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ABSTRACT Face forgery generating algorithms that produce a range of manipulated videos/images have
developed quickly. Consequently, this causes an increase in the production of fake information, making it
difficult to identify. Because facial manipulation technologies raise severe concerns, face forgery detection is
gaining increasing attention in the area of computer vision. In real-world applications, face forgery detection
systems frequently encounter and perform poorly in unseen domains, due to poor generalization. In this
paper, we propose a deepfake detection method based on meta-learning called Meta Deepfake Detection
(MDD). The goal of the model is to develop a generalized model capable of directly solving new unseen
domains without the need for model updates. The MDD algorithm establishes various weights for facial
images from various domains. Specifically, MDD uses meta-weight learning to shift information from the
source domains to the target domains with meta-optimization steps, which aims for the model to generate
effective representations of the source and target domains. We build multi-domain sets using meta splitting
strategy to create a meta-train set and meta-test set. Based on these sets, the model determines the gradient
descent and obtains backpropagation. The inner and outer loop gradients were aggregated to update themodel
to enhance generalization. By introducing pair-attention loss and average-center alignment loss, the detection
capabilities of the system were substantially enhanced. In addition, we used some evaluation benchmarks
established from several popular deepfake datasets to compare the generalization of our proposal in several
baselines and assess its effectiveness.

INDEX TERMS Deepfake detection, meta-learning, artificial intelligence, computer vision.

I. INTRODUCTION
Face recognition systems have progressed substantially in
recent times. In particular, deep learning technologies have
significantly improved the performance of this task. However,
the sophistication of face image manipulation puts existing
facial recognition algorithms in danger of being considered
inefficient. With the development of technologies such as
Generative Adversarial Networks (GAN) [1], GANs family,
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andVariational AutoEncoders [2], [3]. Fake facial images and
videos can be made and utilized to deceive recognition sys-
tems.Manymanipulation algorithms [4], [5], [6] personwith-
out specific skills to produce high-quality fake faces without
expert skills and special knowledge for training. As a result,
it can be often challenging for the human eyes to identify the
difference between actual and manipulated images. This has
led to an increase in the usage ofmodifiedmultimedia content
in various cybercrime activities. The technology may be uti-
lized maliciously, resulting in a major trust issue for modern
society. Due to the fact that such methods may produce
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FIGURE 1. Overview architecture of our proposed MDD.

high-quality fake images that are even indistinguishable from
human eyes. Therefore, the scientific community has shown
a lot of interest in the need to develop techniques for identi-
fying authentic faces from fraudulent images. Many methods
for deepfake detection have been proposed in [7], [8], [9],
[10], and [11]. These proposals primarily take inspiration
from the binary classification problem, applying its models
to the deepfake detection challenge in order to differentiate
between real and fake photos. The common model for these
proposals typically uses the data preprocessing associated
with backbone networks to extract features from faces in
images or videos. Then uses a binary classifier network to
classify them into real and fake ones. However, due to the
rapid advancement of face forgery generation algorithms,
some samples seem extremely similar to one another and
only differ from one another by a few small features, it is
getting harder to determine the difference between fake and
real features in fake images. In addition, there is a lot of
variety in fake images which are produced using different
algorithms. Resulting in the ineffective performance of such
global feature-based systems which used binary classifier
networks.

Presently, Face forgery generation algorithms are increas-
ing rapidly, which can be mentioned as expression swap-
ping, identity swapping, face swapping, face synthesis, etc.
Based on these algorithms, a variety of manipulated datasets
is created to serve the research and development of face
forgery detection. Several common datasets used in the
experiment of this paper are DFDC [12], Celeb-DF-v2 [13],
FaceForensics++ [9]. The synthetic faces in these datasets
were produced using the same algorithm leading to similar

data distribution in each one. When training and testing are
completed on one dataset, then only one data distribution
set is used to assess the outcomes. When testing with other
databases, often the results are poor. However, in real-world
applications, the model is frequently used in a significantly
different domain (unseen domain) with a different distribu-
tion than the source domains. As a result, generalized face
forgery detection is less researched and more difficult with
unseen facial manipulations.

In this research, we design a generalized face forgery
detection model to solve the face authentication issue. With-
out any model updating, the model can be evaluated directly
on unseen domains after being trained on a number of source
domains. Inspired by [14], [15], and [16], by using meta-
learning, we propose a novel deepfake detection algorithm,
termed Meta Deepfake Detection (MDD). With a meta-
optimization objective, in order to learn efficient face rep-
resentations on both synthetic source and target domains.
The MDD shifts the source domain to the target domain.
So as to increase model generalization, the gradients from
the meta-train and the meta-test are combined using meta-
optimization. The MDD can handle unseen domains without
model updating for unseen domains. The followings are sum-
mary of our main contributions:
• We propose a Meta Deepfake Detection model (MDD)
to handle the generalization of the deepfake forgery
detection problem, which uses transferable knowledge
across domains to learn from meta-learning to enhance
model generalization.

