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ABSTRACT Hyperspectral image (HSI) classification has always drawn great attention in the field of remote
sensing. Various deep learning models are in the ascendant and gradually applied to HSI classification.
Nevertheless, limited-labeled and class-imbalanced datasets largely make the classifier prone to overfitting.
To address the above problem, this article proposes a two-branch generative adversarial network with
multiscale connections (TBGAN), which includes two generators to produce the spectral and spatial samples,
respectively. Thereinto, the spectral generator is imbued with the self-attention mechanism to maximumly
capture the long-term dependencies across the spectral bands. And meanwhile, an elaborated discriminator
with two branches is devised in TBGAN for extracting the joint spectral-spatial features. Besides, the
multiscale connections are placed between the discriminator and two generators to alleviate the instability
problems caused by the inherently backward propagation of gradients in GAN. Furthermore, a feature-
matching term is added to the loss function to prevent the generators from overtraining upon the current
discriminator, thereby further improving the stability of the network. Experiments upon three benchmark
datasets demonstrate that TBGAN achieves an extremely competitive classification accuracy and exerts
lower sensitivity to the training sample size compared with several state-of-the-art methods.

INDEX TERMS Hyperspectral image classification, generative adversarial network, multiscale connections,
joint spectral-spatial features.

I. INTRODUCTION
As an essential observation technology, hyperspectral remote
sensing can simultaneously capture the spectral and spatial
features of ground objects in a scene. By far, hyperspectral
images (HSI) are widely used in urban planning [1], agri-
cultural monitoring [2], mineral exploration [3], and military
reconnaissance [4]. HSI classification is a prerequisite for
many applications of HSI, nevertheless.

Various supervised methods have been applied to the
HSI classification field in the machine learning community.

The associate editor coordinating the review of this manuscript and
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Generally, these algorithms divide the spectral space with
the obtained decision plane as the boundary, such as
K -nearest neighbor (KNN) [5], maximum likelihood [6],
neural network [7], logistic regression [8], random forest (RF)
[9], and support vector machine (SVM) [10], [12]. However,
the feature extraction and classifier design in these methods
are conducted independently, which makes the extracted fea-
tures may not be optimal for the classifier, thus reducing the
classification accuracy. Additionally, due to the high dimen-
sionality of HSI, most of these algorithms dramatically suffer
from the so-called curse of dimensionality.

Compared with the abovementioned shallow models, deep
learning-based models can train the classifier in a data-driven
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manner and extract the hierarchical features simultaneously,
forming a unified end-to-end framework. Consequently, deep
learning has gradually become a powerful tool for HSI clas-
sification in recent years [13]. Typical deep learning mod-
els include convolutional neural network (CNN) [14], [24],
stacked autoencoder (SAE) [25], recurrent neural network
(RNN) [26], and deep belief network (DBN) [27]. Among
the abovementioned deep learning-based methods, the inputs
of RNN, SAE, and DBN are composed of spectral vectors,
without containing the spatial features, thereby largely giving
rise to unsatisfactory classifications. Nevertheless, CNN can
simultaneously extract the spectral and spatial features of
HSI and adopt the strategies of local connections and weight
sharing to reduce the number of parameters, drawing great
attention in the field of HSI classification. Hu et al. [14] first
designed a five-layer CNN with the spectrum of each pixel
as input and extracted the spectral features to perform the
classification. Besides, a pixel-pair voting strategy enabled
a one-dimensional convolutional neural network (1D-CNN)
to achieve a promising classification result in the case of
limited training samples [15]. However, due to the lack of
texture and context information of the samples, 1D-CNN
is prone to suffer from misclassification. Therefore, some
scholars [16], [21] have introduced spatial features into the
network to construct joint spectral-spatial frameworks, which
can be roughly divided into two categories. One paradigm
is to construct a two-branch structure, in which each branch
extracts the spectral or spatial features respectively, and then
concatenates these features for the classification [16], [18].
For example, Xu et al. [16] developed a spectral-spatial
unified network (SSUN), employing a long short-term mem-
ory model (LSTM) and multiscale convolutional neural net-
work to respectively extract the spectral and spatial features.
The other paradigm receives the 3D cubes containing the
spectral and spatial information and extracts the joint fea-
tures by one or more convolutional operators [19], [21].
For instance, the multiscale 3D deep convolutional neu-
ral network (M3D-DCNN) [20] utilized 3D convolutional
operators to extract the multiscale spatial and spectral fea-
tures, announcing impressive results. In addition, there are
also some studies [22], [24] that combine CNN with self-
supervised learning, using a large number of unlabeled data
and achieving promising classification results.

