
Received 10 November 2022, accepted 5 December 2022, date of publication 23 December 2022, date of current version 2 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3231895

A Novel Ergodic Cellular Automaton Model of
Gene-Protein Network: Theoretical Nonlinear
Analyses and Efficient FPGA Implementation
SHOGO SHIRAFUJI , (Student Member, IEEE), AND HIROYUKI TORIKAI , (Member, IEEE)
Graduate School of Science and Engineering, Hosei University, Koganei-shi, Tokyo 184-8584, Japan

Corresponding author: Shogo Shirafuji (s.shirafuji@ieee.org)

This work was supported in part by JSPS KAKENHI under Grant 21H03515, and in part by the Support Center for Advanced
Telecommunications Technology Research in Japan.

ABSTRACT A novel ergodic cellular automaton model of gene-protein network is presented. It is shown
that the presented model can predict occurrences of typical nonlinear phenomena of a conventional ordinary
differential equation gene-protein network model. In addition, theoretical analysis methods of the presented
model are proposed. Using the analysis methods, an important advantage of the presented model is revealed:
the ergodic cellular automaton is better suited to predict the occurrences of the nonlinear phenomena of
the differential equation gene-protein network model compared to a regular (standard) cellular automaton.
Furthermore, the presented model is implemented by a field programmable gate array and experiments
validate its operations. It is then revealed that the presentedmodel is muchmore hardware-efficient compared
to a standard numerical integration formula of the differential equation model.

INDEX TERMS Gene-protein network, cellular automaton, nonlinear dynamics bifurcation phenomena,
field programmable gate array.

I. INTRODUCTION
A wide variety of gene-protein network [1], [2], [3] sim-
ulators [4] have been developed with emphasis on their
applications in drug discovery for personalized medicine [5],
where most of them have been implemented as softwares
executed on general purpose digital processors. To apply a
gene-protein network simulator for personalized medicine,
it is important to fit parameter values of the network model so
that it reproduces behaviors of a biological gene-protein net-
work of an objective patient. Recently, metaheuristics (e.g.,
particle swarm optimization and genetic algorithm) have been
successfully utilized to fit parameter values of gene-protein
network models [6]. The problems in the metaheuristics
of the gene-protein network model include requirement of
(a) long computational time and (b) large electric energy to
operate the network model for a large number of different
parameter values. Since the operations of the network model
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in the metaheuristics are basically independent, they can be
executed simultaneously by using multiple network models.
Therefore, parallel operations of multiple network models
can accelerate the computational time of the parameter fitting.
Hence, in order to overcome the problems in the parameter
fitting of the gene-protein network model for personalized
medicine (e.g., the requirements of (a) long computational
time and (b) large electric energy), it is important to design
a network model that consumes few circuit elements and
low energy to realize efficient parallel operations. Then the
goal of this study is set to design an application special
electronic circuit model, which is especially designed to
reproduce behaviors of a gene-protein network and consumes
fewer circuit elements and lower energy compared to con-
ventional gene-protein network models. To realize such a
hardware-efficient gene-protein network model, in this study,
the concept of ergodic cellular automaton biomimetic cir-
cuit [7] is employed, where its relations to other biomimetic
circuits are summarized as follows. The biomimetic circuits
can be classified into the following four classes based on
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their fundamental properties (i.e., continuousness of time and
state-space) of mathematical modeling methods.

1) CLASS CTCS BIOMIMETIC CIRCUIT
A nonlinear differential equation model of a biomimetic cir-
cuit has a continuous time and a continuous state-space and
is implemented by a nonlinear dynamic circuit typically.

2) CLASS DTCS BIOMIMETIC CIRCUIT
Anonlinear difference equationmodel of a biomimetic circuit
has a discrete time and a continuous state-space and is imple-
mented by a nonlinear switched capacitor circuit typically.

3) CLASS DTDS BIOMIMETIC CIRCUIT
A digitally implemented numerical integration model of a
biomimetic circuit has a discrete time and a discrete state-
space and is implemented by a digital processor typically.
In addition, a regular (standard) cellular automatonmodel of a
biomimetic circuit also belongs to the class DTDS circuit and
is implemented by a synchronous sequential logic typically.

4) CLASS CTDS BIOMIMETIC CIRCUIT
An asynchronous cellular automaton model of a biomimetic
circuit has a continuous state transition time and a discrete
state-space, and is implemented by an asynchronous sequen-
tial logic typically.

Most biomimetic circuits belong to the class CTCS, DTCS,
and DTDS circuits [9], [10], [11], [12]. On the contrary, our
group has developed several kinds of asynchronous cellular
automaton biomimetic circuits (e.g., central pattern generator
model, neural network model, neuron model, and cochlea
model [13], [14], [15], [16]), which belong to the class CTDS
circuit. In addition, very recently, our group has just proposed
the concept of ergodic cellular automaton biomimetic cir-
cuit [7], which can be regarded as a generalization of the asyn-
chronous cellular automaton biomimetic circuit and is more
suitable for implementation. The advantages of the ergodic
cellular automaton biomimetic circuits include capabilities
of implementation by fewer circuit elements and operation
with lower energy consumption compared to digital processor
biomimetic circuits.