• We emphasize the generalized deepfake detection
challenge, which necessitates that a trained model
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generalizes effectively on new domains without any
updating.

• We propose two loss functions: Pair-Attention Loss
(PAL), which is to concentrate on maximizing positive
and negative pairings and separating positive samples
from negative samples. Average-Center Alignment Loss
(ACA), which is to minimize the variations in each class,
while retaining the capacity to differentiate between
features of various classes. Moreover, these two losses
are aggregated with softmax loss to update the entire
model and learn across domains.

• We apply data preprocessing along with the block shuf-
fling transformation technique to increase the perfor-
mance of the generalized model.

• Some generalized deepfake detection benchmarks are
used for the evaluation of our proposal. A number of
experiments on these evaluation benchmarks are con-
ducted and compared with some related methods.

II. RELATED WORK
A. FACE FORGERY GENERATION
Deep generative models, which are gaining popularity, are
being used to synthesize and produce fake videos and images.
The manipulation algorithms also expand along with it. Sev-
eral well-known algorithms include face swap, face manipu-
lation, expression reenactment, etc.

1) FACE SWAP
Face swapping involves replacing the face of a source image
with that of a target image. Some remarkable research such
as RSGAN [17] proposed a region-separative generative
adversarial network, which replaces the handles face and
hair appearances in the latent-space representations of the
faces and reconstructs the full face to achieve face swapping.
FSGAN [18] proposed Face Swapping GAN, which derives
a recurrent neural network (RNN) for face reenactment and
adapts to changes in position and expression. FSGANv2 [19]
offered a subject-agnostic swapping scheme for face reenact-
ment which adjusts important pose and expression variation.
MobileFaceSwap [20] proposed an advanced face swapping
approach with a lightweight Identity-aware Dynamic Net-
work (IDN) to modify the model parameters depending on
the identification information dynamically.

2) FACE MANIPULATION
It is a generation task in which the facial attributes and
styles of the output face are changed to point in the direction
of the intended target. AttGAN [21] applied an attribute
classification constraint to ensure the precise changing of
the desired characteristics in the resulting image and pre-
serve attribute-excluding details. Moreover, the suggested
approach is enhanced to allow attribute style adjustment in
an unsupervised setting. STGAN [22] presented a selec-
tive transfer perspective to utilize the target attribute vec-
tor to direct the flexible translation to the desired target
domain. MaskGAN [6] proposed a model with two primary

components: Dense Mapping Network (DMN) and Editing
Behavior Simulated Training (EBST) tomodify target images
and learn style mapping by using a modified mask. Star-
GANv2 [23] proposed a framework that meets the variety
of generated images and scalability across multiple domains
when learning a mapping across several visual domains.
FacialGAN [24] proposed a framework that allows for the
simultaneous manipulation of dynamic face features and
extensive style transfers.

3) EXPRESSION REENACTMENT
The conditional face synthesis problem of facial expres-
sion reenactment aims to transfer a source face shape to
a target face while keeping the same target identity of the
face and appearance. Some related research can be men-
tioned as MarioNETte [25] which creates professional reen-
actments of hidden identities in a few-shot environment
to handle attention block of the image, facial landmark
transformer, and focus feature alignment. DEA-GAN [26]
presented a self-supervised hybrid model that learns an
embedded face that is pose-invariant for each video by using
a multi-frame deforming auto-encoder. FReeNet [27] pro-
posed a multi-identity face reenactment framework to share
a common model and transmit facial expressions from the
source face to the target face. AD-NeRF [28] proposed an
audio-driven talking head technique that renders portraits
by directly mapping audio characteristics to dynamic neural
radiance fields. FACEGAN [29] proposed a model that uses
the Action Unit (AU) representation to transfer from the
driving face to facial motion.

B. FACE FORGERY DETECTION
Face forgery detection is divided into different groups, such
as spatial clue for detection, temporal clue for detection, and
generalizable clue for detection.