Although CNN-based methods have achieved excellent
classification results, they are prone to overfitting when tun-
ing the substantial learnable parameters with limited train-
ing data [28], [29]. However, gathering data is expensive
and time-consuming in the field of remote sensing, and the
obtained data generally take on long-tail distribution, which
hinders the application of CNN.

Generative adversarial network (GAN) [30] was put for-
ward to generate high-quality images through its unique
adversarial training process between the generator and dis-
criminator. With the advancement of GAN, hundreds of
its variations have been derived. Among them, the rela-
tively popular models are conditional generative adversarial

network (CGAN) [31], deep convolutional generative adver-
sarial network (DCGAN) [32], and Wasserstein GAN [33].
To alleviate the above overfitting problem of CNN-based
methods, some scholars [34], [44] introduced GAN into HSI
classification, which yields encouraging classification results
under the circumstance of small-size samples. Zhan et al. [34]
proposed a semi-supervised classification method based on
1D-GAN, which is the first application of GAN for HSI clas-
sification. A DCGAN-based method was proposed, in which
the discriminator leveraged the first three principal compo-
nents after the operation of principal components analysis
(PCA) upon the original image as the inputs, with com-
mendable classification results obtained [35]. Zhan et al. [36]
further classified the samples via the voting mechanism of the
dynamic neighborhood after the first classification using the
spectral feature only. A novelmulticlass spatial-spectral GAN
(MSGAN) method [37] was developed with two generators
to produce the fake spectral and spatial samples, respectively,
and defined the novel adversarial objectives for multiclass,
which achieves astounding results. For the sake of excavating
the rich information from unlabeled samples, the generator
network in multitask GAN (MTGAN) [38] was designed to
simultaneously undertake the reconstruction and the classi-
fication tasks. To improve the generalization performance,
a self-attention-based GAN [39] was combined with the
variational auto-encoder (VAE) [45], in which the generator
received the encoder-generated and random latent vectors to
produce more enhanced virtual samples.

Even if the above GAN-based models have gained sat-
isfying HSI classification performance, the training quality
of models hinges on the gradients transmitted from the dis-
criminator to the generator. Hence, the gradients may dis-
appear due to accumulation when the layer of GAN is too
deep. Furthermore, Arjovsky and Bottou [46] put forward
the point that when there is an insubstantial overlap between
the distribution of the real and the generated data, the dis-
criminator will pass uninformative gradients to the generator.
The above problems are the major contributors to the training
instability of GAN, which hinders its classification accuracy.
To improve the training stability, a multiscale gradients GAN
(MSG-GAN) [47] was developed for synthesizing the high-
resolution faces, which connected the intermediate layers of
the generator with that of the discriminator, making the multi-
scale gradients can be directly passed from the discriminator
to the generator. To solve the training instability problem of
GAN for the task of HSI classification, this article establishes
the multiscale connections between the discriminator and
generators inspired by MSG-GAN. The main contributions
of this article are summarized as follows.

1) We propose a two-branch generative adversarial net-
work with multiscale connections (TBGAN) for HSI
classification. Generators in TBGAN will produce the
virtual spectrums and spatial patches to alle-viate the
small-size sample problem.

2) To improve the training stability, themultiscale connec-
tions are established between the discriminator and two
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FIGURE 1. Framework of GAN.

generators.Moreover, a feature-matching term is added
to the loss function to further increase the stability.

