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ABSTRACT Single-image super-resolution technology has been widely studied in various applications to
improve the quality and resolution of degraded images acquired from noise-sensitive low-resolution sensors.
As most studies on single-image super-resolution focused on the development of deep learning networks
operating on high-performance GPUs, this study proposed an efficient and lightweight super-resolution
network that enables real-time performance on mobile devices. To replace the relatively slow element-wise
addition layer on mobile devices, we introduced a skip connection layer by directly concatenating a
low-resolution input image with an intermediate feature map. In addition, we introduced weighted clipping
to reduce the quantization errors commonly encountered during float-to-int8 model conversion. Moreover,
a reparameterization method was selectively applied without increasing the cost in terms of inference time
and number of parameters. Based on the contributions, the proposed network has been recognized as the
best solution in Mobile Al & AIM 2022 Real-Time Single-Image Super-Resolution Challenge with PSNR
of 30.03 dB and NPU runtime of 19.20 ms.

INDEX TERMS Concatenation, mobile super resolution, quantization-aware training, single image super
resolution, TFLite.

I. INTRODUCTION

The single-image super-resolution (SISR) technology trans-
forms a low-resolution (LR) image into a high-resolution
(HR) image that provides higher pixel density and more
textual information than the LR image. In general, super-
resolution is utilized in computer vision applications such
as remote sensing [1], [2], underwater applications [3],
[4], medical image processing [5], [6], and multimedia
applications [7]. However, when transforming LR to HR
images, the super-resolution is known as an ill-posed prob-
lem and multiple types of HR images exist. To predict a
suitable corresponding HR image, traditional methods such
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as interpolation-based [8] and representation-based [9], [10]
methods have been proposed.

In recent years, deep learning methods have advanced
rapidly, and deep learning-based SISR methods have been
studied to achieve state-of-the-art performance, for exam-
ple, SRCNN [11], a method based on convolutional neural
networks (CNN), has resulted in significant improvements.
Several novel ideas and methods have been introduced, such
as various types of deep learning network architectures [12],
[13], [14], [15], loss functions [16], [17], training strategies
and techniques [18], [19], and attention network [20], [21].

However, the majority of the superior SISR methods have
focused on the reconstruction quality of the HR images
from LR images utilizing expensive high-performance GPUs.
To enhance the quality of reconstruction, they proposed
various techniques and networks that evolved into the SISR
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model with an extensive number of parameters and high
computational complexity [22]. However, the complex net-
work structure, various types of deep learning techniques, and
numerous parameters create challenges in deploying tradi-
tional SISR methods in mobile device environments. Owing
to the limited computing resources and hardware of mobile
devices compared with desktop or cloud resources, the SISR
model requires a lightweight network and hardware-friendly
deep learning techniques such as quantization with INTS.

To perform the SISR task on mobile devices with deploy-
ment requirements, we propose a skip-concatenated image
super-resolution network (SCSRN) that can transform LR
images to HR images with substantial accuracy and real-time
inference speed. Concisely, the major proposed contributions
are stated as follows:

1) We propose a highly efficient super-resolution net-
work (SCSRN) that can deliver higher accuracy at
faster speed compared to previous mobile SR models.
Notably, we excluded the element-wise addition opera-
tion that is a labor-intensive task on mobile devices, and
instead, introduced a lighter skip-concatenated layer
that can avoid memory replications to equalize the
input dimensions.

2) This study proposes a quantization error robust training
method. With skip connection, the distribution of the
kernel weights tends to become asymmetric during
training. However, the asymmetric distribution causes
serious degradation of image quality in quantization as
a mobile device supports only symmetric quantization
for kernels. To this end, the valid range of the weights
were constrained during training.

3) We selectively applied a reparameterized convolution
(RepConv) layer to improve the image quality, while
maintaining the model size and inference speed. Inter-
estingly, based on the experiments, the application of
the RepConv layer to all layers in SCSRN could com-
promise the reconstructed image quality.

4) We decompose a clipped rectified linear unit (ReL.U),
which was originally introduced to prevent the incor-
rect output overflow and underflow in the inference,
into min(x) and ReLU operations and merge the ReLU
into the last convolution layer. Before merging, the
ReLU takes the latency up to 2.5 ms in mobile devices,
but we successfully removed latency of ReLU in the
inference time.