1) SPATIAL CLUE FOR DETECTION
The work in [30] presented an innovative attention-based
layer to boost classification efficiency and generate an
attention map showing the altered face areas. Furthermore,
the work in [31] designed an inconsistency-aware wavelet
dual-branch network to recognize real and fake images.
Capsule-forensics [32] proposed a method that employs a
deep convolutional neural network and a capsule network
to identify several types of spoofs, including replay attacks
that use printed pictures or recorded movies and computer-
generated videos. FakeLocator [33] introduced the attention
mechanism by using face parsing and suggest a single sample
clustering and partial data augmentation to improve the train-
ing data. In research [34], with the goal of developing a novel
detection technique that can find a forensics trail concealed
in images, we concentrate on the analysis of deep fakes of
human faces.

2) TEMPORAL CLUE FOR DETECTION
MesoNet [35] presented a method for quickly and effec-
tively identifying face tampering in videos with a focus on
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two recent methods for creating fake videos that appear to
be extremely realistic. FakeCatcher [36] provided a fresh
method for detecting phony content in portrait videos as a
preventative measure against the growing danger of deep-
fake. Bita-Net [37] proposed a model to detect fake faces,
which reflects the two-pathway architecture to enhance the
forgery detection ability. Furthermore, the work in [38] pro-
posed a spatiotemporal attention mechanism combined with
Xception-LSTM algorithm to improve deepfake detection.

3) GENERALIZABLE CLUE FOR DETECTION
The work in [39] presented a multi-task incremental
learning-based methodology for the detection and classifi-
cation of manipulated images, the model can adapt to new
classes without losing the existing information. OC-FakeDect
[40] presented a model that only uses actual face images for
training, and treats fake images like deepfakes as irregular-
ities. The research in [41] recommended intensive training
to increase generalization performance. The generalization
ability significantly enhances by adversarially created train-
ing samples that are designed to challenge the classification
models.

C. META-LEARNING
One of the most promising and popular research areas in
the field of artificial intelligence currently is meta-learning.
Basically, With the help of meta-learning, an adaptable AI
model is created that can learn to perform various tasks
without needing to be trained from scratch. Themeta-learning
model is trained on a variety of related tasks on sparse data
points, allowing it to apply to learn from such tasks to new
related tasks. Some famous research can be mentioned as
MAML [42] which is to find a better initial parameter. So that
the model can learn quickly on new tasks with fewer gradient
steps. CAML [43] used context parameters and shared param-
eters to adapt and share information across tasks in order to
avoid overfitting problems. Meta-SGD [16], a meta-learning
algorithm that is used for performing learning quickly, Meta-
SGD not only determines the optimal parameter but also
the optimal learning rate and update direction. TAML [44],
which prevents the problem that the model can be biased
over some tasks during adapting to new tasks with meta-
learning technique, especially the tasks that are sampled in
the meta-training phase. MLDG [14] presented a newmethod
of meta-learning for domain generalization and a training
procedure for domain generalization by developing models
that naturally generalize to new testing domains.

Some researches used the meta-learning to solve the
problem of face forgery detection and face anti-spoofing
can be mentioned in the work [45], they designed a novel
meta-learning framework named Regularized Fine-grained
Meta-learning to identify generalized learning directions in
the meta-learning process, which is accomplished by per-
forming effectively in the simulated domain shift scenarios.
The work in [46] designed a domain generalization model,
named learning-to-weight. The facial pictures from various

domains are configured with various weights. The generaliz-
ability of the model can be balanced across many domains
using their network. The gradient of the source domain is
then calibrated by the meta-optimization, allowing for the
learning of additional discriminative features. The work in
[47] presented a frequency adversarial attack technique based
on meta-learning for face forgery detection. Moreover, they
performed a discrete cosine transform (DCT) on the input
photos and applied a fusion module to capture the strong
area in the frequency domain. NAS-FAS [48], presented an
approach based on neural architecture search and created a
brand-new search space using pooling and central difference
convolution operators. The work in [49] suggested a learnable
network to extract Meta Pattern (MP) in their architecture
for learning to learn and created a two-stream network uti-
lizing their suggested Hierarchical Fusion Module to hierar-
chically fuse the input RGB picture and the extracted MP.
The discriminative features extracted fromMP are capable of
learning a more generalized model by substituting handmade
features with the MP.