3) The discriminator with two branches is designed
in TBGAN to extract the joint spectral-spatial fea-
tures. The trained discriminator can be employed as a
classifier.

II. METHODOLOGY
A. BASIC FRAMEWORK OF GAN
Before formally introducing the TBGAN method, we first
review the basics of GAN.Motivated by the two-person zero-
sum game theory, the GAN model [30] is proposed by taking
the adversarial training process to optimize deep learning
models as a new framework, which consists of a generator G
and a discriminatorD, as exhibited in Fig. 1.G tries to capture
the potential distribution of real data and output the fake data,
whileD undertakes a binary classification task that can judge
whether the input sample is real or not. Specifically, G takes
a random noise z as input and attempts to generate the fake
data G(z). D uses the real data x or the fake data G(z) as input
and outputs the probability of the input attributable to the real
data. The objective function of GAN is defined as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)
[
logD(x)

]
+Ez∼pz(z)

[
log (1− D(G(z)))

]
(1)

where E denotes the expectation operator, pdata(x) and pz(z)
indicate the distributions of the real data and the noise, respec-
tively. In the optimized procedure, D desires to distinguish as
precisely as possible, that is, maximizing V (D, G). While
G has the opposite objective, which attempts to fool D by
generating real-like data tominimizeV (D,G). The parameter
updating of G relies on the backward propagation of D.
As one module is updated, the other is fixed, and they evolve
alternately until their capabilities reach an equilibrium.

B. PROPOSED METHOD
Inspired by the adversarial training mechanism of GAN, this
article proposes a TBGAN framework for the classification
of ground objects by extracting the joint spectral-spatial fea-
tures. Similar to the traditional GAN, TBGAN also consists
of the generator and the discriminator. As can be seen from
Fig. 2, there are two branches devised in TBGAN, which is
specifically composed of three modules: the spectral gener-
ator Gspec, the spatial generator Gspat, and the discrimina-
tor D. To generate the corresponding virtual samples, two

FIGURE 2. The framework of the proposed TBGAN.

generators receive both noises and labels as input and learn
spectral and spatial data distribution of real images respec-
tively. D employs both real and virtual samples as the inputs,
which aims to extract the joint spectral-spatial features and
eventually achieve the classification task. Here the real spatial
samples are the cubes cropped around each pixel upon the
first three principal components through PCA transformation.
By picking out only the first few dominant components, the
spectral dimension can thus be reduced.

It is worth noting that the intermediate layers of D are
connected with their counterparts in two generators and
the multiscale spectral/spatial features of real samples after
downsampling. This kind of skip connection allows D to
consider the multiscale features of both the real and the fake
samples, thus enhancing its discriminative ability. Besides,
such multiscale connections make the gradients be passed
directly from D to the intermediate layers of two generators,
which effectively avoids the circumstance of training insta-
bility caused by gradient accumulation in the previous GAN
models.

1) SPECTRAL AND SPATIAL GENERATORS OF TBGAN
The generators Gspec and Gspat are employed to generate
virtual samples containing spectral and spatial information,
respectively. As shown in Fig. 3, the inputs of two generators
are (zspec, y) and (zspat, y), where zspec and zspat represent
the noise vectors and y denotes the one-hot coded labels.
By concatenating labels and noises as input, the generators
can learn the class-specific features during training, thus
reducing the possibility of model collapse [31]. The virtual
spectrums generated by Gspec are depicted by Gspec(zspec,
y), while the virtual spatial patches generated by Gspat are
depicted as Gspat(zspat, y). In addition, each virtual sample is
assigned into class n+ 1 (n is the number of dataset classes)
and endowed with an artificial label yfake = 1

n (1, 1, . . . , 1)
T
n .
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FIGURE 3. The architectures of the two generators in TBGAN.

Gspec contains five 1-D transposed convolutional layers
(1D-TConv), whose kernel size is 5. Gspat is stacked by four
2D-TConv, and the kernel size of each layer is 3× 3. Except
for the last TConv layer that takes tanh as the activation func-
tion, each TConv layer in both generators utilizes the rectified
linear units (ReLUs) as the nonlinear activation function and
adopts batch normalization strategy.

