring, smart
cities, and other fields. However, small target detection in
aerial images still faces tremendous challenges because it is
easily influenced by external factors such as weather, light,
and shooting angle. In addition, when there are small targets
with high exposure and complex background in the image,
the difficulty of detecting small targets will significantly
increase.

Machine learning includes shallow learning and deep
learning. Shallow learning only contains one or two layers
of nonlinear transformation layer, and its feature extraction
is relatively simple. It maps input features to the feature
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space of a particular problem through a single-layer structure.
Typical shallow learning feature structures include the
Markov model [2], conditional random field [3], maximum
entropy model [4], Support Vector Machine (SVM) [5],
and Multilayer Perceptron (MLP) [6]. These models are
relatively simple and have some limitations in the feature
extraction of complex problems. Sutskever et al. [7] put
forward the theory of deep learning. Deep learning simulates
the mechanism of the human brain and establishes a neural
network of autonomous learning on the computer. Deep
learning has a deeper network structure, which can extract
various data features from input information and has obvious
advantages in many fields, such as the application of robot
vision [8], natural language processing [9], and speech signal
processing [10].

Convolutional Neural Network (CNN) [11] includes
multiple convolution layers and pooling layers, and uses
a sparse connection method to connect neurons between
different layers. The feature information obtained from the
image is more abundant through hierarchical calculation, and
the output layer completes the classification and regression
of the target. CNN makes the extracted features more
efficient by using its local connection and parameter-sharing
characteristics.

Target detection is mainly used to classify and locate the
targets, commonly used in computer vision fields such as
autopilot, fire prevention and control, animal protection, and
so on. The traditional target detection is to in-depth analyze
the feature extracted by the artificial feature detectors.
The traditional inefficient method of manually designed
feature detectors has been transformed into an efficient deep
learning method based on a CNN. Target detection is often
used for large and medium targets with sparse distribution
in life and natural scenes. For example, one-stage target
detection algorithms YOLO series algorithms [12], Single
Shot multibox Detector (SSD) algorithm [13], and two-
stage target detection algorithms Faster Region-CNN (Faster
R-CNN) [14] and Mask R-CNN [15] have gained good
effects in commonly used datasets. However, these char-
acteristics of small targets in aerial images, such as large
numbers, small proportions, complex backgrounds, weather
changeability, and many noise, lead to low recognition
accuracy and a high false detection rate.

Aerial images are usually taken from various angles
overlooking. Compared with ordinary images in daily life,
aerial images contain more complex spatial scenes and more
types and quantities of small targets. There are two kinds of
ways to define a small target. One is the definition of relative
scale. That is, if the width and height of the bounding box of
the target object is one-tenth of the width and height of the
original image, it will be regarded as a small target. The other
is from the definition of absolute pixels, resolution less than
32×32 pixels defined as small targets. Due to the complexity
of the actual scenes in aerial images, small targets account
for a small proportion of the images. The available feature
information is less, making it more difficult to detect. Hence,

the study on the automatic detection of small-sized and high-
density targets in aerial images has great theoretical research
value.

The YOLOv5 is a widely used model in the YOLO series,
which meets the lightweight of the model design and is more
conducive to environmental deployment. This paper proposes
a new small target detection model TCA-YOLOv5m, which
is based on YOLOv5m and combines the transformer
algorithm and CA mechanism. The major contributions of
this paper are as follows:

1) This paper selects, verifies, and analyzes the model
through model selection, ablation, and comparative
experiments. The model selection experiments com-
pare different network size parameters and images with
different resolutions. YOLOv5m is selected as the basic
model, and the image resolution is 1536× 1536. In the
ablation experiments, the paper studies whether to add
the transformer algorithm and CA mechanism. In the
comparative experiments, compared with the classical
models, the TCA-YOLOv5m has the best detection
precision.

2) Based on the YOLOv5m, the transformer algorithm
is added to the end of the backbone, which can
extract more comprehensive feature information and
rich context information from the input image.