Based on the above-mentioned backgrounds on the impor-
tance of the gene-protein network model and the advantages
of the ergodic cellular automaton biomimetic circuit, in this
paper, a novel ergodic cellular automaton gene-protein net-
work is presented, and its advantages are revealed as follows.
In Section II, a typical conventional nonlinear ordinary dif-
ferential equation (ODE) model of gene-protein network is
introduced. It is explained that the ODE gene-protein network
model exhibits several nonlinear phenomena. In Section III,
inspired by the nonlinear vector field of the ODE, the novel
ergodic cellular automaton model of the gene-protein net-
work is presented. It is shown that the presented model can
predict occurrences of typical nonlinear phenomena of the
ODE model. In Section IV, theoretical analysis methods of
the ergodic cellular automaton gene-protein network model

FIGURE 1. Schematic diagram of a gene-protein network model [18].

are proposed. Using the analysis methods, it is revealed
that the ergodic cellular automaton is better suited to model
the gene-protein network compared to a regular (standard)
cellular automaton. In Section V, the presented model is
implemented by a field programmable gate array (FPGA)
and experiments validate its operations. It is revealed that the
presented ergodic cellular automaton gene-protein network
can be implemented by much fewer circuit elements and con-
sumes much lower energy compared to a standard numerical
integration formula of the ODE gene-protein network model.
The novelty and the significance of this study include the
following points.

A. NOVELTY
The presented model is the first gene-protein network model
that is designed based on the concept of the ergodic cellular
automaton biomimetic circuit.

B. SIGNIFICANCE
The analysis results of this study reveal that the ergodic
cellular automaton is suited to model the gene-protein net-
work. In addition, the comparison results of this study reveal
that the presented ergodic cellular automaton gene-protein
network model is hardware-efficient. Hence these results will
provide fundamental knowledge about designing a hardware-
efficient application specific integrated circuit for the genome
simulation.

II. AN ODE GENE-PROTEIN NETWORK MODEL
As a preparation to design a novel hardware-efficient gene-
protein network model in the next section, an ordinary differ-
ential equation (ODE) gene-protein network model describ-
ing a DNA damage repair function [17] is introduced in this
section. Fig. 1 shows the structure of the network model. The
model has the following state variables.

x ∈ R+corresponding to concentration of

protein 53 (p53),

y ∈ R+corresponding to concentration of

murine double minute 2 (Mdm2),

where R+ = {r|r ∈ R, r ≥ 0}. The dynamics of the network
model is described by the following ODE.

dx
dt
= α0 +

α1xn

k1 + xn
− γ1xy− γ2 x,
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FIGURE 2. Typical time waveforms and corresponding phase plane
trajectories of the gene-protein network model in Eq. (1). (n, α1, α2, α3,
k1,k2, γ1, γ2, γ3) = (6,700,0.05,40,10000000,50000,1,1,0.7) [19].
(a) Stable periodic orbit. α0 = 175. (b) Co-existence of stable periodic
orbit in (b1) and stable equilibrium point in (b2). α0 = 179.4. (c) Stable
equilibrium point. α0 = 185.

dy
dt
= α2 +

α3x4

k2 + x4
− γ3 y. (1)

FIGURE 3. (a) Characteristics of the ODE gene-protein network model in
Eq. (1). The horizontal axis is the reproduction rate α0 of p53. The vertical
axis is the maximum and the minimum values of the p53 concentration x
in a steady state. (b) Enlargement of the graph in (a) near α0 = 10. The
model exhibits a subcritical Andronov-Hopf bifurcation at A and a fold
limit cycle bifurcation at B. (c) Enlargement of the graph in (a) near
α0 = 180. The model exhibits a subcritical Andronov-Hopf bifurcation at
C and a fold limit cycle bifurcation at D.

Fig. 2 depicts typical time waveforms and corresponding
phase plane trajectories of the network model. As shown
in the figure, the model exhibits the following nonlinear
phenomena.

A. STABLE PERIODIC ORBIT
In the case of Fig. 2(a), the network exhibits a stable periodic
orbit. In the context of the DNA damage repair function, the
periodic oscillation of the p53 concentration x means that the
network is trying to repair DNA damage repeatedly.
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B. STABLE EQUILIBRIUM POINT
In the case of Fig. 2(c), the network exhibits a stable equilib-
rium point. In the context of the DNA damage repair function,
the stable equilibrium point means that the repair function of
the network is not activated.

C. CO-EXISTENCE
In the case of Figs. 2(b1) and (b2), the network exhibits
co-existence of a stable periodic orbit in (b1) and a stable
equilibrium point in (b2), i.e., the network exhibits either (b1)
or (b2) depending on the initial condition.

Fig. 3 depicts the characteristics of the p53 concentration x
for the parameter α0, which corresponds to the reproduction
rate of the p53. It can be confirmed that the network model
exhibits the following nonlinear phenomena.

D. SUBCRITICAL Andronov-Hopf BIFURCATION
At the pointA in Fig. 3(b), the stable equilibrium point (which
inactivates the DNA damage repair function) changes to the
stable periodic orbit (which activates the DNA damage repair
function) as the reproduction rate α0 of p53 increases. This
change of phenomena is caused by a subcritical Andronov-
Hopf bifurcation [20]. Note that the network model has
co-existing stable equilibrium point and stable periodic orbit
between the points A and B.

E. SUBCRITICAL Andronov-Hopf BIFURCATION
(OPPOSITE DIRECTION)
At the point C in Fig. 3(c), the stable equilibrium point
(which inactivates the DNA damage repair function) changes
to the stable periodic orbit (which activates the DNA damage
repair function) as the reproduction rate α0 of p53 decreases.
This change of phenomena is also caused by a subcritical
Andronov-Hopf bifurcation. Note that the network model has
co-existing stable equilibrium point and stable periodic orbit
between the points C and D.

F. FOLD LIMIT CYCLE BIFURCATION
At the point B in Fig. 3(b), the stable periodic orbit disappears
as the reproduction rate α0 of p53 decreases. This change of
phenomena is caused by a fold limit cycle bifurcation [20].
At the pointD in Fig. 3(c), the stable periodic orbit disappears
as the reproduction rate α0 of p53 increases. This change of
phenomena is also caused by a fold limit cycle bifurcation.

In the next section, a novel ergodic cellular automaton
gene-protein network model that can reproduce the above
nonlinear phenomena is presented.