However, existing models still find obstacles when cap-
turing long-term dependencies across the spectral bands
due to extensive bands in HSI [48]. Recently, the self-
attention mechanism [49] has become a breakthrough with
high hope to effectively address the above issue by obtaining
global information of the feature maps through simple query
and assignment operations [50]. Therefore, self-attention is
drawn into Gspec to calculate the response of all bands in the
spectral sequence to a certain band. The self-attention layer is
placed at the end of Gspec, because the feature maps achieve
the largest after five 1D-TConv operations, thus making the
self-attention mechanism perform well.

2) DISCRIMINATOR OF TBGAN
In this article, a two-branch discriminator D is designed to
fulfill the task of ground object classification by exploiting
the joint spectral-spatial features. The architecture of dis-
criminator D is depicted in Fig. 4. There are two sources of
the input samples for D: one is the spectrums and spatial
patches of the real images, denoted by (Xspec, Xspat), and
the other is the virtual samples generated by two generators,
represented by (Gspec(zspec, y), Gspat(zspat, y)). In particular,
each branch of the discriminator D consists of several Conv-
Blocks, which can excavate the spectral or spatial features of
the input samples. Besides, the pooling operation is replaced
by the strided convolution in all Conv-Blocks so as to achieve
the adaptive learning of downsampling.

Fig. 5 exhibits the structure of Conv-Block in the spatial
branch, which is nearly consistent with that in the spectral
branch. For the input feature maps, its height and width are

FIGURE 4. The architecture of the discriminator in TBGAN.

FIGURE 5. The construction of Conv-Block in discriminator.

labeled as 2w, and c is the number of channels. To obtain
the spatial features, the Conv-Block first performs strided
convolution to halve the size of feature maps and double the
number of channels and then concatenates the handled feature
maps with the multiscale features. These multiscale features
consist of the intermediate layer outputs of the generator and
the downsampled versions of the real data. After that, the
concatenated feature maps are delivered into a convolution
layer, whose kernel size is 3×3 (5×1 in the spectral branch).
During this convolution, the size and quantity of feature maps
remain unchanged. Finally, the number of channels is halved
by further executing 1 × 1 convolution. After the imple-
mentation of four successive Conv-Blocks, the output spatial
features are flattened as a one-dimensional vector. Similarly,
the spectral features can also be flattened into a vector after
adopting five successive Conv-Blocks in the spectral branch.
By further concatenating these two vectors, the joint spectral-
spatial features are extracted. Then, these joint features are
delivered into a softmax layer to achieve the classification of
ground objects.

To avoid the network training instability caused by gradient
accumulation, the intermediate layers ofD are connectedwith
their counterparts in two generators in a manner of combining
1×1 convolutionwith concatenation. Formatching the size of
the feature maps from the intermediate layers of generators,
the real spectrums, and spatial patches are downsampled in
an interlaced fashion.

Meanwhile, the quantity of the intermediate layer outputs
in Gspec and Gspat are reduced by 1 × 1 convolution cor-
responding to different downsampled versions of the real
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samples. Subsequently, the acquired feature maps and the
down-sampled real data are extended by 1 × 1 convolution
respectively to produce the multiscale features, which have
the same channels as the intermediate layer outputs in D.
Finally, the multiscale features are concatenated with the
counterparts from the intermediate layers inD and then deliv-
ered into the corresponding Conv-Blocks.

Here D(Xspec, Xspat) and D(Gspec(zspec, y), Gspat(zspat, y))
denote the discriminant results of D for the real and virtual
samples, respectively. Note that each convolutional layer inD
employs the leaky-rectified linear units (Leaky-ReLUs) as the
nonlinear activation function. Meanwhile, each layer applies
the batch normalization strategy except for the input and the
output layers.

