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ABSTRACT As the number of smart connected devices increases day by day, a massive amount of tasks are
generated by various types of Internet of Things (IoT) devices. Intelligent edge computing is a promising
enabler in next-generation wireless networks to execute these tasks on proximate edge servers instead of
smart devices. Additionally, regarding the execution of tasks in edge servers, smart devices could provide
a low-latency environment to the end users. Within this paper, an artificial intelligence (AI)-empowered
fast task execution method in heterogeneous IoT applications is proposed to reduce decision latency by
taking into account different system parameters such as the execution deadline of the task, battery level
of devices, channel conditions between mobile devices and edge servers, and edge server capacity. In edge
computing scenarios, the number of task requests, resource constraints of edge servers, mobility of connected
devices, and energy consumption are the main performance considerations. In this paper, the AI-empowered
fast task decision method is proposed to solve the multi-device edge computing task execution problem
by formulating it as a multi-class classification problem. The extensive simulation results demonstrate that
the proposed framework is extremely fast and precise in decision-making for offloading computation tasks
compared to the conventional Lyapunov optimization-based algorithm results by ensuring the guaranteed
quality of experience.

INDEX TERMS AI, classification, computation offloading, intelligent networks, Internet of Things,
Lyapunov optimization, machine learning, multi-access edge computing.

I. INTRODUCTION
By 2030, it is reported that our lives and industry will be
reshaped and billions of smart devices are expected to be
connected to the network [1], [2]. The majority of these
devices could provide various types of applications on the
network edge that will be a part of smart cities, smart trans-
portation, or smart gaming [3]. Especially, virtual reality
(VR), augmented reality (AR)-based applications, live video
streams from unmanned aerial vehicles (UAVs), and smart
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autonomous connected vehicles produce a great amount of
data and require rapid response to their requests [4]. As IoT
devices are built with limited computation, storage, and
energy availability [5], they are not appropriate for processing
huge data on their own efficiently. On the other hand, current
conventional cloud computing environments which are cen-
tralized far away from the user environment are not adequate
to provide uninterrupted services demanded by various IoT
applications [6], [7], [8].

One of the key solutions to address the aforementioned
challenges is transferring task computing processing to
edge servers that are closely located to the users, called
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multi-access edge computing (MEC) [9], [10], [11]. MEC
provides additional computation capabilities and storage
while meeting strict performance requirements such as low
latency, energy consumption, or higher bandwidth accord-
ing to the task specifications [12]. Even if edge comput-
ing is a promising solution, introducing a new node to the
network brings complexity to the task offloading process
between IoT devices and edge servers where traditional opti-
mization algorithms struggle to solve such complex decision
problems [6], [13]. As a result, networks must be man-
aged intelligently in order to meet end-user expectations
and efficiently utilize resources. Fortunately, the growth of
learning techniques in artificial intelligence (AI) technology
assists to develop new approaches to solve complicated chal-
lenges [14]. Additionally, academies and industries are highly
attracted to the adaptation of machine learning (ML) and
deep learning (DL) techniques in next-generation wireless
networks [15]. The integration of AI algorithms into the edge
network environment helps to accelerate decision-making
approaches and fulfill the latency-sensitive requirements of
different IoT applications.

In recent years, some studies related to ML and DL algo-
rithms in cellular and IoT networks are investigated in litera-
ture [2], [7], [15], [16]. Studies show that the implementation
of ML and DL plays a significant role in the computation
offloading to the edge environment and resourcemanagement
in IoT networks, and latency is one of the critical parameters
for the effective and efficient usage of various IoT applica-
tions. Especially for delay-sensitive applications, learning-
based task decision mechanisms have a high potential to
accelerate task offloading decisions since ML techniques
promptly respond to the utilization of available resources.