The remainder of the paper is organized as follows.
In Section 2, we discuss the related works of super-resolution.
The proposed method is described in Section 3. The effective-
ness of our SCSRN model is validated in Section 4. Finally,
the conclusions of this study are summarized in Section 5.

Il. RELATED WORK

A. SINGLE IMAGE SUPER-RESOLUTION METHODS

The SISR methods can be classified into traditional SISR
and data-driven deep learning methods. Traditional SISR
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methods have been proposed as interpolation-based [8]
and representation-based methods [9]. In principle, the
interpolation-based method considers the relationship of
neighboring pixels, whereas the representation-based method
reconstructs the HR image by deriving a mapping function
between the LR and HR cropped patches. However, both
methods exhibit limitations in reconstructing detailed fea-
tures and patterns. The recently proposed CNN-based method
delivered excellent performance by solving several problems
that cannot be resolved using traditional methods.

A CNN-based SISR model is trained to target HR from
a given LR. With the advent of CNN-based SISR networks
such as SRCNN [11], this pipeline produced remarkable
performance in the SISR task. First, the CNN-based SR
model stacked more deep layers to improve the performance,
but this assessment caused a gradient-vanishing problem and
exhibited a limitation in terms of the image quality. There-
after, very deep super-resolution [23] and deeply-recursive
convolutional [24] networks employed deeply stacked resid-
ual blocks to resolve this issue. In addition, enhanced deep
super-resolution network (EDSR) [18] demonstrated batch-
normalization (BN), which exhibited remarkable perfor-
mance in classifying tasks and normalizing the features of the
SISR model with degraded performance. To improve the sta-
bility of training without BN layers, EDSR uses the residual-
scaling method. Consequently, EDSR achieved a state-of-
the-art result by enhancing the feature representation of the
model.

Recently, residual channel attention network [20] and stor-
age area network [25] significantly improved the perfor-
mance by adopting channel attention mechanism. However,
this attention mechanism requires considerable memory dur-
ing inference owing to its spatial and nonlocal operation.
Moreover, it offers limited application in low-power devices
such as mobile or 10T devices.

B. LIGHTWEIGHT SUPER-RESOLUTION METHODS FOR
MOBILE

Although CNN-based SISR models significantly improve the
restored image quality, these advancements have increased
the extent of computation and memory required in the infer-
ence stage. Furthermore, the demand for such applications
in low-power devices (e.g., mobile and IoT) has increased
in various computer-vision tasks. To satisfy this demand,
research is currently being conducted to reduce the compu-
tational complexity and design efficient network structures
for the SISR network.

Research on lightweight super-resolution network for
mobile devices can be classified into network optimization
for enhancing the performance in the same network structure
and the design of hardware-friendly architecture for reducing
the inference time. The representative methods of network
optimization include pruning, quantization, and knowledge
distillation.

Pruning is categorized into filter pruning (a.k.a struc-
tured pruning) [26] and weight-level pruning [27] (ak.a
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unstructured pruning). Unstructured pruning does not save
inference time, whereas structured pruning reduces the com-
plexity of inference. Filter pruning for SR network [26], [28]
constitutes a promising approach for achieving a reasonable
trade-off between performance and complexity by eliminat-
ing the filters that do not influence the network performance.

The representative quantization methods include mixed
precision [29] and quantization-aware training (QAT) [30].
Mixed precision training can improve the performance by
searching the optimized bits per layer. In contrast, QAT is
a fake quantization in the network training process, which
simulates an 8-bit integer training process with clamping
and approximation by employing fake quantization during
training. Thus, the complete model training is still performed
with the original precision, but the training and inference pro-
cesses are simulated with 8-bit quantization. This approach
minimizes performance degradation during deployment by
reducing the quantization error in the quantization options of
the model format.

Knowledge distillation is a method of transferring knowl-
edge from the teacher model to a lightweight structure of
the student networks [31]. In principle, knowledge distillation
can be segmented into feature distillation [32], [33] and image
domain distillation [34]. For instance, feature distillation
trains a feature map in a student network to resemble that in
the teacher network. In contrast, the representation distillation
trains the output of a student network (HR image in case of
SISR) to resemble that of the teacher network.