III. METHODOLOGY
A. OVERVIEW
We suggest a method based on meta-learning called the meta
deepfake detection (MDD) algorithm. The model aims to
enhance the performance of detecting manipulated images
and videos produced by a certain method as well as enhance
the generalization of the detector. In the training stage,
we have N-related tasks: TS = {TS1,TS2, . . . ,TSN };N >

1 and each task TSi = {(xi, yi)}, where TSi represents the
ith task, xi is extracted feature vectors and yi is its own
set of labels. In the evaluating stage, the trained model is
tested on one or more unseen target domains, ≥ TT =
{TT1,TT2, . . . ,TTM };M1. The model learns from a variety
of connected tasks, and the meta-learner process makes it fast
learner with good generalization abilities. We define a single
backbone during training, a parametrized function f (θ ) with
parameters θ . It will generalize parameters to predict accu-
rately the target domain by training and optimizing for source
domains. The overall architecture is displayed in Fig. 1.

B. META SPLITTING
We separated the source domains into the meta-train domain
T trains and the meta-test domain T tests during training to obtain
domain generalization. In order to simulate the domain shift
problem that existed when used in real-world situations, the
model is driven to acquire generalizable information about
how to generalize well on the new domains with different
distributions. We also create meta-batches for training and
testing by randomly splitting N source domains of TS ; these
data contain both real and fake face pairs and these pat-
terns are not duplicated across domains. These pairs increase
collation and comparison of information between real and
fake images. Therefore, it also increases inter-class separa-
bility, which can be interpreted as a distinct dispersion of
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the feature distribution of samples, increasing differentiation
during training as well as enhancing the model’s quality.
More distinguishable characteristics may be learned by the
network with less effort during optimization.

The fact is that features learned by supervised learn-
ing have much less ability to generalize when subjected to
unseen manipulation techniques. This suggests that super-
vised learning-based characteristics have a close relation-
ship with manipulation techniques. The features of samples
produced by various manipulation techniques make it chal-
lenging to combine all of the manipulated faces. Therefore,
the model is easier to generalize when the source domain is
split into meta-train and meta-test. In addition, samples in
the meta-train and meta-test are also shuffled and selected at
random, which minimizes the problem of overfitting. Addi-
tionally, the data in the unseen domain is very diverse in
reality, which the model has never seen or been trained in
before. Thus, meta-splitting makes the model easier to train
and also to generalize to unseen data.

C. DATA PREPROCESSING
A lot of data is used to train deep learning models. Hence,
proper dataset preparation is essential for their learning qual-
ity and prediction accuracy. In our paper, we use several
existing datasets, including DFDC [12], Celeb-DF-v2 [13],
FaceForensics++ [9]. These datasets include real andmanip-
ulated videos, accompanied by real or fake labels. These
videos are sampled to obtain images. Afterward, face extrac-
tion is utilized for extracting the faces from the images and
resizing them to 224 × 224 RGB format. Multitask cas-
caded convolutional network (MTCNN) [50] library is used
to extract the faces. Fig. 2 and Fig. 3 show a sample of the
extracted faces. Our approach does not use any data augmen-
tation techniques in order to compare fairly with the study
contents relevant to deepfake detection. After obtaining a set
of extracted face images, block pixel shuffling transformation
is applied on the part of extracted face images to increase the
diversity of the data set during training. It is different from
data augmentation as the amount of data after applying block
shuffling transformation does not change. The overview of
the data preprocessing process is shown in Fig. 4.

The local spatial structure of the local regions might be
destroyed by the shuffling of the pixels in an image, which
prevents the network from extracting valuable features. This
is also mentioned in some research related to image encryp-
tion [51], [52], [53], [54]. However, if the blocks of the image
are shuffled in a proper way, it can lead to preserving essential
characteristics while also enhancing the quality of the model
[55], [56]. Additionally, several researches in [57] and [58]
have demonstrated that creating patches by using charac-
teristics gathered in an image also increases the quality of
the training process. Therefore, these demonstrate that block
shifting and shuffling local regions greatly raise quality when
applied properly. The block shuffling transformation is a data
enhancement technique to increase the performance of the
system. So as to improve the robustness and generalization

FIGURE 2. A few samples of extracted real images in FaceForensics++

dataset [9].

FIGURE 3. A few samples of extracted fake images in FaceForensics++

dataset [9].

of face forgery detection, more efficient local features are
extracted using neural networks. A portion of the sample of
the meta-train set is applied block shuffling transformation.
The description for block shuffling transformation is shown
in Fig. 5.

We divide an image with RGB format has dimension of
X × Y × 3 into block by using a window (with the window
size ofW ×W × 3). The original image will be divided into
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FIGURE 4. Overview of data processing.