3) LOSS FUNCTION OF TBGAN
The discriminator in the classical GAN utilizes the sigmoid
classifier to distinguish whether an input is true or false,
which pertains to binary classification. For the circumstance
of multi-classification, the discriminator in ACGAN [51]
method is imbued with a softmax classifier to undertake
the multi-classification task. In recent years, to improve the
adversarial training effects upon multi-classification, a multi-
class adversarial strategy [37] is devised, which enables the
softmax layer simultaneously complete the discrimination
of input sources and the classification task. For this reason,
this multi-class adversarial strategy is also introduced into
TBGAN. Meanwhile, a feature-matching term is also added
to the loss function, thus facilitating the generated samples
preferably subject to the distribution of the real data. Con-
sequently, the loss function of TBGAN can be defined as
follows: {

LG = Lc + λLs
LD = Lreal + Lfake

(2)

where LG and LD represent the loss functions corresponding
to the generators and discriminator, respectively. Lc denotes
the categorical loss of the virtual samples corresponding to
the true labels y, and Ls is the summation of the match-
ing losses of the spectral and spatial features. The hyper-
parameter λ is utilized to trade off Lc and Ls. Lreal depicts
the categorical loss of the real samples, and Lfake represents
the categorical loss of the virtual samples with the artificial
label yfake = 1

n (1, 1, . . . , 1)
T
n . Specifically, these losses can

be calculated as follows:

Lc = CE
(
D(Gspec(zspec, y),Gspat(zspat, y)), y

)
Ls =

∥∥f1(Xspec)− f1(Gspec(zspec, y))
∥∥2
2

+
∥∥f2(Xspat)− f2(Gspat(zspat, y))

∥∥2
2

Lreal = CE
(
D(Xspec,Xspat), y

)
Lfake = CE

(
D(Gspec(zspec, y),Gspat(zspat, y)), yfake

)
(3)

where CE(·) denotes the cross entropy, f1(x) and f2(x) depict
the output of the flatten layers in the spectral and spatial
branches ofD, respectively. The objective of the generators is
to make the discriminator distinguish the virtual samples as

a certain class in the dataset and match the expected value of
the features from flatten layers. Whereas D aims to furthest
improve the multi-classification accuracy of the real samples
and classify the virtual samples as the class of n+ 1.

Besides, to alleviate the overconfidence of the discrim-
inator, the labels in (3) can be smoothed complying with
the strategy adopted in [52]. Concretely, by introducing a
hyperparameter of ε, the elements of 0 and 1 in vector y are
substituted with ε and 1-ε, respectively.

4) PROCEDURE OF TBGAN
As shown in Table 1, the specific procedure of the TBGAN
method consists of the virtual sample generation, extracting
the joint spectral-spatial features, and the ground object clas-
sification.

TABLE 1. Procedure of the proposed TBGAN method.

III. EXPERIMENTS
To demonstrate the classification performance of the pro-
posed TBGAN, the experiments are conducted upon the
Pavia University, the Salinas, and the Indian Pines dataset.
In the experiments, 10% of the labeled samples are randomly
selected for training, and the remainder is used for testing.
Besides, class accuracy, average accuracy (AA), overall accu-
racy (OA), and Kappa coefficient are employed as indicators
for measuring the classification results.

A. DATA DESCRIPTION
1) PAVIA UNIVERSITY DATASET
The Pavia University dataset actually captured pictures of
Pavia, an Italian city, by the Reflective Optics System Imag-
ing Spectrometer (ROSIS) sensor during a flight campaign
in 2003. The imaging wavelength of ROSIS ranges from
430 to 860 nm, in which 103 spectral bands are retained
after removing 12 bands significantly affected by noise. This
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dataset contains 610× 340 pixels, where 9 classes of ground
objects are labeled, including Trees, Asphalt, Brick, etc.
Table 2 shows the specific sample distribution on the Pavia
University dataset used for training and testing.

TABLE 2. Sample distribution on the Pavia University Dataset.