Finally, the approaches to design a hardware-friendly net-
work structure seek appropriate structures based on the pro-
filing results derived during the inference process [35], [36],
[37]. Thus, it is a process of searching a structure that can
be compromised in terms of performance and speed. Fig. |
shows the mobile-friendly network structures. The ABPN
[35] consists of seven 3 x 3 convolution layers and uti-
lizes the element-wise add operation between channel-wise
duplicated LR images and output feature maps. The NCNET
[36] introduces a nearest convolution layer, which is oper-
ated as the nearest interpolation of the LR image, instead of
the channel-wise duplication. XLSR [37] uses channel split
blocks (GBlock) and concatenation operations.

In this paper, we propose an efficient approach to design
a hardware-friendly network (e.g., reparameterized block
and removing the element-wise operation) and develop an
appropriate training strategy for it, such as robust training of
quantization errors.

lll. THE PROPOSED METHOD

The proposed method is detailed in this section. First,
we illustrate the proposed network architecture, SCSRN,
and explain its novelty with respect to the anchor-based
plain net(ABPN) [35] that served as our inspiration. Sub-
sequently, we describe the reparameterized block (Rep-
Conv block) that is an over-parameterized strategy employed
to improve network performance. Third, we introduce the
weight-constrained QAT method to minimize the quantiza-
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FIGURE 1. Mobile device-friendly network structures.

tion error. Lastly, the speed-up method and training strategy
are described for the SCSRN model.

A. NETWORK ARCHITECTURE OF SCSRN
The overall structure of the SCSRN is illustrated in Fig 2,
which is an ABPN-inspired structure comprising four com-
ponents. The first component is a feature extraction layer
that extracts the features from an LR image. The second
component is a backbone comprising four RepConv blocks
to learn deeper features. The third component includes two
transition layers for the residual learning effect after directly
concatenating the feature maps and LR. The final compo-
nent (depth_to_space) involves the pixel re-arrangement for
restoring the HR image.

For deeper comprehension, let 7z and Igg denote the input
and output of the network. We obtain the features Fy as
follows:

Fo = Hpg(IR), (1)

where Hpr(-) denotes the function that extracts features from

an image. Subsequently, we obtained the i-th features F; by
F; = Hpp(Fi—1), i=1,...4, 2)

where Hpp, represents the function for the i-th deep fea-
ture, which contains high frequency and texture information.
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FIGURE 2. Network structure of skip-concatenated image super-resolution network.

Thereafter, we concatenated the feature and I;g with the
channel axis, expecting a residual effect to pass through the
two transition layers for obtaining Fyg as follows:

Fyur = Hrr(Hrr(concat(Fy, I1R))), 3)

where Hrg denotes the transition layer. Using the pixel
rearrangement function Hg4, we derived Iyr from Fpyg and
clipped all the pixels between 0 and 255. Thereafter, the
ReLU function was applied in the tail layer of the network
to constrain the lower bound (0) of the pixel value, and the
min function was utilized to maintain the upper bound value
(255).

Ingr = Hra(min(Fyg, 255)) @

Unlike the ABPN [35] and NCNET [36], the input LR
image and feature maps were concatenated directly in the
middle of the network, and the last two transition and
depth_to_space layers provide a smooth transformation from
the concatenated features to the SR image. The concatenation
operation helps to reduce the quantization error because the
input LR image containing 8-bit pixel values is not corrupted
by the INT8 quantization. Moreover, the ABPN duplicates
the LR image on multiple instances to obtain two equal
input dimensions for the element-wise addition operation.
In contrast, the skip-concatenated operation saves inference
time by omitting the multiple memory-copy operations in the
ABPN.
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FIGURE 3. RepConv Block. (Left) train mode model and (Right) inference
mode model.

B. RepConv BLOCK
In the inference stage, we applied the reparameterization
method to improve the reconstructed image quality with-
out any architectural variations. According to [38] and as
depicted in Fig. 3, the reparameterization can be recon-
structed if it maintains the linearity property, even if the
convolution layer overlaps in various manner. To express this
mathematically, we applied it as follows:

In Fig. 3-(Left), let the weight and bias of Conv_3 x 3 be
W1 and b1, those of Conv_1 x 1 be W2 and b2, and the input
and output are x and y. Therefore, it can be expressed as Eq.

5).
y=WIW!I + Dx + Wby +by), (5)

where I represents identity matrix caused by the addition
operator. Similarly, Fig. 3-(Right) presents Eq.

y=WIx+b; (6)
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FIGURE 4. Distribution of weight: (Left) asymmetric and (Right)
symmetric.