III. NOVEL ERGODIC CELLULAR AUTOMATON
GENE-PROTEIN NETWORK MODEL
A. MODEL DESCRIPTION
In this section, the novel hardware-efficient model of the
gene-protein network is presented. Fig. 4 shows a schematic
circuit diagram of the presented model. The model has two

FIGURE 4. Schematic circuit diagram of the presented gene-protein
network model.

FIGURE 5. Timing chart of the presented gene-protein network model.

registers storing the following discrete state variables.

X ∈ ZN corresponding to concentration x of p53,

Y ∈ ZN corresponding to concentration y of Mdm2,

ZN = {0, 1, · · · ,N − 1}, (2)

where the variables are saturated at 0 andN−1. The presented
model also has two registers storing the following discrete
auxiliary variables.

P ∈ ZM adjusting velocity of X ,
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Q ∈ ZM adjusting velocity of Y ,

ZM = {0, 1, · · · ,M − 1}, (3)

where the variables are saturated at 0 and M − 1. As shown
in Fig. 4, the presented model receives the following periodic
clock C(t) (see also timing chart in Fig. 5).

C(t) =
∞∑
n=0

p(t − nT ), p(t) =
{
1 if t = 0,
0 if t 6= 0,

(4)

where T > 0 is a period of the clock C(t) and p(t) is an
instantaneous pulse corresponding to a positive edge of a
rectangular-shaped clock signal. In addition, the presented
model receives the following two periodic binary signals
SX (t) and SY (t) (see also timing chart in Fig. 5).

SX (t) =
∞∑
n=0

q(t − nTX −8X ,WX ),

SY (t) =
∞∑
n=0

q(t − nTY −8Y ,WY ),

q(t,W ) =
{
1 if t ∈ [0,W ],
0 if t /∈ [0,W ],

(5)

where TX > 0 and TY > 0 are periods, WX ∈ [0,TX ]
and WY ∈ [0,TY ] are pulse durations, and 8X ∈ [0,TX ) and
8Y ∈ [0,TY ) are initial phases of the binary signals SX (t) and
SY (t), respectively. Then the clockC(t) induces the following
transitions of the discrete state variables X and Y (see also
timing chart in Fig. 5).

1) TRANSITIONS OF STATE VARIABLES

If C(t) = 1, then

X (t+) = X (t)+ SX (t)FX (X (t),Y (t),P(t)),

Y (t+) = Y (t)+ SY (t)FY (X (t),Y (t),Q(t)), (6)

where t+ = limε→0+ε and ε > 0, and the discrete functions

FX : Z2
N × ZM → {−1, 0, 1},

FY : Z2
N × ZM → {−1, 0, 1}, (7)

determine the nonlinear vector field of the presented model.
To reproduce the nonlinear vector field of the ODE gene-
protein network model in Eq. (1), we propose to design the
discrete functions FX and FY as follows.

FX (X ,Y ,P)

=


1 if FX (X ,Y ) ≥ 0 and P ≥ |FX (X ,Y )|,
−1 if FX (X ,Y ) < 0 and P ≥ |FX (X ,Y )|,
0 otherwise,

FY (X ,Y ,Q)

=


1 if FY (X ,Y ) ≥ 0 and Q ≥ |FY (X ,Y )|,
−1 if FY (X ,Y ) < 0 and Q ≥ |FY (X ,Y )|,
0 otherwise,

(8)

where the functions FX and FY are defined by

FX (X ,Y ) = Int(fX (X ,Y )−1T
−1
X ),

FY (X ,Y ) = Int(fY (X ,Y )−1T
−1
Y ),

FX : Z2
N → Z±M , FY : Z2

N → Z±M ,

Z±M = {−(M − 1),−(M − 2), · · · ,M − 1}, (9)

which are saturated at−(M − 1) andM − 1, and the function
Int(x) gives the integer part of x. The functions fX and fY used
in FX and FY are defined by

fX (X ,Y )

= �X

(
α0 +

α1( X
�X

)n

(k1 + ( X
�X

)n)
− γ1

X
�X

Y
�Y
− γ2

X
�X

)
,

fY (X ,Y )

= �Y

(
α2 +

α3( X
�X

)4

(k2 + ( X
�X

)4)
− γ3

Y
�Y

)
, (10)

where �X and �Y are scaling parameters. Then the clock
C(t) induces the following transitions of the discrete auxiliary
variables P and Q (see also timing chart in Fig. 5).

2) TRANSITIONS OF AUXILIARY VARIABLES

If C(t) = 1 and SX (t) = 1, then

P(t+) =

{
P(t)+ 1 if FX (X (t),Y (t),P(t)) = 0,
0 otherwise,

If C(t) = 1 and SY (t) = 1, then

Q(t+) =

{
Q(t)+ 1 if FY (X (t),Y (t),Q(t)) = 0,
0 otherwise.

(11)

B. MATHEMATICAL OPERATIONS AND HARDWARE
In the circuit schematic in Fig. 4 and the timing chart in
Fig. 5, relations between the mathematical operations and the
hardware are illustrated as follows.
• The discrete variables (X ,Y ,P,Q) defined in Eqs. (2)
and (3) are stored in the registers.

• The discrete functions (FX ,FY ) defined in Eq. (8) are
implemented as look-up tables (LUTs).

• The transitions in Eqs. (6) and (11) of the discrete vari-
ables (X ,Y ,P,Q) are triggered by the clock C and are
realized by updating the values of the registers.

In Fig. 5, timings of memory accesses (i.e., reads from
registers and writes to registers) are illustrated. It can be
confirmed that, since the values stored in the four registers
can be updated simultaneously at the same clock timing, the
possible maximum number of state transitions that can be
executed simultaneously is four, which can be regarded as a
degree of parallelism (i.e., a degree of parallel operations of
the transitions in Eqs. (6) and (11)) of the presented model.