FIGURE 5. Visualization of block shuffling transformation. On top is an
example of the original image and bottom is a shuffled image and
coordinate blocks.

smaller blocks with the size of the window. If the original
size of the image is not divisible by the block size, padding
will be applied. Thus, we get r × c blocks and i and j are
the horizontal and vertical indices, respectively, where r and
c are the horizontal and vertical blocks, i ∈ 0, 1, . . . , r and
j ∈ 0, 1, . . . , c. The block B(i, j) interpreted as block ith row
and jth column. The block B(i, j) is changed randomly. Where
ith is an integer from 0 to r that is randomly permuted, and jth

is a random permutation of integer from 0 to c.

D. LOSS FUNCTION
1) PAIR-ATTENTION LOSS (PAL)
The basic idea of Pair-Attention Loss (PAL) is to focus on
optimizing negative and positive pairs, along with distin-
guishing between positive samples and negative samples.
A batch of each iteration contains B identities, each identity
contains real and fake faces. We define the input as X . With B
identities, we have Fr = f (Xr , θ),∈ RP×C , Ff = f (Xf , θ),∈
RN×C , where C is the dimension length, Fr is the embedding

vector of real face obtained through model f (θ ), Ff is the
embedding vector of fake face obtained through model f (θ ),
with label l = {l1, l2, . . . , lC }, li ∈ (0, 1), where ‘‘0’’ means a
real sample and ‘‘1’’ mean a fake sample. P is the number of
positive samples in a batch B and N is the number of negative
samples in a batch B, B = P + N . The PAL function can be
formulated as follows.

LPAL =
1

2 (P+ 1)

∑
i∈P

|Fri − Ffi|2

−
1

2 (N + 1)

∑
j∈N

|Ffj − Frj |2 (1)

2) SOFTMAX LOSS (SOF)
The goal of softmax loss is to identify a decision bound-
ary that divides several classes by mapping the samples to
discrete labels. The softmax loss function is presented as
follows.

LSOF =
m∑
i=1

Log
ew

T
yi
xi+byi∑n

j=1 e
wTyj xi+byj

(2)

3) AVERAGE-CENTER ALIGNMENT LOSS (ACA)
The purpose of average-center alignment loss (ACA) is to
focus on minimizing the variations in each class while main-
taining the ability to distinguish between characteristics of
various classes. The domain gap between several meta-train
domains can be reduced by adding average-center alignment
loss to make the embedding domain invariant. We determine
the embedding center for all mean embeddings of meta-train
domains. After optimizing these embedding centers, the cen-
ter points find out the better destination to gets closer to other
data points of its class and reduce the gap between two classes
(‘‘1’’ and ‘‘0’’). As embedding centers get close to each other,
the embedding distribution of class samples get closer. As a
result of that, the domain gap of different meta-train domains
can also be reduced. Therefore, the alignment of all meta-
train domains becomes easier to generalize. The average-
center alignment loss is only used in meta-train domains. The
loss is formulated as:

cri =
1
P

P∑
i=1

F
T sj
ri (3)

cfi =
1
N

N∑
i=1

F
T sj
fi (4)

cavg =
1
n

n∑
i=1

(
cri + cfi

)
(5)

LACA =
1
n

n∑
i=1

|
(
cri + cfi

)
− cavg|2 (6)

where F
Tsj
ri , F

Tsj
fi are embedding features of real and fake

samples respectively in the meta-train domain jth. In a batch
B(B = P + N ) sampled from domain Tsj, cri represents
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the mean embedding of real samples Tsj, cfi represents the
mean embedding of fake samples, n is the number of meta-
train domains, cavg is embedding the center of all meta-train
domains. The cri , cfi should ideally be updated whenever
the deep features get changed. However, it is inefficient and
perhaps impracticable to calculate themean of the embedding
of each class in each iteration, when taking into consideration
the entire training set. Therefore, instead of calculating and
updating the centers for the entire training set, we perform an
update on B number of identities in a batch.

E. LEARNING PROCESS
In the meta-learning algorithm, we train the model over a
distribution of related tasks and look for a better model
parameter that can be used in a variety of similar tasks and
can easily be adopted in new tasks.

1) META-TRAIN
In each iteration, we apply meta-splitting, so as to get meta-
train sets T trains and meta-test sets T tests . For meta-train, the
T trains is used to calculate the loss function in the training
stage. In each task T trainSi of T trains , the data points are divided
into batch sizes B, which contain fake samples and real sam-
ples. The purpose of the meta-training stage is to calculate
the loss of each task based on the binary classification model
f (θ ), where θ represents the model parameters. The loss
function of the meta-train stage Ltrain is formulated as:

Ltrain = LPAL + LSOF + LACA (7)

Here λ is a hyper-parameter to balance the average-center
alignment loss (ACA) and other losses. Because the average-
center alignment loss can reduce the domain gap between
several meta-train domains, it also makes the distribution of
data closer to its center point.