Therefore, we can see Fig. 3-(Left) becomes Fig. 3-(Right)
through Eq. (7) and (8). Considering Eq. (7) and (8), the
left-hand side learns high-level information in the training
step and can be simplified in the inference step according to
the above-mentioned operation.

Wiwl +1) =w] (7
(W) b1+ b) = b3 ®)

We experimented by applying the RepConv to each convo-
lution layer, which confirmed the most advantageous method
of application as that displayed in Fig. 2. In addition, the
“Xavier normalization™ is an appropriate weight initializa-
tion method, and the weight initializing setting can be fur-
ther improved. To reduce the quantization error in the QAT
stage, we converted the RepConv train form into a simplified
inference form (convolution 3 x 3 layer) after the fine-tuning
stage. The results obtained with the application of RepConv
are described in the experimental results section.

C. WEIGHT-CONSTRAINED QUANTIZATION AWARE
TRAINING

To execute deep learning models on mobile devices with low
memory or computational power, TensorFlow [39] supports
two types of model optimization methods, namely, post-
training quantization (PTQ) and QAT. As both techniques
perform quantization, performance degradation is inevitable.
In particular, PTQ performs quantization after completing
training, and the operation method is converted from float32
to floatl6 or int8. In contrast, QAT performs quantization
during the training step. Generally, the application of PTQ
after QAT yields less performance loss compared to the direct
application of the PTQ to the model. Therefore, we applied
the training (scratch) — QAT — PTQ quantization method
in sequence.

Despite the application of the mentioned procedure, the
quantization error was larger than expected, because the
weights of the first convolution layer exhibited an asymmetric
distribution, as portrayed in Fig. 4-(Left). In the 8-bit quan-
tization specification of Tensorflow Lite [40], the symmetric
quantization for weights was allowed only because the distri-
bution of the weights was assumed to be symmetric. Thus, the
accumulation of quantization errors in the first layer degraded
the overall performance. To mitigate the performance degra-
dation, the mean value of the distribution was constrained to
zero using the weight clipping technique in the range [—2,
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2], which altered the distribution after training, as depicted in
Fig. 4-(Right). Notably, the range of weight clipping was set
as [—3, 3] for RepConv Block and [—2, 2] for others.

D. SPEED UP METHOD

To further improve the speed, the network was analyzed using
an external tool called Netron [41]. A visualization of ABPN
[35] and SCSRN (Right) is presented in Fig. 5. As depicted
in Fig. 5, ABPN [35] typically omits the ReLU function
in the terminating convolution layer of the super-resolution
network and uses a Clipped ReLU function to avoid the nor-
malization of an incorrect output [42]. The clipping operation
is performed after pixel rearrangement (i.e., DepthToSpace
operation of Tensorflow) in Fig. 5-(Left).

Although the latency of the combined convolution with
ReLU was less than 1 ms, that of the single ReLU operation
was up to 3~4ms based on the layer-wise profiling. This
is potentially caused by the hardware (HW) architecture in
which Convolution-BatchNormalization-ReLU modules are
designed and operated in a single HW unit, and ReLLU is not
singularly implemented in mobile devices.

ClippedReLU (Fyg) = ReLU (min(Fyg, 255))
= min(ReLU (Fyg), 255) O]

Based on Eq. (9), Clipped ReLU function can be expressed
in various forms. Herein, the ReLU function was merged
with the terminating convolution layer and the minimum
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TABLE 1. Ablation study. (Red indicates best values within DIV2K val dataset.)

RepConv
ComBase Add Concate WC=[22] WC=[-22] WC=[33] ! MinClip Seraich T}fli;‘i‘:’]g QAT T&Ltgf I“f(f;‘“;r)‘ce

Vv 30.23 30.24 30.03  30.03 32.8
VA Vv 30.24 30.25 30.06 30.06 50.5
v Vv 30.32 30.33 30.24 30.19
4 v V4 30.32 30.33 30.23 30.22
Vv v 4 4 30.31 30.32 30.22 30.22 43.3
Vv v Vv 4 30.32 30.33 30.23 30.23
Vv v Vv 4 4 30.32 30.33 30.24 30.25
Vv v v vV Vv v 30.32 30.33 30.24 30.25 40.8

operation was excluded to maintain the upper bound (255). channel shuffle augmentation.