3) In the neck layer, the PANet and transformer algorithm
are combined to enhance the extraction ability of
the feature pyramid and improve the detection preci-
sion of occluded high-density small targets. The CA
mechanism is introduced to obtain the feature map
with directional perception and position information by
updating the multi-scale fusion feature map.

4) This paper adds another detection layer to the original
three detection layers of YOLOv5m. In this way, the
proposed model can enhance the capturing power of
small targets to increase detection precision.

II. RELATED WORK
The process of traditional target detection mainly includes
three steps: firstly, the bounding boxes are selected, then the
target features are extracted. Finally, the classifier is designed.
The flow of the traditional target detection process is shown
in Fig. 1.

FIGURE 1. Traditional target detection process.

The first step is to select bounding boxes. Traditional
target detection methods generally adopt the form of a
sliding window to obtain bounding boxes. Because the
proportion of the detection target in each image is different,
the traditional detection randomly obtains various bounding
boxes according to setting the different threshold ratios by
the width and the height of the sliding window. The sliding

VOLUME 11, 2023 3353



M. Huang et al.: Small Target Detection Model in Aerial Images Based on TCA-YOLOv5m

window intercepts different region proposals on the image
through different moving positions. Due to the inferiority
of sliding windows, there will be a lot of redundancy in
intercepted candidate regions.

The second step is to use texture, color, or shapemethods to
extract features from the images intercepted by each sliding
window. Standard feature extraction algorithms include the
local binary pattern algorithm [16] and histogram of oriented
gradient [17]. Most feature detectors are designed manually.
Such feature detectors usually have poor mobility and low
robustness and are only suitable for the current scene.

The third step is the design of a classifier, which classifies
the detected targets. The designed classifier needs to be
studied and trained in advance. Standard classifiers include
SVM [18], Bayesian algorithm [19], and K-Means clustering
algorithm [20]. Their working principles are to train the
labeled pictures with the designed model and send the test
dataset to the classifier for classification after training. The
selection and use of classifiers are an essential part of the
traditional detection algorithm. Choosing the appropriate
classifier is vital in improving the accuracy of target detection
and classification results.

Traditional target detection algorithms have many limita-
tions, including low robustness, poor transfer ability, complex
computation, slow speed, and high time complexity on small
target detection tasks. Therefore, scholars introduce deep
learning frameworks for target detection tasks.

In 2012, Krizhevsky et al. [21] proposed to widen and
deepen the convolution layer based on CNN, introduced non-
saturating neurons, and called multiple GPUs to reduce time
consumption, and offered the Dropout method to prevent
datasets from over-fitting and reduce false detection rate.
In 2014, Girshick et al. [22] proposed R-CNN with CNN
feature region for target detection and semantic segmentation.
Since then, target detection based on deep learning has started
an unprecedented development.

Currently, target detection is mainly divided into two
categories: region proposal-based algorithms and regression-
based algorithms. The method based on region proposal
is also called the two-stage algorithm. In the first stage,
candidate regions are generated according to the contained
targets. In the second stage, network models are selected
for classification according to the features extracted from
bounding boxes. The algorithm based on regression is also
called the one-stage algorithm. One-stage algorithm directly
predicts the probability of categories, calculates the offset
of input images without generating candidate regions, and
realizes end-to-end network architecture.

Girshick’s team proposed a two-stage algorithm
R-CNN [22], target detection includes roughly three steps:

1) The region proposals are created by selecting the search
method for the detection target.

2) The region proposals are adjusted to a fixed size and
input to the CNN step by step. At the same time, feature
vectors are extracted from the fixed length of each
region’s proposals.