2) META-TEST
After the meta-train, in each iteration, the model is validated
on the meta-test sets T tests and meta sets of unseen target
domains TT with a different distribution. The pair-attention
loss and softmax loss are calculated to update parameters.
In order to allow the model to generalize across domains. The
loss of the meta-test is calculated as follows:

Ltest = LPAL + LSOF (8)

After calculating the loss function of the meta-train and the
meta-test, we need to update the parameters of the inner loop.
The gradient is synthesized and updated as follows:

∇gθ = γ∇θLtrain + (1− γ )∇θLtest (9)

g∗θ ← gθ +∇gθ (10)

3) META-OPTIMIZATION
After updating the model in the inner loop, the model needs
to update thoroughly in the outer loop. We use stochastic
gradient descent (SGD) to optimize.

Algorithm 1Meta Deepfake Detection for Generalization of
Deepfake Detection Problem
Input: Source domains and target domains:
TS = {TS1 ,TS2 , . . . ,TSN };N > 1
TT = {TT1,TT2, . . . ,TTM };M1

Init: A pre-train model f (θ ) parameterized by a parameter θ , distri-
bution over task p(T ). Batch size of B, hyper-parameter: α, β, γ , λ.
For iteration in max_iteration do:

Initialize the gradient gθ equal to 0:
Meta Splitting:

Meta-train: T trains = {T trainS1
,T trainS2

, . . . ,T trainSN
Meta-test: T tests = {T testS1

,T testS2
, . . . ,T testSN

For each task (TSi) in task (TS ) do:
Sample k data point and its label
T trainSi ={(x

train
1 , ytrain1 ), (xtrain2 , ytrain2 ), . . . , (xtraink , ytraink )

T testSi = {(x
test
1 , ytest1 ), (xtest2 , ytest2 ), . . . , (xtestk , ytestk )

Meta-train:
Create a batch B samples of meta trainset T trainSi ,
Create embedding features of real and fake samples Fri,Ffi
Calculate loss function:
λLtrain = LPAL + LSOF + LACA

Update model parameter by:
∇θ∗i = θ − αθLtrain

Meta-test:
Test with T testSi : LtestPAL ,L

test
SOF

Test with TT : L
target
PAL ,LtargetSOF

LPAL = LtestPAL + L
target
PAL

LSOF = LtestSOF + L
target
SOF

Ltest = LPAL + LSOF
Gradient synthetic:
∇gθ = γθLtrain + (1− γ )∇θLtest
∇g∗θ ← gθ +∇gθ

end
Meta-optimization:
Update θ∗ ← θ − βg∗θ by SGD

end

IV. EXPERIMENTS
To evaluate the quality of our proposed MDD, we use open
datasets of facial synthesis, such as DFDC [12], Celeb-DF-v2
[13], FaceForensics++ [9]. The DFDC dataset, which has
over 100,000 total videos gathered from 3,426 paid actors
and was created using a variety of Deepfake, GAN-based
and unlearned algorithms, the DFDC dataset is a sizable face
swap video dataset and freely accessible. The Celeb-DF-v2
presents a large-scale Deepfake video dataset based on the
development and evaluation of improved deepfake synthe-
sis algorithms. The Celeb-DF-v2 contains 5639 high-quality
Deepfake videos. The FaceForensics++ dataset contains
four state-of-the-art methods for facial manipulation, namely,
Deepfakes, FaceSwap, Face2Face, and NeuralTextures. Each
method has different manipulated techniques and algorithms.
Corresponding to each method, it includes 1000 original
videos (real videos) and 1000 manipulated videos (fake
videos). This dataset released raw videos and compressed
videos (high-quality videos and low-quality videos).

A. EVALUATION BENCHMARKS
Based on the popular datasets mentioned above, we use
videos generated from different methods to use for source and
target unseen domains. We utilize variety here to illustrate the
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large gap between target unseen domains and source domains.
In real-world scenarios, after the models are trained, the
model is validated with many different manipulated videos.
Even the model needs to be evaluated with videos generated
from the specific method that the model has never been
trained before (which is called the unseen domain). Target
unseen domain aims to simulate this situation. The detailed
content of the evaluation benchmark is illustrated in Table 1.
Inspired by [46], we take advantage of similar evaluation
benchmarks. The purpose is also to compare with related
researches.