Note that the ODE gene-protein network model in Eq. (1)
has the autonomous nonlinear dynamics and no input. Since
the presented model is designed to mimic the autonomous
model in Eq. (1), from a viewpoint of the dynamical sys-
tem theory, the presented model can be regarded to have
no input. However, from a viewpoint of the hardware, the
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FIGURE 6. Numerical simulations showing typical time waveforms and
corresponding phase plane trajectories of the presented gene-protein
network model described by Eqs. (6) and (11). (n, α1, α2, α3,k1,k2, γ1,
γ2, γ3) are as in Fig. 2. (N,M, TC , TX ,8X ,WX , TY ,8Y ,WY ,�X ,�Y ) =
(4096, 2, 3

√
5 10−6, 3

√
5 10−6, 0, 3

√
5 10−6, 5

√
48 10−6, 0, 3

√
5 10−6,

64, 64). (a) Periodic orbital set Op. α0 = 175. (b) Co-existence of periodic
orbital set Op in (b1) and stable equilibrium set E in (b2). α0 = 179.6.
(c) Stable equilibrium set E. α0 = 185.

presented model accepts the clock C and the switch signals
(SX , SY ), which can be regarded as inputs to the presented
model. In addition, since the discrete state variables (X ,Y )

are observed for analyses, they can be regarded as outputs of
the presented model. Due to the parallelism, the data accesses
(i.e., inputs of (SX , SY ) and observations of (X ,Y ) from the
outside of the presented model) and the computations (i.e.,
transitions of the variables (X ,Y ,P,Q)) are executed at the
same clock timing.

C. NUMERICAL SIMULATIONS AND CONTRIBUTIONS
Figs. 6(a), (b), and (c) depict timewaveforms and correspond-
ing phase plane trajectories of the presented model obtained
by numerical simulations. By comparing with Figs. 2(a), (b),
and (c), it can be suggested that the presented model can
reproduce the nonlinear phenomena (stable periodic orbit
in (a), stable equilibrium point in (b), and coexistence of
stable periodic orbit and stable equilibrium point in (c)) of the
ODE gene-protein network model in Eq. (1). Fig. 7 depicts
the characteristics of the state variable X of the presented
model for the parameter α0. By comparing with Fig. 3,
it can be suggested that the presented model can reproduce
the nonlinear phenomena (i.e., supercritical Andronov-Hopf
bifurcation at A, fold limit cycle bifurcation at B, subcritical
Andronov-Hopf bifurcation at C , and fold limit cycle bifur-
cation at D) of the ODE gene-protein network model. The
subsequent sections provide the following contributions.
• In Section IV, theoretical analysis methods of the pre-
sented model are provided and the bifurcation phenom-
ena are analyzed theoretically. They are significant to
guarantee that the presented model can truly reproduce
the bifurcation phenomena of the ODE gene-protein
network model.

• In Section V, the presented model is implemented as
hardware and comparisons with other implementation
methods, including a state-of-the-art soft CPU, are pro-
vided. They are significant to show that the presented
model is the model of choice for hardware-based gene-
protein network simulation.

IV. THEORETICAL ANALYSES
To analyze the nonlinear dynamics of the presented ergodic
cellular automaton gene-protein network model, the follow-
ing state space is defined.

S = {(X ,Y )|X ∈ ZN ,Y ∈ ZN }.

Then the following definition for the phenomenon observed
in Fig. 6(a) is given.
Definition 1 (Periodic Orbital Set): Suppose there exists a

subset Op of the state space S, which satisfies the following
three conditions. (a) The subset Op consists of connected
points in the state space S, where a point (X ,Y ) ∈ S is said
to be connected with its eight neighbor points (X + 1,Y ),
(X + 1,Y + 1), (X ,Y + 1), (X − 1,Y + 1), (X − 1,Y ),
(X − 1,Y − 1), (X ,Y − 1), and (X + 1,Y − 1) for 1 ≤ X ≤
N −2 and 1 ≤ Y ≤ N −2. (b) The subsetOp is topologically
equivalent to a two dimensional annulus. (c) There exists
an orbit of the state vector (X ,Y ) of the presented network
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FIGURE 7. (a) Characteristics of the presented gene-protein network
model obtained by numerical simulations of the dynamic equations in
Eqs. (6) and (11). The horizontal axis is the parameter α0. The vertical axis
is the maximum and the minimum values of the state variable X in a
steady state. (b) Enlargement of the graph in (a) near α0 = 10. The model
exhibits a supercritical Andronov-Hopf bifurcation at A and a fold limit
cycle bifurcation at B. (c) Enlargement of the graph in (a) near α0 = 180.
The model exhibits a subcritical Andronov-Hopf bifurcation at C and a
fold limit cycle bifurcation at D.

model, which ever stays in the subset Op in a steady state.
In this case, the subset Op is referred to as a periodic orbital
set.

The orbit of the state vector (X ,Y ) in Fig. 6(a) ever stays in
a periodic orbital setOp (not shown since it is almost identical
with the figure of the orbit), which corresponds to the stable
periodic orbit of the ODE gene-protein network model in
Fig. 2(a). Next, the following definition for the phenomenon
observed in Fig. 6(c) is given.
Definition 2 (Stable Equilibrium Set): Suppose there

exists an orbit of the state vector (X ,Y ) of the presented
network model starting from a subset E = {(X ,Y )|X =
X∗eq,X

∗

eq+1, · · ·X
∗
eq+p,Y = Y ∗eq,Y

∗

eq+1, · · · Y
∗
eq+q} ⊂ S of the

state space S, which ever stays in the subset E, where p and

q are small non-negative integers. In this case, the subset E is
said to be a stable equilibrium set.