3) All feature vectors are classified by multiple SVM.
However, the repeated calculation of region proposals leads
to extremely low detection efficiency of R-CNN. In 2015,
He et al. [23] proposed the Spatial Pyramid Pooling (SPP)
module, which broke the limitation of inputting fixed-size
pictures. At the same time, to avoid redundancy of feature
extraction, feature mapping was only done once, which made
a qualitative leap in detection speed. Grishick [24] proposed
the Fast R-CNN algorithm using Region of Interest (ROI)
pooling based on SPP-Net and R-CNN. The Fast R-CNN
algorithm mainly solved the problem of repeated convolution
of bounding boxes in the R-CNN, which used the softmax
function [25] to calculate the class probability instead of the
original SVM classifier. Although Fast R-CNN had improved
the detection speed, it still used the R-CNN method in region
proposal selection, and the training time was too long. Ren et
al. [26] proposed the Faster R-CNN network to improve the
region proposal generation method. The time for generating
region proposals was shortened from 2-3s to less than 0.1 s
using the region proposal network instead of the selective
search algorithm, dramatically improving the algorithm’s
real-time performance.

The one-stage target detection algorithms directly predict
the category probability and calculate the offset of the
border from the input image. Therefore, the detection speed
is greatly improved, but the detection precision is lower
than that of the two-stage target detection algorithms. The
one-stage target detection algorithms are mainly YOLO
series algorithms and SSD algorithms.

In 2015, Redmon et al. [27] proposed the YOLOv1, a
typical target detection method based on regression. It used
a CNN as the backbone to directly predict the bounding box
and the detected target’s class probability. In 2016, Redmond
and Farhadi [28] proposed YOLOv2 based on YOLOv1,
which can detect more than 9000 targets. Compared with
YOLOv1, the YOLOv2 network had tremendous changes.
For example, to prevent data from over-fitting, batch
normalization was added to each convolution layer to play
a specific regularization effect. The mAP value increased
by 2% compared with the YOLOv1. Subsequently, Redmon
et al. and Bochkovskiy et al. researched YOLOv3[29] and
YOLOv4[30] networks in 2018 and 2020 to achieve the
balance between detection precision and speed.

Liu et al. [31] put forward the SSD, which core is
multiscale featuremaps. SSD uses featuremaps aftermultiple
convolution layers to locate and detect targets. When the
convolution layer convolves the input image to obtain the
feature map, rectangular frames with different sizes are
predefined at each position of the feature map. These
rectangular frames contain the position of the frames and
the target detection scores. By comparing the predicted
rectangular frames with the actual object rectangular frames,
the best predicted rectangular frames are output, which
improves the accuracy of target detection.

Zhao and Li [32] put forward a new clustering algorithm
based on YOLOv3 to predict the width and height of the
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FIGURE 2. Network architecture diagram of YOLOv5m model target detection algorithm.

bounding box instead of the K-means algorithm. Compared
with the YOLOv3, the new model’s precision was improved
by about 0.53%.Aiming at the slow speed of detecting remote
sensing images with Faster R-CNN, Wang et al. [33] used a
dense connection network to replace VGG Net as a backbone
based on the SSD. The feature pyramid was added to the
dense connection module to replace the multi-scale feature
map. Compared with Faster R-CNN, the mAP value of SSD
increased by 14.46%, and the time spent detecting a single
image reduced by 45.7ms. Ju et al. [34] took YOLOv3 as the
basic model, took eight times the output subsampled feature
map and then took two times of upsampling, and spliced
it with the subsampled feature map output by the residual
module in Darknet 53 to form a subsampled feature fusion
target detection layer. Compared with the YOLOv3, the mAP
increased by 6.55%. Ye et al. [35] proposed the idea of
adaptive spatial feature fusion. The deep and shallow feature
maps were combined by using the semantic information of
the deep feature and the feature information of the bottom
edge and texture. The model used the K-Means algorithm to
generate anchor boxes. Compared with the original YOLOv3,
the mAP increased by 1.63%. These algorithms improve the
accuracy of small target detection in aerial images to a certain
extent. But under the influence of objective factors such as
weather and illumination, the extracted features of the model
still include a large number of redundant features related to
complex backgrounds, and the detection precision still needs
to be improved.