2) SALINAS DATASET
The Salinas dataset was gathered by the Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) sensor over the
Salinas Valley. The imaging wavelength range of AVIRIS is
from 400 to 2500 nm, in which 204 bands are available after
eliminating the bands absorbed by water. This dataset is in
size of 512 × 217 pixels with a resolution of 3.7m. Among
them, the labeled pixels are divided into 16 categories, includ-
ing Fallow, Celery, Stubble, etc. Table 3 reports the number
of samples used for training and testing.

TABLE 3. Sample distribution on the Salinas Dataset.

3) INDIAN PINES DATASET
The Indian Pines dataset was also collected by AVIRIS
sensors, with a size of 145 × 145 pixels. After eliminat-
ing 24 bands absorbed by water, 200 spectral bands are
reserved. This dataset contains 10,249 labeled pixels, which
are divided into 16 categories, including Alfalfa, Corn-notill,
Corn-mintill, etc. Table 4 shows the number of samples used
for training and testing.

B. EXPERIMENTAL SETTING
To evaluate the performance of the proposed TBGAN
model, the experiments are designed comparative to six

TABLE 4. Sample distribution on the Indian Pines Dataset.

TABLE 5. Detailed configurations of Gspec and Gspat.

representative HSI classification methods, including RBF-
SVM [12], RF [9], LSTM [14], SSUN [14], M3D-DCNN
[20], and DCGAN [35]. Meanwhile, the exploratory exper-
iments are additionally conducted for the models of TBGAN
containing the spectral branch or spatial branch only, which
are named TB-SPE and TB-SPA, respectively. In the com-
parison models, the hyper-parameters, such as gamma and
C in RBF-SVM and the number of decision trees in RF,
are optimally sought out by grid-search, while the parameter
configurations of other deep learning models comply with
their sources. The detailed configurations of TBGAN are
illustrated in Table 5 and Table 6, where Conv represents the
convolutional layer, Tconv expresses the transposed convo-
lutional layer, Atten represents the self-attention layer, and
BN indicates the batch normalization. The learning rate of
both the generators and the discriminator is set at 0.0002, the
epoch is set to 500, and the batch size is 64. TBGAN adopts
the Adam method [53] as the optimizer to adaptively adjust
the learning rate. The dimensions of both zspec and zspat are
set as 100, and the smoothing parameter ε is empirically set to
0.1. The parameter k is set to 3, indicating that, the discrim-
inator will be updated three times when the generators are
updated once. All hyper-parameters of TB-SPE and TB-SPA
are configured the same as TBGAN.

Besides, the experiments are proceeded in the Pytorch
backend with NVIDIA 1080Ti (number of cores: 1,
RAM:11GB, Cuda version: 11.0). Since the models may be
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TABLE 6. Detailed configurations of D.

influenced by random initializations, the mean and standard
deviation of classification results after ten runs are taken as
the final experimental basis.

C. CLASSIFICATION RESULTS
Tables 7 - 9 present the classification results of nine methods
upon the Pavia University, the Salinas, and the Indian Pines
dataset, respectively. Each table records, from top to bottom,
the means of class accuracy, AA, OA, and Kappa coefficients
after ten runs, as well as the standard deviations of the latter
three evaluation metrics. As can be seen from Tables 7 - 9, the
deep learning methods generally behave better in classifica-
tion performance than traditional machine learning methods
by the exploitation of hierarchical features. Furthermore, the
GAN-based methods can generate more training samples,
which is very helpful for network training and makes them
achieve higher accuracy compared with other deep learn-
ing methods. Among these GAN-based methods, TBGAN
exceeds TB-SPE and TB-SPA, which strongly demonstrates
the superiority of utilizing the joint spectral-spatial features.
DCGAN and TB-SPA achieve encouraging results, which can
be attributed to the utilization of PCA transformation, partly
introducing spectral information. By virtue of the multiscale
connections and the two-branch structure, TBGAN obtains
the best classification results among these nine methods. For
the Pavia University dataset, TBGAN increases by 5.67%,
1.78%, and 0.13% respectively in terms of the OA index com-
pared with LSTM, M3D-DCNN, and SSUN. For the Sali-
nas dataset, TBGAN attains the optimal class accuracy for
12 classes, 7 of which reach 100% and the 10 times average of
OA reaches 99.98%. In addition, TBGAN also achieves sur-
passing performance on the imbalanced Indian Pines dataset.
For example, the prediction accuracy of 96.80% is given
for the Grass-pasture-mowed class in the scenario of only
3 training samples.