The orbit of the state vector (X ,Y ) in Fig. 6(c) ever stays
in a stable equilibrium set E (not shown since it is almost
identical with the figure of the orbit), which corresponds to
the stable equilibrium point of the ODE gene-protein network
model in Fig. 2(c). Note that, in the case of Figs. 6(b1)
and (b2), the presented model exhibits the co-existence of a
periodic orbital setOp in (b1) and a stable equilibrium setE in
(b2), where the presentedmodel exhibits one of them depend-
ing on the initial condition. In addition, this coexistence phe-
nomenon corresponds to the co-existence phenomenon of the
ODE gene-protein network model in Figs. 2(b1) and 2(b2).
Fig. 7 depicts characteristics of the state variable X for the
parameter α0. It can be confirmed that the presented model
exhibits the following nonlinear phenomena.

A. SUBCRITICAL Andronov-Hopf BIFURCATION
At the point A in Fig. 7(b), the stable equilibrium setE (which
inactivates the DNA damage repair function) changes to the
periodic orbital set Op (which activates the DNA damage
repair function) as the reproduction rate α0 of p53 increases.
This change of phenomena is qualitatively equivalent to the
subcritical Andronov-Hopf bifurcation of the ODE gene-
protein network model observed at the point A in Fig. 3(b).
Note that the presented model has co-existing stable equi-
librium set E and periodic orbital set Op between the points
A and B in Fig. 7(b), where this co-existing phenomenon is
qualitatively equivalent to that of the ODEmodel observed in
Fig. 3(b).

B. SUBCRITICAL Andronov-Hopf BIFURCATION
(OPPOSITE DIRECTION)
At the point C in Fig. 7(c), the stable equilibrium set E
changes to the periodic orbital set Op as the reproduction
rate α0 of p53 decreases. This change of phenomena is qual-
itatively equivalent to the subcritical Andronov-Hopf bifur-
cation of the ODE gene-protein network model observed at
the point C in Fig. 3(c). Note that the presented model has
co-existing stable equilibrium set E and periodic orbital set
Op between the points C and D in Fig. 7(c), where this co-
existing phenomenon is qualitatively equivalent to that of the
ODE model observed in Fig. 3(c).

C. FOLD LIMIT CYCLE BIFURCATION
At the point B in Fig. 7(b), the periodic orbital set Op dis-
appears as the reproduction rate α0 of p53 decreases. This
change of phenomena is qualitatively equivalent to the fold
limit cycle bifurcation of the ODE gene-protein network
model observed at the point B in Fig. 3(b). At the point D in
Fig. 7(c), the periodic orbital set Op disappears as the repro-
duction rate α0 of p53 increases. This change of phenomena
is qualitatively equivalent to the fold limit cycle bifurcation
of the ODE gene-protein network model observed at the point
D in Fig. 3(c).
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FIGURE 8. (a) Example of equilibrium set. The stable equilibrium set E is
obtained by Proposition 1 theoretically. α0 = 3. There exists an orbit of
the state vector (X ,Y ) that ever stays in the stable equilibrium set E.
(b) Counterexample of equilibrium set. The set U does not satisfy
Proposition 1. α0 = 13. An orbit of the state vector (X ,Y ) that escapes
from the subset U may exist.

Now we are ready to provide a sufficient condition for the
existence of the stable equilibrium set E as follows.
Proposition 1: Consider a subset E = {(X ,Y )|X =

Xeq,Xeq+1, · · ·Xeq+p,Y = Yeq,Yeq+1, · · · Yeq+q} ⊂ S of
the state space S. Suppose the initial state of the state vector
(X ,Y ) exists in the subset E when t = 0. If the state vector
(X ,Y ) stays in the subset E when t = T for all initial
conditions of P ∈ ZM , Q ∈ ZM , 8X ∈ [0,TX ), and 8Y ∈

[0,TY ), then the subset E is a stable equilibrium set.
Proof: The switch signals SX and SY can be generated

by phase oscillators as follows.

SX (t) =

{
0, if θX (t) < TX (TX −WX ),
1, if θX (t) ≥ TX (TX −WX ),

θX (t) = 2X (t) (mod T 2
X ),

d2X (t)
dt

= TX , 2X (0) = 8X ,

SY (t) =

{
0, if θY (t) < TY (TY −WY ),
1, if θY (t) ≥ TY (TY −WY ),

θY (t) = 2Y (t) (mod T 2
Y ),

d2Y (t)
dt

= TY , 2Y (0) = 8Y . (12)

FIGURE 9. (a) Example of stable periodic set. The stable periodic set 0p is
obtained by Proposition 2 theoretically, and corresponding periodic
orbital set Op exists. α0 = 180. (b) Counterexample of stable periodic set.
The set 0u does not satisfy Proposition 2. α0 = 179.6. In this figure, the
orbit of the state vector (X ,Y ) forms a small attractor, which is not a
periodic orbital set.

Since the generators of the switch signals SX and SY in
Eq. (12) are deterministic, the initial phases θX (0) and θY (0)
at t = 0 uniquely determine the phases θX (T ) and θY (T ) at
t = T , where recall that T is the period of the clock C(t).
Therefore, there exist the following unique maps.

θX (T ) = GθX (θX (0)),GθX : [0,T 2
X )→ [0,T 2

X ),

θY (T ) = GθY (θY (0)),GθY : [0,T 2
Y )→ [0,T 2

Y ). (13)

The time evolution of the discrete states X and Y
in Eq. (6) are also deterministic, and thus the initial
states (X (0),Y (0),P(0),Q(0), θX (0), θY (0)) uniquely deter-
mine the discrete states X (T ) and Y (T ). Therefore, there exist
the following unique maps.

X (T ) = GX (X (0),Y (0),P(0), θX (0)),
Y (T ) = GY (X (0),Y (0),Q(0), θY (0)). (14)

Similarly, there exist the following unique maps.

P(T ) = GP(X (0),Y (0),P(0), θX (0)),
Q(T ) = GQ(X (0),Y (0),Q(0), θY (0)). (15)
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Hence the following six-dimensional iterative map can be
uniquely determined.