In this article, we propose an AI-empowered fast task
execution decision framework to accelerate edge computation
offloading while taking into account channel conditions, time
and energy consumption of energy-harvested IoT devices, the
capacity of edge servers, and the mobility of users. Apart
from our previous work [17], the system model in this study
is designed to be feasible to serve different types of smart
connected devices with latency-sensitive applications such as
smartphones, connected cars, AR or VR-based online gaming
by consoles, live video streaming byUAVs or any smart home
applications, and to be fast to response time-sensitive task
requests while considering limited capacity of multiple edge
servers. To differentiate UAV-based task requests which are
mostly addressed for very time-sensitive services, different
channel models and very limited packet execution deadlines
are also considered. In the system model, task execution
modes are chosen as device execution, edge server execution,
and task drop. The proposed intelligent task classification
framework uses different ML and DL models to classify task
execution modes which results in the acceleration of the task
execution process. Additionally, using maximum channel
gain with the output of the learningmodel accurately achieves
the edge server selection process. Comprehensive perfor-
mance results show that the proposed AI-enabled framework

is significantly fast and precise in the decision-making pro-
cess of edge computation offloading while guaranteeing the
quality of user experience compared to traditional Lyapunov
optimization methods [18].

The rest of the paper is organized as follows. Related
Works in Section II presents a summary of recent research
on edge computing offloading methods. The system model
is introduced in Section III. Afterward, we demonstrate
the intelligent task classification framework in Section IV.
Next, we present the performance evaluation and results in
Section V, and the final conclusions in Section VI.

II. RELATED WORKS
The European Telecommunications Standards Institute
(ETSI) has developedMEC [19] to integrate cloud computing
capabilities into wireless networks, which is expected to be
critical in addressing next-generation network requirements.
Edge servers, which are positioned at the edge of the network,
can provide processing power, storage, connection, and other
services to edge devices. However, since edge servers have
limited resources for computation and storage, computation
offloading and resource allocation have become popular
topics. To alleviate this problem, different schemes are pro-
posed [20], [21], [22].Wang et al. [20] formulate computation
offloading decision as a convex optimization problem while
considering resource allocation and content caching in edge
networks. Authors in [21] jointly consider the time and rate
of task offloading assignment to solve the optimization prob-
lems and propose a heuristic approach as well. In [22], tasks
are merged to minimize latency and guarantee the reliability
of computation offloading amongmultiple-user andmultiple-
server environments. The aforementioned three researchers
propose traditional optimization approaches in which their
target is to optimize bandwidth and computer resources,
and they obtained significant results. However, they do not
consider any AI-based learning methods to leverage their
approach.

In recent years, researchers have focused on learning-based
edge computing offloading solutions instead of traditional
optimization methods. In [23] an online learning base strat-
egy is proposed while taking into account the completion
latency of the tasks and the multi-hop edge environment
for cooperative offloading. According to [24], the authors
propose a new ML approach in edge computing to optimize
multiple objective functions which are memory, process-
ing, and communication requirements of the edge device.
Even the authors present significant results in edge comput-
ing while considering computation and latency constraints;
device diversity, user mobility, and energy are still key con-
straints in edge computing scenarios. On the other hand,
technology combining IoT with AI is a promising oppor-
tunity to obtain reliable data in a complex environment for
analysis and intelligent decision-making [25]. According to
the method proposed in [26], an industrial IoT environment
is considered where task offloading assignment is achieved
by ML-based channel selection and context awareness of
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resource allocation while [27] deep reinforcement learning
(DRL) approach is proposed to decide the allocation of
resources to multi-service IoT systems in a flexible way.
On the other hand, [28] applies a machine learning algorithm
for offloading task from UAVs to edge servers while min-
imizing the total processing time and energy consumption.
Similarly, [29] considers a vehicular edge computing network
to apply a DRL-based data offloading policy and minimize
the delay of average offloading. It can be inferred from the
simulation results of the above articles that learning-based
algorithms perform better than traditional optimization algo-
rithms in multi-device edge networks to optimize resource
allocation by considering latency and energy constraints.
Furthermore, in [30], to obtain low energy consumption,
energy harvesting devices are considered to address resource
allocation problems in edge environments.

In this paper, AI empowerment is mainly considered
to optimize the decision-offloading strategy. Unlike previ-
ous research, this paper proposes a comprehensive frame-
work to serve an energy-harvested multi-device environment
while taking into account channel conditions, the capacity
of edge servers, delay, energy consumption, and user mobil-
ity. Simulation results indicate how rapidly and accurately
the proposed intelligent framework can achieve computation
offloading decisions to edge servers while maintaining the
quality of experience.