III. METHODOLOGY
A. TCA-YOLOv5m MODEL
This paper studies based on YOLOv5 and selects YOLOv5m
as the basic model, as shown in Fig. 2. Because the size
of small targets in aerial images is too tiny, the transformer
algorithm is introduced. First, the transformer algorithm is
added at the end of the YOLOv5’s backbone to obtain feature
maps with richer global information. Second, the transformer
and PANet structure are fused in the neck layer to get
the multi-scale fusion feature map. The CA mechanism is
introduced to update the multi-scale fusion feature map, and
the multi-scale fusion feature map with direct perception
and position information is obtained, improving the model’s
target detection precision. Finally, a detection layer is
added to the original three detection layers of the model.
The detection layer is generated from the low-level, high-
resolution feature maps, improving the model’s ability to
capture smaller targets. Adding a detection layer increases the
computation and storage cost, but the detection performance
is much better than that of the YOLOv5m model. The TCA-
YOLOv5m is shown in Fig. 3. The specific improvement
works are as follows:

1) The backbone is an essential part of YOLOv5. The
function of the backbone is to extract image features
from input images, which lays a foundation for the
subsequent network to locate target positions and
classify targets. The TCA-YOLOv5m uses Focus
as the basic network and uses C3 to improve the
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FIGURE 3. Network architecture diagram of small target detection algorithm in the aerial
images of TCA-YOLOv5m.

ability of image feature extraction. Focus splits
the high-resolution image into several low-resolution
images and then performs the convolution operation to
get the double-subsampled feature map. The function
of the C3 is to enhance the learning ability of CNN
and maintain accuracy while keeping the lightweight
network structure. Specifically, the input channel
is divided into two branches. In one branch, the
convolution operation and residual error processing
are performed on the image feature map first, and
then the convolution operation is performed. The
other branch directly convolves the image feature
map. Then, the two branches are fully connected and
output through the SiLU activation function. Spatial
Pyramid Pooling Fast (SPPF) structure extracts and
fuses the features of images through the maximum
pooling and improves the receptive field of the network.
The transformer algorithm is added at the end of the
backbone, which extracts the image’s global and rich
context information.

2) In the YOLOv5 model, the neck layer adopts the
multi-scale feature fusion algorithm of the PANet
structure, which adds the bottom-up feature fusion
layer compared with FPN. The TCA-YOLOv5m inte-
grates the transformer algorithm and PANet structure
to reduce the loss of feature information and improve
target detection precision. Firstly, feature maps of

different scales are extracted from the backbone.
Then, the first feature fusion is realized by transverse
connection with the subsampled structure, and the
second feature fusion of the subsampled layer and
the upsampling layer of the same scale is realized
by transverse connection. Finally, the transformer
algorithm processes the feature maps to obtain the
multi-scale fusion feature graphwith rich image feature
information. In addition, the CA mechanism is used to
get the multi-scale fusion feature map with directional
perception and position information. It can better
reduce the loss of target feature information in the
process of multiple subsampled.

3) The YOLOv5 model detects targets of different sizes
by using three feature maps with different scales
obtained by eight times, sixteen times and thirty-two
times subsampled. In the feature extraction pyramid,
the receptive field with a subsampled of thirty-two
times is the largest, and the larger the area of the
mapped full-size image is, the more suitable it is for
predicting large targets. Similarly, the subsampled of
sixteen times and the subsampled of eight times are
more suitable for predicting medium and small targets.
The proportion of targets in aerial images is small,
so the detection layer for small targets is added in the
TCA-YOLOv5m. The images are processed by four
times subsampled, and then sent to the feature fusion
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network. This feature map has a small receptive field
and rich target information. After multi-scale fusion,
it can better learn target features, enhance the capture
power of the network to smaller targets and improve the
detection effect of targets. As shown in Fig. 3, sequence
number 1 in the prediction layer is the detection layer
added to the model.