X((n+ 1)T ) = G(X(nT )),
X(t) = (X (t),Y (t),P(t),Q(t), θX (t), θY (t)),

G : Z→ Z = Z2N × Z
2
M × [0,T 2

X )× [0,T 2
Y ). (16)

From the conditions of the subset E in Proposition 1, we have

(X (T ),Y (T )) = (GX (X(0)),GY (X(0))) ⊆ E

for all (X (0),Y (0)) ∈ E and for all

(P(0),Q(0), θX (0), θY (0)) ∈ Z2M × [0,T 2
X )× [0,T 2

Y ).

(17)

Then, from the mathematical induction, we have

(X (nT ),Y (nT )) ⊆ E for all (X (0),Y (0)) ∈ E. (18)

Since the situation in Eq. (18) is identical with the definition
of the equilibrium set E in Definition 2, Proposition 1 is
proven, where the lengths p and q of E are assumed to be
small. Q.E.D.

D. EXAMPLE AND COUNTEREXAMPLE 1
For example, the subset E in Fig. 8(a) satisfies Proposition 1
and thus it can be theoretically guaranteed that the subset E is
a stable equilibrium set. Then Proposition 1 guarantees that
there exists an orbit of the state vector (X ,Y ) of the presented
gene-protein network model that ever stays in the stable
equilibrium set E as shown in Fig. 8(a). On the contrary, the
subset U in Fig. 8(b) is a counterexample, i.e., the subset U
does not satisfy Proposition 1 and thus it cannot be guaranteed
that the subset U is a stable equilibrium set. In this case,
an orbit of the state vector (X ,Y ) that escapes from the subset
U may exist as shown in Fig. 8(b).
Next, we give the following definition related to the peri-

odic orbital set Op (see also Fig. 9).
Definition 3: Suppose there exists a subset 0 =

{(X ,Y )|X ∈ ZN ,Y = Y0} ⊂ S of the state space S,
which satisfies the following two conditions. (i) There exists
a subset 0p = {(X ,Y )|X ∈ {Xp,Xp + 1, · · · ,Xp + r},Y =
Y0} ⊂ 0, where r is a small non-negative integer. (ii)
The trajectories of (X ,Y ) starting from the subset 0p ever
repeats the following itinerancy: escape from 0p to the subset
{(X ,Y )|X ∈ ZN ,Y ≥ Y0}; keeps Y ≥ Y0 and returns to the
subset 0 \ 0p; escape from the subset 0 \ 0p to the subset
{(X ,Y )|X ∈ ZN ,Y ≤ Y0}; and keeps Y ≤ Y0 and returns to
the subset 0p. In this case, the subset 0p is said to be a stable
periodic set.

Fig. 9 shows an example of the stable periodic set0p. Then
we give the following sufficient condition for the existence of
the stable periodic set 0p.
Proposition 2: Consider subsets 0 = {(X ,Y )|X ∈

ZN ,Y = Y0} ⊂ S and 0p = {(X ,Y )|X ∈ {Xp,Xp +
1, · · · ,Xp + r},Y = Y0} ⊂ 0. If any trajectory of (X ,Y )
starting from the subset 0p travels the itinerancy defined in
Definition 3 and returns to the subset 0p, then the subset

0p is a stable periodic set. In this case, the trajectories of
(X ,Y ) starting from the stable periodic set 0p for all initial
conditions of P ∈ ZM , Q ∈ ZM , 8X ∈ [0,TX ), and 8Y ∈

[0,TY ) form a periodic orbital set Op.
Proof: From Eq. (16), the trajectory of the state vector

X(nT ) (n = 1, 2, · · · ) can be uniquely determined by the
initial state X(0). Therefore, from the conditions in Propo-
sition 2, we can find the minimum integer k1 ≥ 1 such that

(X (k1T ),Y (k1T )) ⊆ 0p
for each (X (0),Y (0)) ∈ 0p and for each

(P(0),Q(0), θX (0), θY (0)) ∈ Z2M × [0,T 2
X )× [0,T 2

Y ).

(19)

Then, from the mathematical induction, we can find the
minimum integers kn (n = 1, 2, 3, · · · ) such that

(X (knT ),Y (knT )) ⊆ 0p
for each (X (0),Y (0)) ∈ 0p and for each

(P(0),Q(0), θX (0), θY (0)) ∈ Z2M × [0,T 2
X )× [0,T 2

Y ),

(20)

where the trajectory of the state vector (X ,Y ) starting from
the initial state (X (0),Y (0)) repeats the itinerancy in Propo-
sition 2. Since n can be plus infinity, it is guaranteed that the
trajectory of the state vector (X ,Y ) ever repeats the itinerancy
in Proposition 2. Hence the subset 0p satisfies the conditions
in Definition 3 and thus it is a stable periodic set. Eq. (6)
guarantees that any state vector (X ,Y ) starting from0p forms
a set of connected points. Since the state vector (X ,Y ) starting
from 0p ever repeats the itinerancy in Proposition 2, it forms
a subset that is topologically equivalent to a two dimensional
annulus. Hence the trajectory of the state vector (X ,Y ) start-
ing from the initial state 0p forms a periodic orbital set.
Q.E.D.

E. EXAMPLE AND COUNTEREXAMPLE 2
For example, the subset 0p in Fig. 9(a) satisfies Proposition 2
and thus it can be theoretically guaranteed that the subset
0p is a stable periodic set. Then Proposition 2 guarantees
that there exists an orbit of the state vector (X ,Y ) of the
presented gene-protein network model that ever returns back
in the stable periodic set 0p. In this case, a periodic orbital set
Op exists as shown in Fig. 9(a). On the contrary, the subset 0u
in Fig. 9(b) is a counterexample, i.e., the subset 0u does not
satisfy Proposition 2 and thus it cannot be guaranteed that the
subset 0u is a stable periodic set. In this case, an orbit of the
state vector (X ,Y ) that does not form a periodic orbital set
may exist, e.g., the orbit of the state vector (X ,Y ) in Fig. 9(b)
forms a small attractor, which is not a periodic orbital set.