In addition to the quantitative comparisons of the clas-
sification results in Tables 7 - 9, the qualitative visualiza-
tion is also provided by creating the classification maps for
each method on three HSI datasets. As exhibited in Fig. 6-8,

FIGURE 6. Classification maps of different models on the Pavia University
dataset. (a) Ground truth, (b) RBF-SVM, (c) RF, (d) LSTM, (e) M3D-DCNN,
(f) SSUN, (g) TB-SPE, (h) TB-SPA, and (i) TBGAN.

FIGURE 7. Classification maps of different models on the Salinas dataset.
(a) Ground truth, (b) RBF-SVM, (c) RF, (d) LSTM, (e) M3D-DCNN, (f) SSUN,
(g) TB-SPE, (h) TB-SPA, and (i) TBGAN.

it can be observed that the classification maps obtained by
the TBGAN are closer to the ground truths and have fewer
outliers compared with other methods, which further con-
firms the effectiveness of the proposed method. Moreover,
because the input of TB-SPA is a 3D cube in size of 47 ×
47×3, its prediction may be interfered by the substantial
spatial homogeneity, thus making the classification results
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TABLE 7. Comparative classification results of the models upon the pavia university dataset.

TABLE 8. Comparative classification results of the models upon the Salinas dataset.

TABLE 9. Comparative classification results of the models upon the indian pines dataset.

tend to be over-smoothed. Owing to the designed two-branch
structure, TBGAN can extract the spectral information more

thoroughly, which makes the classification results more
refined compared with TB-SPA.
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FIGURE 8. Classification maps of different models on the Indian Pines
dataset. (a) Ground truth, (b) RBF-SVM, (c) RF, (d) LSTM, (e) M3D-DCNN,
(f) SSUN, (g) TB-SPE, (h) TB-SPA, and (i) TBGAN.

TABLE 10. Model complexity of models (Taking the Salinas dataset as
example).

D. MODEL COMPLEXITY
To assess the complexity of the proposed TBGAN,
Table 10 presents the number of parameters (Params) and
floating-point operations (FLOPs) of seven deep learning
methods. The results suggest that TBGAN has fewer param-
eters than advanced SSUN and DCGAN, but the actual
computation is slower than that of other models due to the
two-branch structure.

For a more comprehensive evaluation, the running time
of nine methods upon each dataset is provided in Table 11.
Generally speaking, shallow models in the machine learning
community are more efficient than deep learning algorithms.
More significantly, the four GAN-based models take more
time during the training stage than other deep learningmodels
because both the generator and the discriminator need to be
trained simultaneously. In particular, the proposed TBGAN
and its sub-models TB-SPE and TB-SPA all adopt such a
training strategy of updating the discriminator three times
while updating the generator once. TBGAN requires longer
training time than TB-SPE and TB-SPA, this is probably
because TBGAN needs to extract the joint spectral-spatial
features and update the two generators in each training itera-
tion.

IV. DISCUSSION
The relevant experiments are carried out for exploring the
impacts of some significant influencing factors such as patch

TABLE 11. Training and testing time of models upon three datasets.

size, hyper-parameter λ, self-attention mechanism, and the
number of training samples upon the model of TBGAN.