The DepthToSpace forms the pixel rearrangement operation L& . o

and does not harm the merging of convolution and ReLU L20) = - Z <f(111r) — I;zr) (11)

functions. Consequently, the inference time can be saved with
no visual degradation.

E. TRAINING STRATEGY

Only the training dataset of DIV2K was used in the train-
ing process. We trained our model in three steps including
the scratch training step, fine-tuning step with different loss
function, and QAT step.

1) SCRATCH TRAIN STEP

In the first step, our model was trained from scratch. The LR
patches were cropped from LR images with 128 x 128 size
and 16 mini-batch sizes. The Adam optimizer was used with
a 0.001 learning rate during scratch training. The cosine
warm-up scheduler was used with a 0.1 percentage warm-
up ratio. The total number of epochs was set to 800. We use
11 loss is expressed in Eq. (10).

1 <& . .
11 —— iy _gi
L(0) = n ;:1: ‘f(]lr) [hr

where 6 represents the trainable parameters of the proposed
network, and n denotes the number of training patched
images. Ilir and I;;r indicate the LR patch images and corre-
sponding HR patch images. f(-) denotes the function of the
proposed work.

: (10)

2) FINE-TUNING STEP

In the second step, the model was initialized with the weights
trained in the first step. To improve the accuracy, we used
12 loss as expressed in Eq. (11). Fine tuning with /2 loss
improves the peak signal-to-noise ratio (PSNR) value by 0.01
~ 0.02 dB. In this step, the initial learning rate was set as
0.00002, and the Adam optimizer was used along with a step
scheduler (i.e., learning rate halved at every 40 epochs). The
total epoch was set to 200 epochs. Moreover, we applied a
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3) QUANTIZATION-AWARE TRAINING STEP

In the third stage, the same training setting was used as step
two with the exception that the QAT model was initialized
with weights trained from the second step and the total train-
ing epoch was set to 300. In addition, the learning rate was set
as 0.00001. Furthermore, a discrete cosine transform (DCT)
domain /1 loss function was applied between the ground truth
HR and predicted HR images, expressed in Eq. (12).

1 & : ,

L"@)=- Y |pcr¢ay - perayy|. (2

n
i=1

where DCT(-) represents the DCT domain transformation

operation.

IV. SIMULATION RESULTS

The simulation setup and the results obtained with the pro-
posed model are described herein. In particular, we elab-
orate the performance improvement step applying the con-
catenation method, weight clipping, and RepConv. Moreover,
we demonstrate the reduction in inference time by excluding
the Clipped ReLU. Thereafter, the proposed model was com-
pared with previous studies, wherein FSRCNN [12], XLSR
[37], SESR [38], ABPN [35],and NCNET [36] were tested on
five standard datasets. Eventually, we compared the proposed
model with the previous studies on the devices for scale 3 on
Samsung Galaxy Z Fold4 with Snapdragon 8+ Gen 1 and
Galaxy Note20 with Snapdragon 865+.

To ensure a justified comparison, all experiments were con-
ducted in the same experimental environment. The training
process was executed using RTX A6000 GPUs. As discussed
earlier, we used TensorFlow 2.5.0 version for the all three
training steps and the TFlite generation step. In particular, the
DIV2K train dataset was used for training (i.e., 800 images
of DIV2K).
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TABLE 2. Quantitative results on benchmark datasets. (Red indicates best PSNR/SSIM values within each dataset. All PSNR/SSIM values are measured

with RGB channel.)