B. TRANSFORMER ALGORITHM
The transformer is an algorithm for sequence-to-sequence
tasks, first proposed in 2017. The transformer is the first
transformation model that entirely relies on the multi-
head attention mechanism to calculate input and output
representation instead of using a sequence-aligned recurrent
neural network (RNN) or CNN.

Multi-head attention is a mechanism to improve the
performance of the attention layer. Due to the limited feature
subspace, the single-head attention module will limit the
ability to pay attention to multiple specific locations. The
multi-head attention mechanism is realized by assigning
different representation subspaces to the attention layer
without affecting other attention with the same status.
Different attention modules use different query vectors, key
vectors, and value matrix queries.

The dot product operation between the vectors query
vector and key vector generates the attention weight. Due
to the significant variance of elements in the matrix in
the calculation process, the Softmax function becomes very
steep, which affects the gradient stability. Therefore, the
scaling factor

√
dk is first used to scale, then the Softmax

function normalizes the attention weight, and finally, the
normalized weight is assigned to the corresponding element
in the value matrix vector to produce the final output
vector.

The calculation process of the multi-head attention mech-
anism is as follows formula (1).

Attention(Q,K ,V ) = Softmax
(
QKT
√
dk

)
V (1)

In the formula, SoftMax represents the normalized expo-
nential function. Q, K, and V are the query, key, and value
matrices. dk represents the vector dimensions of Q and K.

For the standard transformer algorithm, the input is a patch
sequence, that is, a two-dimensional matrix [num_token,
token_dim], where num_token represents the number of
patches and token_dim denotes the dimensions of patches.
For image data, the data format [Height, Width, Chan-
nel] is a three-dimensional matrix, which the transformer
encoder cannot parse, so it is necessary to transform
the data through the Embedding layer first, as shown in
Fig. 4.

Firstly, a picture is separated into several patches accord-
ing to a given size, and then each patch is mapped
to a one-dimensional vector by linear mapping. Finally,
each patch data shape is flattened according to H and
W dimensions by convolution operation to obtain a

FIGURE 4. Transformer architecture diagram.

two-dimensional matrix. Before entering the transformer
Encoder, the two-dimensional matrix must add class_token
and position embedding. Insert a vector specially used for
target classification, the class_token, into the previously
obtained patch. This patch is a trainable parameter, and the
data format is the same as other patches. It is spliced with
the previously generated vector and converted into a two-
dimensional matrix. The function of Position Embedding is
to fix the position coding and fuse the global features of other
patches, which is not based on the image content but directly
superimposed on the patch.

Input the patch with class_token and Position Embedding
into the transformer encoder module, as shown in Fig. 5.
The module consists of two sub-layers, the first is the
multi-head attention mechanism, and the second is MLP
Block. Apply layer norm before each sub-layer and Dropout
after each sub-layer. The first sub-layer is to normalize
the hidden layer. At the same time, the patch is processed
by the multi-head attention mechanism, and the results are
combined in sequence. The second sub-layer is to discard
sub-layers randomly to prevent model over-fitting. Residual
connection is used in each sub-layer to avoid the problem
that the gradient disappears due to the increase of network
depth. The patch is output after being repeated several
times.
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FIGURE 5. Encoder block layer.

FIGURE 6. CA mechanism structure.

C. CA MECHANISM
Studies on lightweight target detection networks show
that adding an attention mechanism can bring signifi-
cant performance improvement to the model. Common
lightweight network attention mechanisms are Squeeze-
and-Excitation Net (SENet), Convolutional Block Attention
Module (CBAM), and CA mechanism. The SENet attention
mechanism performs attention or gating operations in the
channel dimension to obtain image feature values. The
CBAM extracts image feature values from the channel and
spatial attention, and combines them to obtain the final image
feature values.