TABLE 1. Seven evaluation benchmarks. The FaceForensics++ dataset
use compressed videos. ‘‘C23’’ means higher quality (constant rate
quantization parameter equal to 23), ‘‘C40’’ means lower quality (using
quantization parameter equal to 40). For benchmarking in the unseen
domain, source domains for training and target domains for testing are
considered. CID: crossing intra-datasets. CVD: crossing variety of datasets.

B. SETTINGS
The official release of each method in FaceForensics++
dataset included 720 videos for training, 140 videos for
validation, and 140 videos for testing. In each method of
FaceForensics++ dataset, we use a training set for source

domains and a testing set for target domains. (For example,
in CID-DF23, NeuralTexture, FaceSwap, Face2Face, and the
original video are 720 videos for each method in the source
domain. DeepFakes, and the original video are 140 videos
for target domains). The Celeb-DF-v2 dataset contains 5639
high-quality fake videos and 890 real videos. As for the
source domains of CVD-CV23-1 and CVD-CV23-3, we have
used 6011 original and DeepFake videos from Celeb-DF-v2.
For the target domains of CVD-CV23-2 and CVD-CV23-3,
we have selected 518 test videos (official release) fromCeleb-
DF-v2. In CVD-CV23-2 and CVD-CV23-3, we have used
DFDC test set for target domains. All these videos are sam-
pled and extracted to the face, we have used multitask cas-
caded convolutional network (MTCNN) [50] library for facial
extraction. We only choose 10 frames of facial extraction for
training and testing. The extracted face images are resized to
224× 224 RGB format.

C. IMPLEMENTATION DETAILS
We have used EfficientNet-B0 [59] as a single backbone f (θ )
with 5.3M parameters. The meta-train step-size α, the meta
optimization learning rate β, the hyper-parameter γ (which
balances meta-train loss and meta-test loss), and the hyper-
parameter λ to balance the PAL, SOF loss, and ACA loss
are initially set to 0.0005, 0.0005, 0.5, 0.01, respectively.
The batch-size B is set to 32. To evaluate the performance
of the model, our comparisons include (i) Base: The model
was pre-trained on ImageNet [60] without being fine-tuned
on our benchmarks. (ii) FT-Base: Based on our bench-
marks, the base model is fine-tuned with the same training
datasets. This method is for a fair comparison with our MDD.
(iii) Multi-task [61]: This method proposed a multi-task
learning approach to improve the generalization of the model.
There are two tasks: one task applied to share knowledge
to improve the performance of both tasks, and another
task shares the data it has collected with another. We have
run official code with our benchmarks (iv) MLDG [14]:
This method proposed a novel meta-learning method and a
model agnostic training procedure for domain generalization.
We have adapted it for face forgery detection and trained it
with our benchmarks (v): Learning-to-weight (LTW) [46]:
This method proposed a domain-general model, known as
learning-to-weight, which can balance different weights for
face forgery images from various domains. This method is
also proposed to handle deepfake detection problems. Some
experimental results have been completed on several similar
benchmarks in their paper which are reused. Other bench-
marks, which have not yet been tested in their proposal,
are conducted in our research. (vi): Multi-attentional model
(Multi-Att) [62]: This method proposed a multiple spatial
attention network and combined the attention maps-guided
high-level semantic information with low-level textural fea-
tures for face forgery detection. We have run the official code
with our benchmarks. (vii): Model-Agnostic Meta-Learning
(MAML) [42]: This method is a well-known meta-learning
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TABLE 2. Performance on the CID-DF23/40, CID-FF23/40, CID-FS23/40,
and CID-NT23/40 benchmarks.

TABLE 2. (Continued.) Performance on the CID-DF23/40, CID-FF23/40,
CID-FS23/40, and CID-NT23/40 benchmarks.

model. We have adapted it for face forgery detection and
trained it with our benchmarks.

D. EVALUATION METRICS
For performance evaluation, we use the area under the
receiver operating characteristic curve (AUC). The receiver
operating characteristic (ROC) is used to display a classifier
to select the classification threshold. AUC is an area covered
by the ROC curve. Moreover, we have used the accuracy
score (ACC) for evaluating classification models. Another
metric we have applied to measure our model performance is
a log loss function. We have chosen a log loss metric because
it measures how well the predicted probability close to the
corresponding actual value and it is appropriate for binary
classification, where ‘‘0’’ represents the real class and ‘‘1’’
represents the fake class.