Sets Setl4 B100 Urban100 DIV2K
Scale  Algorithm PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
FP32/INTS  FP32/INTS  FP3Y/INTS  FP3Y/INTS  FP3Y/INTS  FP32/INTS  FP32INTS  FP32INT8  FP32INTS  FP32/INTS
Bicubic 32.07 0.9208 28.06 0.8541 26.08 0.79 24.94 0.8285 3127 0.9057
FSRCNN [12]  34.06/28.95  0.9401/0.7770  29.93/27.05 0.8888/0.7520 29.68/26.81  0.8856/0.7453  27.20/2520 0.8788/0.7470  32.78/28.07  0.9271/0.7477
XLSR[37]  35.15/29.67 09474/0.7912  30.66/27.61 0.8971/0.7596 30.33/27.24  0.8950/0.7455 28.80/26.28 0.9062/0.7717  33.76/28.92  0.9364/0.7588
X2 SESR[38] 34523451 0.9431/0.9426 30.29/30.28  0.8989/0.8915 29.98/20.98  0.8898/0.8893 27.8527.90 0.8920/0.8923  33.14/33.14  0.9352/0.9299
ABPN [35]  34.90/3479 0.9457/0.9441 30.56/30.56 0.8960/0.8946 30.36/30.30  0.8952/0.8936  28.90/28.84  0.9074/0.9058  33.71/33.59  0.9360/0.9342
NCNET [36]  34.93/3426  0.9458/0.9332  30.60/30.34  0.8962/0.8857 30.40/30.10  0.8950/0.8855 28.95/28.66  0.9082/0.8969  33.74/33.14  0.9363/0.9226
SCSRN(our) ~ 35.23/35.10  0.9478/0.9442  30.77/30.74  0.8986/0.8953  30.42/30.33  0.8964/0.8931  29.07/28.91  0.9095/0.9044  33.92/33.68  0.9377/0.9329
Bicubic 27.02 0.82 24.1 0.7169 25.58 0732 22,06 0.7029 284 0.8321
FSRCNN [12]  30.24/27.05  0.8852/0.7592  26.89/25.06  0.8000/0.7008 26782491  0.7825/0.6775 24.13/22.91  0.7779/0.6791  29.39/26.18  0.8577/0.7181
XLSR[37] 31353029 0.9038/0.8596 27.53/27.01 0.8150/0.7737 27.30/26.65 0.7957/0.7533  25.22/24.75 0.8149/0.7731  30.13/28.84  0.8721/0.8161
X3 SESR[38]  31.24/3120 0.9017/0.8991 27.4427.51 0.8127/0.8106 27.31/27.28 0.7960/0.7937 25.27/2525 0.8165/0.8141  30.09/30.01  0.8712/0.8685
ABPN[35]  31.29/3121 0.9020/0.8997 27.48/27.55 0.8133/0.8113 27.33/27.29 0.7962/0.7941 25332528 0.8179/0.8152  30.13/30.04  0.8720/0.8695
NCNET [36]  31.32/31.22  0.9023/0.8977 27.50/27.53  0.8141/0.8097 27.36/27.29  0.7970/0.7927 25.39/25.36  0.8196/0.8165 30.27/30.18  0.8728/0.8682
SCSRN(our) ~ 31.60/31.61  0.9068/0.9049 27.6527.75 0.8180/0.8158 27.41/27.38  0.7992/0.7965 25.51/2544 0.8228/0.8185 30.32/30.25  0.8754/0.8722
Bicubic 26.89 0.7936 23.96 0.6732 2431 0.6524 21.24 0.6351 26.82 0.7702
FSRCNN [12]  28.11/25.65 0.82650.6791 2521/23.75 0.7243/0.6064 25.33/23.75 0.7004/0.5777 22.52/21.58  0.6930/0.5789  27.60/25.03  0.7961/0.6304
XLSR[37]  29.10/27.95 0.8577/0.7903 25.85/25.44  0.7468/0.7002 25.79/25.17 0.7183/0.6633 23.40/22.99  0.7373/0.6886 28.26/27.17  0.8151/0.7467
X4 SESR[38]  29.36/29.33  0.8633/0.8594 26.00/26.10 0.7512/0.7484  25.89/25.85 0.7217/0.7186  23.60/23.58  0.7453/0.7419  28.41/28.33  0.8188/0.8146
ABPN[35] 292012921 0.8583/0.8566 25.87/25.26  0.7472/0.7456  25.86/25.85 0.7201/0.7180 23.57/23.55 0.7438/0.7417 28.32/2827  0.8164/0.8142
NCNET [36]  29.38/29.31  0.8634/0.8586 26.01/26.08  0.7516/0.7479  25.90/25.87 0.7220/0.7182 23.63/23.59  0.7463/0.7422  28.42/28.33  0.8190/0.8145
SCSRN(our) ~ 29.43/20.49  0.8638/0.8632 26.05/26.17 0.7532/0.7513 25.94/25.92 0.7237/0.7211 23.73/23.68 0.7493/0.7449  28.48/28.43  0.8207/0.8175

A. ABLATION STUDY

We analyze the contributions of each module in terms
of five keywords: concatenation, weight clipping, DCT
domain loss, MinClip and RepConv. In Table 1, we com-

pared the performance according to the network structure
of SCSRN.