Compared with SENet and CBAM, the CA mechanism
can capture both the cross-channel information and the
information on directional perception and location perception
so that the detected target can be located and recognized more
accurately. The CA mechanism is flexible, lightweight, and
portable. The CA mechanism structure is shown in Fig. 6.

IV. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
All experiments are carried out on a computer with Windows
10 64-bit operating system, Intel (R) Core (TM) i9-10900X
processor (CPU), and NVIDIA GeForce GTX 3080 video
card (GPU). The experiments use Python 3.7 as the program-
ming language, and the development tools use PyCharm and
Anaconda 3.

B. EXPERIMENTAL DATA
The experiments use the VisDrone2019 dataset. The dataset
is collected using UAVs in different scenes, weather and
light conditions. It covers the landscapes of more than
a dozen cities in China, including 10,000 pictures and
2.6 million annotated information. At the same time, the
resolution of pictures in the VisDrone2019 dataset is as high
as 2000 × 1500. The dataset includes ten small target cate-
gories: car, pedestrian, bus, bicycle, tricycle, awning-tricycle,
van, truck, people, and motor. There are 6471 pictures and
their labels in the training dataset, 548 pictures and their
labels in the verification set, and 1610 pictures in the test set.

The models are trained, verified, and tested under the
same super parameters in experiments. Among them, the
training epochs is set to 50, the warmup_epochs is set to 3,
and the initial learning rate is 0.01. mAP@50, mAP@75,
mAP@50:95, precision, parameters, and FPS are used as
the evaluation indexes of model performance. mAP@50
and mAP@75 represent the average detection precision
of all target categories when IoU thresholds are 0.5 and
0.75, respectively. Among them, mAP@50 reflects the
comprehensive classification ability of the algorithm for
different types of targets, and mAP@75 can better reflect the
regression ability of the algorithm for target bounding boxes.
mAP@50:95 represents the average of the detection precision
for all 10 IoU thresholds, with IoU thresholds ranging from
0.5 to 0.95 at a step size of 0.05. Generally speaking, the
higher the IoU threshold, the higher the requirement for the
regression ability of the model. FPS refers to how many
pictures the model can detect per second, which is used to
measure the real-time performance of the model. Because the
resolution of UAV aerial images is high, and FPS is directly
related to the resolution of the detection images. In the same
model and environment, the higher the resolution of the input
image, the lower the FPS. Therefore, FPS in this paper is
obtained by detecting 1536 × 1536 high-resolution images.
Parameters represent the number of parameters for model
training.

C. MODEL SELECTION EXPERIMENTS
To use different scenarios, YOLOv5 adjusts the overall size of
the network model by adjusting the network depth_multiple
and width_multiple parameters. In the experiments of this
paper, YOLOv5s is the smallest network proposed by
YOLOv5, with the smallest number of parameters and
computational complexity, and the detection speed is fast.
However, the detection precision is not as good as that of
YOLOv5m, YOLOv5l, and YOLOv5x with a larger network
scale. Therefore, it needs to select a model appropriate
for small target detection in aerial images taken by UAVs
under different network scales, which should have essential
detection speed and high detection precision.

In this paper, the comparative experiments before and after
improvement are carried out according to the parameters of
different network scales (m, l) and the parameters of input
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TABLE 1. Influences of different image resolutions and different network sizes on training effect.

FIGURE 7. P-R curve of mAP@50 for images with different network parameters and different resolutions.

image resolution. The results of the experiment are shown in
Table 1 and Fig. 7.

D. ABLATION EXPERIMENTS
In this paper, the effects of different models on small target
detection performance are evaluated by ablation experiments
under the same experimental conditions to prove the effec-
tiveness of the transformer algorithm and CA mechanism.
In the ablation experiments, YOLOv5m as the basic model,
the resolution of the input images is 1536 × 1536, and the
results after 50 epochs of training are shown in Table 2, Fig. 8.