LogLoss = −
1
n

n∑
i=1

[yi log(ŷi)

+ (1− yi)log(1− ŷi)] (11)

E. EVALUATION RESULTS
1) CID COMPARISONS
From the results in Table 2, our proposal achieves superior
results in most of the benchmarks. The base model is pre-
trained on ImageNet. Because without being fine-tuned on
our benchmarks, the results are frequently insufficient to
identify false information. The FT-Base model is fine-tuned
on our benchmarks which can detect fake images but can not
generalize well for the target domains, especially for low-
quality images/videos. The method of Multi-task, MLDG,
and Learning-to-weight (LTW) have different approaches.
Each proposal offers different solutions to generalize the
model in order to identify tampering from as many sources

VOLUME 11, 2023 543



V.-N. Tran et al.: Generalization of Forgery Detection With Meta Deepfake Detection Model

TABLE 3. Performance on the CVD-CV23-1, CVD-CV23-2, and CVD-CV23-3
benchmarks.

as possible. It is important to note that the outcomes of LTW
are fairly promising. The results of our method achieve the
best result on higher-quality images. Compare to FT-Base on
AUC, our method improves the performance from 0.903 to
0.931 in CID-DF23, from 0.742 to 0.777 in CID-DF40, from
0.792 to 0.821 in CID-FF23, from 0.669 to 0.691 in CID-
FF40, from 0.579 to 0.658 in CID-FS23, from 0.609 to
0.681 in CID-FS40, from 0.764 to 0.791 in CID-NT23, and
from 0.618 to 0.621 in CID-NT40. This demonstrates that our
method improves the generalization of the model in all of the
CID benchmarks.

2) CVD COMPARISONS
Results on the CVD benchmark are shown in Table 3.
We focus on the performance across the datasets, the target
domains are the test sets from many datasets. The obtained
results show that our proposal has improved the quality of
the model in all benchmarks. Our proposal can compare with
the most basic and commonly used model FT-Base. The
performance improvements onAUC from 0.582 to 0.708with
the CVD-CV23-1 benchmark, from 0.672 to 0.788 with the
CVD-CV23-2 benchmark, and from 0.717 to 0.821 with the
CVD-CV23-3 benchmark. This shows that our proposal has
increased the generalization of the basic model when tested
with benchmarks.

Results in Table 4 show the effect of backbones with and
without our proposal. We use the CID-DF23 benchmark and
test with different architectures (light and heavy parame-
ters). The observed results demonstrate that our method is
model-independent and can improve the performance of the
model irrespective of the types of architectures. The model
is less effective for complex models than simples model.

TABLE 4. Performance on different backbone architectures with or
without our proposal on the CID-DF23 benchmark.

TABLE 5. Ablation Study of loss function on CID-DF23 benchmarks.

TABLE 6. Ablation Study of data preprocessing technique on CID-DF23
benchmarks.

Because the higher the performance of the model, the harder
it is to increase when the result is as high as a certain level.
The backbones used for the experiment are the good back-
bones used in the image classification. Therefore, the differ-
ence in results obtained between the backbones is usually not
large.

3) EFFECTIVENESS OF DIFFERENT COMPONENTS
We compare our entire MDD with three degraded versions
on the CID-DF23 benchmarks to assess the efficacy of
various components. The first component is pair-attention
loss (PAL), which prioritizes increasing negative and posi-
tive pairings and distinguishing positive from negative input.
The second component is the average-center alignment loss
(ACA), which focuses on lowering the variability within each
class while maintaining the ability to distinguish between
attributes of other classes. The third component is both the
pair-attention loss and the average-center alignment loss. The
efficiency of each performance component is displayed in
Table 5. When any of them are eliminated, the performance
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decreases. The quality of the model degrades the greatest
when the pair-attention loss and average-center alignment
loss are not employed. This demonstrates the impact of pro-
posed loss functions on the quality of the model.

Table 6 displays the effects of block shuffling transforma-
tion. The results of the model fluctuate around an average
of 0.919 of AUC if block shuffling transformation is not
used in the data preprocessing. We enhance performance
using the block shuffling transformation approach, going
from an AUC of 0.919 to 0.931. Improvement with ACC is
from 0.832 to 0.861. The loss then decreases from 0.84 to
0.78. This demonstrates the block shuffling transformation
improves the performance of the model.

V. CONCLUSION
In this paper, we propose an approach that can improve the
generalization of the model, namedMeta Deepfake Detection
model (MDD). We also apply block shuffling transformation
to enhance the performance and reduce the overfitting prob-
lem. Moreover, we design two loss functions Pair-Attention
Loss and Average-Center Alignment Loss, aggregate with
softmax loss to update and learn across domains. We show
that by using MDD, we can generalize the unseen domain,
as demonstrated in the experiment using several benchmarks.
For future work, we will find a new strategy to develop MDD
and experiment with more benchmarks.
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