1) CONCATENATION

The baseline (ConvBase) is a stack of seven successive
convolution layers with 32 channels. To preserve the input
dimensions, an “Add” operation was included with the
input LR image replication before the transition layers.
The replication operation was used to render the input LR
image channels to out_channel * scale®, which improved
the PSNR by 0.004 dB during the scratch training step.
However, the TFlite performance decreased by 0.182 dB,
and owing to the replicating operations, the inference
time increased by 17.7 ms. Instead of the “Add” opera-
tion, we applied the concatenation (Concat) layer before
the transition layers to preserve the input information.
Consequently, the overall image accuracy improved dur-
ing the fine-tuning stage by 0.089 dB and 0.163 dB at
Tflite (int8).

2) WEIGHT CLIPPING

Thus, we applied weight clipping (WC) to resolve the asym-
metric weight distribution and improve these results using
the TFLite (int8) by 0.033 dB. This result depicts that the
conversion loss of FP32 into INT8 was reduced by WC. How-
ever, upon applying the RepConv block with WC = [—2,2]
for specific layers, the same input and output dimensions
were obtained, the scratch performance was deteriorated
marginally, and the performance with TFLite (int8) did not
improve. When we modified the RepConv block with WC =
[—3,3], the final performance with TFLite (int8) increased
slightly by 0.002 dB.
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3) DCT DOMAIN LOSS

Furthermore, we introduced the DCT domain /1 loss in the
QAT step, which improved the PSNR value by 0.02 at TFlite
(int8). The results of DCT domain /1 loss and without DCT
domain /1 loss at QAT step provided 0.01dB better result
at DIV2K validation dataset. To select a more better one,
we tested these models on five benchmark datasets. The
results are listed in Table 3, wherein the average PSNR of
the training method including the DCT domain /1 loss was
0.006 dB higher than that of other methods. Thus, the DCT
domain /1 loss was selected for our final SCSRN model.

4) MinClip

Overall, the experimental investigation revealed the signifi-
cant influence of the Clipped ReLU on the inference time.
Thus, we resolved this issue by replacing the Clipped ReLU
with the minimum function (MinClip), and the inference time
was reduced by 2.5 ms. The inference time in Table 1 mea-
sured at Galaxy Note20 mobile device with AI-Benchmark
tool [43]

5) RepConv

We discovered that the application of the RepConv block on
the entire network degrades the performance by 0.23 dB at
TFlite(int8). Thus, the RepConv block was applied only on
the backbone and transition layers, which exhibited the same
input and output dimensions. These layers bear an identity
connection that aid in information propagation, prevents the
occurrence of vanishing gradients in deep networks [38],
[44], and improves the the PSNR performance. The results
are summarized in Table 4.

B. COMPARISONS WITH THE STATE-OF-THE-ARTS

We compare the proposed algorithm with conventional algo-
rithms: FSRCNN [12], XLSR [37], SESR [38], ABPN [35],
and NCNET [36]. The proposed model and previous works
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TABLE 3. Comparison of SCSRN without DCT domain /1 loss and with DCT domain /1 loss on various datasets. (Red indicates int8 best PSNR values for

each dataset).

Algorithm Set5(int8)  Set14(int8)  B100(int8)  Urbanl100(int8)  DIV2K(int8) | Average
w/o_DCT_loss 31.56 27.73 27.38 25.48 30.23 28.476
w/_DCT_loss 31.61 27.74 27.38 25.45 30.25 28.486

\
\

URBAN100-081 HR SESR
HR
Set14-ppt3 HR SESR

FIGURE 6. Visual results between the proposed method and baselines (x3 SR).

TABLE 4. Comparison of SCSRN (w/o MinClip, DCT loss) with
RepConv_All.