To show a theoretical advantage of the presented model,
the following definitions are given.
Definition 4 (Ergodic Cellular Automaton): Let θX (n) and

θY (n) represent the phases of the switch signals SX (t) and
SY (t) sampled at the n-th pulsed moment of the clock C(t),
respectively. Suppose the clockC(t) and the switch signals SX
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FIGURE 10. Characteristics of the ergodic cellular automaton
gene-protein network model. The black graphs are obtained numerically.
The red points are obtained theoretically by Propositions 1 and 2. (α1,
α2, α3,k1,k2, γ1, γ2, γ3) are as in Fig. 2. (N,M, TC , TX ,8X ,WX , TY ,8Y ,
WY ,�X ,�Y ) = (4096,2,3

√
5 10−6,3

√
5 10−6,0,3

√
5 10−6,5

√
4810−6,

0,3
√

5 10−6, 64, 64).

and SY are supplied by generators, which are not connected
physically. In this case, the sampled phases θX (n) and θY (n)
become non-periodic and ergodic. In addition, the variables
X , Y ,P, andQmostly transit locally like a cellular automaton.
Hence the proposed model is said to be an ergodic cellular
automaton gene-protein network model.
Definition 5 (Regular Cellular Automaton): Suppose the

generators of the clock C(t) and the switch signals SX and
SY are connected physically, and C(t), SX (t), and SY (t) are
phase-locked. In this case, the sampled phases θX (n) and
θY (n) become constant or periodic. Since the typical case
TC = TX = TY corresponds to a standard non-ergodic
cellular automaton, the model is said to be a regular cellular
automaton gene-protein network model.

Then the following remarks are given.
Remark 3 (Theoretical Advantage of Ergodic CA):
• Fig. 10 shows the theoretical characteristics of the stable
equilibrium set E and the periodic orbital set Op of the
ergodic cellular automaton gene-protein network model
obtained by Propositions 1 and 2. By comparing Fig. 10
and Fig. 3, it can be concluded that the ergodic cellular
automaton gene-protein network model can reproduce
the characteristics of the ODE gene-protein network
model.

• Fig. 11 shows the theoretical characteristics of the sta-
ble equilibrium set E and the periodic orbital set Op
of a regular cellular automaton gene-protein network
model obtained by Propositions 1 and 2. By comparing
Fig. 11 and Fig. 3, it can be concluded that the regular
cellular automaton gene-protein network model cannot
reproduce the characteristics of the ODE gene-protein
network model.

• Therefore, Propositions 1 and 2 theoretically reveal that
the ergodic cellular automaton is better suited to build a
gene network simulator compared to the regular cellular
automaton.

V. IMPLEMENTATION AND COMPARISON
A. IMPLEMENTATION
The dynamics of the presented ergodic cellular automaton
gene-protein network model described in Eqs. (2), (3), (8),

FIGURE 11. Characteristics of the regular cellular automaton gene-protein
network model. The black graphs are obtained numerically. The red points
are obtained theoretically by Propositions 1 and 2 and their symmetric
ones. (α1, α2, α3,k1,k2, γ1, γ2, γ3) are as in Fig. 2. (N,M, TC , TX ,8X ,
WX , TY ,8Y ,WY ,�X ,�Y ) = (4096,2,5 · 10−6,5 · 10−6,0,5 · 10−6,
5 · 10−6,0,5 · 10−6,64,64).

FIGURE 12. Oscilloscope snapshots showing typical time waveforms and
corresponding phase plane trajectories of the ergodic cellular automaton
gene-protein network model implemented by the FPGA. The parameter
values are as in Fig. 6. (a) Oscillating orbit corresponding to the periodic
orbital set Op in Fig. 6(a). α0 = 175. (b) Resting orbit corresponding to the
stable equilibrium set E in Fig. 6(c). α0 = 185.

(9), (6) and (11) were handwritten in a register transfer
level Verilog-HDL code, where a pseudo HDL code is given
in Appendix A. The handwritten Verilog-HDL code was
compiled by Xilinx’s design suite Vivado 2021.1 and the
generated bitstream file was used to implement Xilinx’s
field programmable gate array (FPGA) device XC7A200T-
1SBG484C consisting of 33,650 logic slices, where each
logic slice includes four 6-input LUTs and eight flip-flops.
The resulting hardware can be regarded as a customized
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TABLE 1. Comparisons with other hardware implementation methods. ∗The typical values and the average values of the features of the hardware are
obtained for the parameter value α0 = 100 and the parameter values α0 = 20,40,60,80,100,120,140,160, respectively.

ergodic sequential logic that is especially designed to operate
Eqs. (6) and (11). Fig. 12 shows typical waveforms of the
implemented ergodic cellular automaton gene-protein net-
work model, which correspond to those in Fig. 6 (a) and (c).

B. COMPARISONS
For comparison, the regular cellular automaton gene-protein
network model (which can be regarded as a synchronous
sequential logic gene-protein network model) and a for-
ward Euler formula of the ODE gene-protein network model
(which can be regarded as a customized digital signal proces-
sor (DSP) gene-protein network model) were implemented
in the same manner, i.e., these models were handwritten in
register transfer level Verilog-HDL codes, the codes were
compiled by the same design software, and the generated bit-
stream files were used to implement the same FPGA device.
In addition, a CPU is implemented in the same FPGA device
by using Xilinx’s soft microprocessor Microblaze, where the
forward Euler formula of the ODE gene-protein network
model was handwritten in a C programming language code,
the code was compiled by Xilinx’s software platform Vitis
2021.1, and the generated binary file was used to operate the
CPU. Note that the CPU is especially customized to execute
the forward Euler formula of the ODE gene-protein network
model. Table 1 summarizes comparison results under the
following conditions and constraints.