A. IMPACTS OF THE PATCH SIZES
Obviously, the performance of TBGAN is susceptible to
the patch size. The larger patches may contain redundant
information resulting in lower classification accuracy and
heavier computation. In contrast, the smaller patches may
provide insufficient spatial features for training the model,
leading to false discriminants. In the experiments, four spatial
neighborhoods of 31 × 31, 39 × 39, 47 × 47 and 55 ×
55 are adopted, and the classification results on three datasets
are presented in Table 12. For the Salinas and Indian Pines
datasets, TBGAN achieves the best classification results both
in the patch size of 47 × 47, while for the Pavia University
dataset, the best OA of TBGAN corresponds to the patch size
of 55 × 55. Thus, the patch size in the formal experiment is
set to 47 × 47 by a majority of all datasets.

TABLE 12. Overall accuracy upon three datasets with different patch size.

B. OPTIMAL CHOICE OF HYPER-PARAMETER λ IN LG
The hyper-parameter of λ in (2) is a weight factor to trade
off Lc and Ls. To explore the influence of λ upon the clas-
sification results, the value of λ is selected from the range
of [0, 0.5] at 0.1 intervals. As shown in Table 13, for the
first two datasets, the overall accuracies of TBGAN perfor-
mance are less affected by the parameter λ. However, for
the Indian Pines dataset, the performance of TBGAN varies
significantly with different values of λ and the best overall
accuracy is acquired when λ equals 0.3. In view of this, the
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FIGURE 9. OA of RBF-SVM, RF, LSTM, M3DCNN, SSUN, TB-SPE, TB-SPA, and TBGAN with different ratios of training samples on (a) Pavia
University dataset, (b) Salinas dataset, and (c) Indian Pines dataset.

TABLE 13. Overall accuracy upon three datasets with different values
of λ.

TABLE 14. Overall accuracy upon three datasets with/without
self-attention mechanism.

value of hyper-parameter λ is set to 0.3 accordingly in the
experiments.

C. ADVANTAGES OF SELF-ATTENTION MECHANISM
To capture the long-term dependencies in the spectral
sequences, Gspec is integrated with the self-attention mech-
anism, whose effectiveness is validated by training the
TBGAN model with or without the self-attention, respec-
tively. As depicted in Table 14, the classification perfor-
mances of TBGAN are significantly improved upon the three
datasets with the addition of the self-attention mechanism.

D. SENSITIVITY TO THE NUMBER OF TRAINING SAMPLES
To investigate the sensitivity of different classification meth-
ods to the number of training samples, 10%, 9%, 8%, 7%,
and 6% of the labeled samples are successively picked out
from the three datasets in the experiments. As shown in Fig. 9,
with the reduction of training samples, the classification
accuracy of all nine methods declines to varying degrees.
Aswell known to all, deep learningmethods require extensive
training samples to optimize the parameters, and insuffi-
cient samples tend to result in overfitting of the model, thus
reducing the classification accuracy.Whereas, the four GAN-
based models, by virtue of generating real-like samples, can
alleviate the overfitting problem caused by the reduction of
training samples. Specifically, as the ratio of training samples
from three datasets decreases from 10% to 6%, the OA of
TBGAN declines by 0.2%, 0.09%, and 2.3%, respectively,
which are significantly slower than the other methods.

V. CONCLUSION
This article proposes a novel TBGAN model for HSI clas-
sification. Specifically, there are two generators devised in
TBGAN to produce the spectral and spatial real-like data,
respectively, which alleviates the small sample size prob-
lems. Furthermore, the spectral generator is integrated with
the self-attention mechanism, ameliorating the manipulation
ability of the long-term dependency relationship. For the
multi-classification task, an elaborate discriminator with two
branches is designed in TBGAN to extract the spectral and
spatial features more thoroughly. It is particularly worth men-
tioning that the multiscale connections are placed between
the discriminator and two generators in TBGAN to improve
the network stability and the classification capability. Mean-
while, a feature-matching term is added to the loss function
to make the training process more stable. The experimen-
tal results demonstrate that TBGAN behaves the superior
classification performance and shows lower sensitivity to
the number of training samples, which exerts great poten-
tial for classification under the circumstance of small size
samples. In future research, more innovative strategies are
highly expected to be developed in GAN-based supervised
frameworks for further improving the performance of HSI
classification.
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