Fine TFLite
Scratch Tuning QAT (int8)
RepConv 30.32 30.33 30.23 30.23

RepConv_All 30.04 30.23 30.17  30.00

are tested on five benchmark datasets: SetS, Setl4, B100,
Urban100 and DIV2K validation set. For fair comparison,
We measure PSNR and SSIM of each algorithm on RGB
domain. ABPN and NCNET officially provide the source
codes that operates in the RGB domain, so we obtained the
results using this source code. In case of FSRCNN [12] and
SESR [38] to support the RGB channels instead of using only
Y. Therefore, the number of channels in the first and last con-
volution layers were adjusted from one to three. There is no

VOLUME 11, 2023

\

\

2

Bicubic FSRCNN XLSR

e

ABPN NCNET

Bicubic

ABPN NCNET SCSRN (Ours)

SCSRN (Ours)

officially released code for XLLSR [37], so we reimplemented
it. Three different scales are tested X2, X3 and X4.

Table 2 compares PSNR/SSIM scores. In this table, FP32
refers to the result before quantization and INTS refers to the
result after quantization. FSRCNN and XLSR were quantized
by PTQ, and the rest of the algorithms were quantized by
QAT. The proposed algorithm provides the superiror perfor-
mance for all the benchmark datasets before/after quantiza-
tion. FSRCNN and XLSR with PTQ show high PSNR degra-
dation by INTS8 quantization. On the other hand, in algorithms
using QAT, PSNR degradation due to INT8 quantization is
quite small from 0.1 to 0.2 dB.

We show visual result of our final INT8 quantized model
previous works in Fig. 6. SCSRN successfully reconstruct
edges in the HR images and reveal better shaped SR out-
puts compared to the previous works. We note that FSR-
CNN [12] was designed without considering quantization,
thus the image quality is significantly degraded by INTS8
quantization.
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TABLE 5. Runtime (ms) simulation result on the mobile devices (scale x3).

Runtime NNAPI (ms)
#Params
Gal. Note20  Gal. Z Fold4

FSRCNN [12] 65.20 21.70 25.35K
XLSR [37] 101.10 6.33 21.95K
SESR [38] 58.70 15.90 23.64K
ABPN [35] 50.80 17.10 42.54K
NCNET [36] 41.01 4.92 53.00K
SCSRN(ours) 40.80 4.62 53.01K

TABLE 6. Official competition results of mobile Al & AIM 2022 real-time
super-resolution challenge [45].

PSNR SSIM NPU Runtime (ms)  Score

SCSRN(our)  30.03  0.8738 19.20 22.22
maciejos_s 29.88 0.8705 15.90 21.84
CCjiahao 29.82  0.8697 15.10 21.08
zion_ 29.76  0.8675 15.00 19.59
NBCS 29.80  0.8675 16.10 19.27

C. THE INFERENCE TIME AT THE MOBILE DEVICE

The model inference time were reported using the Galaxy
Note20 with Snapdragon 865+ and Galaxy Z Fold4 with
Snapdragon 8+ Gen 1 on the commercial mobile devices.
To measure the inference time, we used Al Benchmark [43] to
obtain the NNAPI execution periods, as expressed in Table 5.
After 100 iterations, the inference times of all iterations were
averaged. The proposed model involved a larger number
of parameters and operations compared to other methods.
However, the results of the inference time demonstrate that
the proposed SCSRN model is faster than all such existing
models. This proves the superior efficiency of the devel-
oped skip-concatenation network on mobile super-resolution
image tasks.

D. THE MAI2022 REAL-TIME SUPER-RESOLUTION
CHALLENGE
This research was conducted for participating in the
MAI2022 Real-Time Super Resolution Challenge. The final
results of MAI2022 are displayed in Table 6. The PSNR result
of MAI2022 was obtained on the DIV2K test dataset, and
the inference time was evaluated on Synaptics Dolphin smart
TV platform with a dedicated NPU (VS680). The score of
each final submission was evaluated according to Eq. (13) (C
denotes a constant normalization factor):

92-PSNR

Final Score = ——— (13)
C - runtime

V. CONCLUSION

This study proposed an efficient and lightweight super-
resolution network by directly concatenating an input LR
image and an intermediate feature map at the middle of
the network. To reduce the quantization error, we intro-
duced weight clipping. Moreover, the reparameterization
method was selectively applied and provided the improved
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super-resolution image quality without any performance
degradation in terms of inference time. Based on the contribu-
tions, the proposed network achieved 30.03 dB in PSNR and
19.20 ms in NPU runtime at the Mobile Al & AIM 2022 Real-
Time Single-Image Super-Resolution Challenge.
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