C1 The bit lengths of the discrete variables (i.e., resolution
of the state space) of the cellular automaton models and

the DSPmodel were shortened as short as possible under
the condition that the models operated properly (see also
Appendix B). The bit length of the CPUwas set to 64-bit
based on the default feature of the soft microprocessor.

C2 The value of the parameter α0 of each model was set to
20, 40, 60, · · · , and 160, which lead to multiple different
oscillations of the state variable X .

C3 For comparison, the energy used to simulate one period
of oscillation ofX was derived for eachmodel, where the
energy was calculated as the product of the oscillation
period and the on-chip dynamic power.

It can be confirmed in Table 1 that the presented ergodic
cellular automaton model is the model of choice since (a) it
can predict the parameter values that cause the bifurcations
of the ODE gene-protein network model while the regular
cellular automatonmodel cannot, and (b) it is more hardware-
efficient (i.e., consumes much fewer circuit elements and
lower energy) compared to the DPS model and the CPU
mode. The fundamental reason why the presented cellular
automaton model consumes fewer circuit elements (and thus
consumes lower energy) compared to the DPS model and the
CPU model is that the resolutions of the discrete functions
(FX ,FY ) in Eq. (8) of the cellular automaton model are much
lower and are implemented by LUTs while the resolutions
of the nonlinear functions in Eq. (1) of the DSP model and
the CPU model must be much higher to realize proper calcu-
lations of the numerical integration and are implemented by
multipliers.
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Algorithm 1 Pseudo hdl code of the presented model
/* Definitions of discrete state variables X and Y in Eq. (2) and discrete auxiliary variables P and Q in Eq. (3) */
reg signed [15:0] X; reg signed [15:0] Y; reg signed [15:0] P; reg signed [15:0] Q
reg signed [15:0] X_new; reg signed [15:0] Y_new; reg signed [15:0] P_new; reg signed [15:0] Q_new;
/* Implementations of the functions FX and FY in Eq. (9) as LUTs */
/* The values denoted by ??? are pre-calculated using Eq. (9) */
reg signed [15:0] LUT_X_BORDER[4095:0]; reg signed [15:0] LUT_Y_BORDER[4095:0];
initial LUT_X_BORDER[0] = ???; initial LUT_X_BORDER[1] = ???; · · · ; initial LUT_X_BORDER[4095] = ???;
initial LUT_Y_BORDER[0] = ???; initial LUT_Y_BORDER[1] = ???; · · · ; initial LUT_Y_BORDER[4095] = ???;
/* Definitions of the return values of the discrete funtions FX and FY in Eq. (8) */
reg signed [1:0] FX; reg signed [1:0] FY;
/* Transitions of the discrete variables (X ,Y ,P,Q) in Eqs. (6) and (11) triggered by the clock C . */
/* Reset is omitted for simplicity. */
always@(posedge C) begin

if (SX == 1) begin
if (LUT_X_BORDER[X] > Y) FX = 1; else FX = −1;

if ((P < FX && FX > 0) || (P < −FX && FX < 0)) P_new = P + 1;
else begin

P_new = 0;
if (X < 4095 && FX >= 0) X_new = X + 1; else if (X > 0 && FX < 0) X_new = X −1;

end
end
if (SY == 1) begin

if (LUT_Y_BORDER[X] > Y) FY = 1; else FY = −1;
if ((Q < FY && FY > 0) || (Q < −FY && FY < 0)) Q_new = Q + 1;
else begin

Q_new = 0;
if (Y < 4095 && FY >= 0) Y_new = Y + 1; else if (Y > 0 && FY < 0) Y_new = Y −1;

end
end
X = X_new; P = P_new; Y = Y_new; Q = Q_new;

end

FIGURE 13. Numerical simulations showing typical time waveforms of
the DSP gene-protein network model in Subsection III-B. (a) The bit
length of the state variables is 56-bit. The model operates properly.
(b) The bit length of the state variables is 55-bit. The model does not
operate properly (see the unexpected fast oscillations at the peak of the
state variable x).

VI. CONCLUSION
The theoretical analysis methods proposed in this study
revealed that the presented ergodic cellular automaton gene-
protein networkmodel is better suited to predict the parameter
values that cause the bifurcations of the ODE gene-protein
network model compared to the regular cellular automaton

model. In addition, the FPGA implementations and com-
parisons revealed that the presented model is much more
hardware-efficient (e.g., consumes much fewer circuit ele-
ments and much lower power) compared to the standard
numerical integration model of the gene-protein network.
Hence the results of this paper will provide fundamental
knowledge about designing a hardware-efficient application
specific integrated circuit for the genome simulation. To real-
ize such a future hardware-based genome simulator, the fol-
lowing problems should be solved. (a) development of design
methods of the ergodic cellular automaton model that can
reproduce a wide variety of bifurcations precisely, (b) devel-
opment of a systematic design method of ergodic cellu-
lar automaton models of large-scale gene-protein networks,
(c) development of theoretical analysis methods of such
large-scale ergodic cellular automaton networks, (d) devel-
opment of a systematic implementation method of such
large-scale ergodic cellular automaton networks, and (e) clar-
ification of relationship between the ergodic cellular automa-
ton and other similar dynamical systems such as the fuzzy
logic network [21].
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APPENDIX A
See Algorithm 1.

APPENDIX B (BIT LENGTH OF THE DSP GENE-PROTEIN
NETWORK MODEL)
As explained in the condition C1 of the comparison in Sub-
section III-B, the bit length of the discrete variables of the
DSP gene-protein network model was shortened as short as
possible under the condition that themodel operated properly.
Base on the numerical simulations including the ones in
Fig. 13, the bit-length of the DSP model was set to 56-bit
in this study.
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