E. COMPARATIVE EXPERIMENTS
This paper compares various popular target detection algo-
rithms to prove the superiority of the TCA-YOLOv5m.
The results are shown in Table 3. The TCA-YOLOv5m

is compared with Faster R-CNN, YOLOv3, YOLOv3-SPP,
YOLOv4 and YOLOv5. YOLOv3-SPP uses spatial pyramid
pooling in SPPNet to fuse features with the backbone.
Compared with YOLOv3, the mAP @ 50 of YOLOv3-SPP
is improved by 4.7%, which shows that adding the SPPNET
module can improve detection precision.

V. RESULTS AND ANALYSIS
A. ANALYSIS OF MODEL SELECTION EXPERIMENTS
RESULTS
According to Table 1, Fig. 9, Fig. 10, and Fig. 11 in
the model selection experiments, it can be found that the
detection precision can be significantly improved when
the network structure and scale have not changed and the
input image resolution is high during training. However,
the input of high-resolution images increases the amount of
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FIGURE 8. Comparison of the P-R curve of mAP@50 in each model.

TABLE 2. Results of Ablation experiments.

TABLE 3. Comparative experiments of different detection algorithms.

computation, resulting in a significantly reduced computation
speed. When the resolution of the input image is 1536 in the
TCA-YOLOv5m, it takes about 34 minutes and 44 seconds
to train an epoch in this experimental environment. At the
same time, FPS is reduced to 12.96 f/s, about 1.5 times the
input image resolution of 608. The real-time performance of
the model with the larger network scale is poor because of
many parameters and the calculation amount. For example,
the number of parameters in the TCA-YOLOv5l model (608)
model reaches 230.352 M, which is more than twice as large

as the TCA-YOLOv5m (1536) number of parameters. The
FPS of the TCA-YOLOv5l model (608) decreases by 6.9 f/s
compared with that of the TCA-YOLOv5m (608), reaching
12.71 f/s. These factors may not meet the demands of the real
environment. In the practical application scenario, the real-
time performance of this model is significantly decreased
due to the large network scale of l and x. Therefore, this
paper considers that the TCA-YOLOv5m has low numbers
of parameters and computation and has certain real-time
performance and better detection precision, which can better
meet the requirements of the experiments.

B. ANALYSIS OF ABLATION EXPERIMENTS RESULTS
According to Table 2, Fig. 12, and Fig. 13 in the ablation
experiments, it can be concluded that compared with the
YOLOv5m+CBAM model, the YOLOv5m + CA model
has better performance, mAP@50, mAP@75, and mAP@50:
95 improves by 2.8%, 2.5%, and 2%, respectively, and the
number of network parameters reduces by 0.054M, and
the FPS increases by 1.09f/s. Compared with the YOLOv5m,
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FIGURE 9. Comparison of mAP values of images under different network parameters and different
resolutions.

FIGURE 10. Comparison of precision values of images with different resolutions
input by different models.

FIGURE 11. Comparison of parameter quantity and FPS of images under
different network parameters and different resolutions.

the YOLOv5m+Tr model’s mAP@50 is improved by 12.1%
and reaches 55.8%, and the number of parameters reduces by

3.476M. TCA-YOLOv5m mAP values increase by 14.8%,
8.6%, and 8.4%, respectively. It can be concluded that the
TCA-YOLOv5m is effective in detecting small targets in
aerial images.

C. ANALYSIS OF COMPARATIVE EXPERIMENTAL RESULTS
On the basis of the comparative experimental results, it is con-
cluded that the detection precision of the TCA-YOLOv5m
is better than that of other algorithms under the condition
of ensuring certain real-time performance, as shown in
Table 3 and Fig. 14. The mAP@50 of the TCA-YOLOv5m
increases by 30.6% compared with YOLOv4 and 24.8%
higher than YOLOv3, reaching 58.5%. The mAP@50 of
the Faster R-CNN model is only 18.3%. The reasons are
that there are a large number of dense small targets in
the experimental data, the background is complex, and the
extracted target feature information is too little, which leads
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FIGURE 12. Comparison of values of mAP @ 50, mAP @ 75, and mAP @ 50: 95 for different network
models.

FIGURE 13. Comparison of accuracy and real-time performance of different network models.

FIGURE 14. Comparison of mAP values between the classical models and TCA-YOLOv5m.
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FIGURE 15. Detection Effect Drawing under Light.

FIGURE 16. Blur distortion detection effect diagram.

to low detection results. This paper proposes to add the
transformer algorithm at the end of the backbone of the
YOLOv5 model to obtain more image feature information.
In the neck layer, the transformer algorithm is integrated into
the PANet to enhance the expression ability of the feature
pyramid. The CA mechanism is added to obtain feature
maps with directional perception and position perception
information. This model adds a detection layer to focus more
attention on dense small targets and improve the ability of

feature extraction of small targets. The TCA-YOLOv5m is
more advantageous in small target detection of aerial images.

D. ANALYSIS OF MODEL VISUALIZATION
The TCA-YOLOv5mverifies the effectiveness of small target
detection in the actual scene by detecting representative and
complex images in the VisDrone2019 dataset. In this paper,
the detection results of all categories of small targets are
evaluated and visually analyzed.
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FIGURE 17. Detection effect diagram under target occlusion.

FIGURE 18. Effect diagram of small target detection at high altitude.

In the case of different brightness, the pictures taken
include dense targets in dim and sufficient light. The detection
results of the TCA-YOLOv5m for such small targets are

shown in Fig. 15. When the camera rotates too fast, the
pictures taken may be fuzzy. The TCA-YOLOv5m can
achieve an accurate detection effect for small targets with
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fuzzy, as shown in Fig. 16. The small target features are
occluded in the photographed pictures when there are too
many shelters. The TCA-YOLOv5m can still accurately
detect small targets such as occluded cars, pedestrians, and
bicycles, as shown in Fig. 17. In the case of high-altitude
shooting, the detected targets have the characteristics of
dense distribution and tiny size, and the TCA-YOLOv5m can
accurately detect the small targets with such characteristics,
as shown in Fig. 18. From the above four kinds of detection
results, it can be concluded that this model has outstanding
detection ability when dealing with small targets with
different characteristics.

VI. CONCLUSION
In this paper, a new model TCA-YOLOv5m for small target
detection is proposed, which is intended to improve the
detection precision in small and dense scenes to be suitable
for more accurate aerial small target detection tasks of UAVs.

This paper first adds the transformer to the end of
YOLOv5m’s backbone to obtain a feature map with richer
global information. Secondly, in the neck layer, the trans-
former and PANet are integrated to enhance the expression
capability of the feature pyramid. It improves the learning
ability of the whole feature and the detection precision
of the occluded high-density small target. In addition,
the CA mechanism is introduced to obtain a multi-scale
feature fusion map with directional perception and position
information, which improves the accuracy of the model for
target detection. Finally, there are a lot of spatial background
factors in aerial images taken by UAVs, so a detection layer is
added to the original three detection layers of YOLOv5. The
TCA-YOLOv5m can enhance small targets’ capturing power
and reduce the false detection rate caused by too significant
size differences of detected targets.

The results show that the value of mAP increases signif-
icantly for images with input resolution from low to high.
When the resolution of the input image is 1536, the mAP@50
of the TCA-YOLOv5m is 58.5%, which is 14.8% higher
than that of the original YOLOv5m. Compared with the
Faster R-CNN, the mAP of the TCA-YOLOv5m increases by
40.2%. Therefore, the TCA-YOLOv5m has good robustness
and anti-jamming capability and effectively improves the
target detection ability. However, the TCA-YOLOv5m still
has the phenomenon of missing detection and false detection
for some tiny detection targets. Future work will continue
to optimize the model to improve the detection results of
small targets, and study how to achieve a lightweight network
model while ensuring the detection accuracy.
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