III. SYSTEM MODEL
This section describes the system model, which is com-
prised of various types of smart connected devices such as
smartphones, online gaming consoles, UAVs, connected cars,
or any connected devices of smart homes with energy har-
vesting (EH) capabilities, as well as multiple edge servers
located near base stations (BS) or access points as illustrated
in Figure 1. To represent the set of smart connected devices
and edge servers, we assume K smart connected devices as
K , {1, 2, . . . ,K } and M edge servers M , {1, 2, . . . ,M}.
As shown in Figure 1, all smart connected devices are ran-
domly positioned in a specified region, including edge com-
puting servers deployed near BSs and device locations that
vary between time slots. In each time slot, connected users
are allowed to move across the region. The distance between
smart connected devices and edge servers in the n-th time slot
is represented by dni,j where n ∈ N , i ∈ K, j ∈M.

In this model, edge computing servers are utilized to exe-
cute task requests originating from various smart devices,
where all of these devices generate delay-sensitive task
requests in IoT applications. After receiving a task request
from users, the connected devices decide whether to execute
computations locally or offload them to edge servers based
on latency and energy usage.

In consideration of the nature of delay-sensitive task
requests, offloading task computing to the edge server sig-
nificantly improves the user experience. As a result, we split
the time into slots in which the task request execution delay
is not regarded to exceed the given time slot duration.

FIGURE 1. Multi-device supported edge computing system model for next
generation wireless networks.

In each n-th time slot, we use the Rician wireless channel
model for UAV types of users. Because usually, UAV-ground
communications consist of more line-of-sight (LoS) links and
some multiple paths due to scattering or reflection of ground
buildings, trees, etc. [31]. So, Rician distribution fits well
to a stronger line-of-sight environment while Nakagami-m
distributions are utilized to model dense scatters. As a result,
other channels are modeled as Nakagami-m fading among
connected smart devices and edge servers. The probability
density function (pdf) of the Rician distribution for UAVusers
can be given as
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where I0(·) is the 0-th order modified Bessel function of the
first kind, K is defined as Rician factor and � is the scale
parameter [32]. The pdf of Nakagami-m model used for the
rest of the connected devices can be given as
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in which m ≥ 1/2 and for both Rician and Nakagami-m
distributions � > 0 and n > 0. Additionally, we assume
that neither smart devices nor edge servers have a buffer to
process task requests.

In this study, task execution decisions in smart connected
devices or edge servers are modeled with respect to energy
usage and execution length based on the model described
in [17]. The task is executed locally if the smart connected
device has enough energy to run the task on its own by the
execution request deadline τx . Otherwise, if the edge server
capacity is sufficient, task execution requests are offloaded to
the edge servers. If neither of these two computational modes
is acceptable for the task request execution, the computation
task is dropped. Furthermore, the scenario in which the smart
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connected device does not generate any request for compu-
tation is also taken into consideration as the main distinction
unlike the existing literature including [18].

Moreover, task requests are assumed as L bits and modeled
by independent and identically distributed (i.i.d.) Bernoulli
processes [18]. Each task request is generated with probabil-
ity ρ with values ranging between 0.7 ≤ ρ ≤ 1 . To identify
whether a task request is generated or not a task request
indicator is defined as ζ ni ∈ {0, 1}. When one of the smart
connected devices produces a task, the parameter ζ ni equals
1 at the n-th time slot where n ∈ N for this device. If ζ ni = 0,
the task is not generated by the i-th smart connected device.

We define four classes to indicate decision options for
each task execution, where i ∈ {m, s, d, n} denotes each
class that belongs to the mobile, server, drop, and no request
cases, respectively [17]. If the i-th smart device executes the
task request on its own, the result of the class indicator is
Ci,m[n] = 1. Accordingly, if the task offloading to one of
the edge servers is feasible, then Ci,s[n] = 1. Furthermore,
Ci,d[n] = 1 is defined to represent task is dropped for the
i-th device while Ci,n[n] = 1 indicates task request is not
generated at the n-th time arrival. As a consequence, the
indicators for each of the four classes are represented as
follows:

Ci,d[n]+ Ci,n[n]+ Ci,m[n]+ Ci,s[n] = 1, n ∈ N . (3)

Toward increasing the speed of the decision for task exe-
cution process with competing resources like time, energy,
and capacity; task offloading decision from smart connected
devices to the edge servers is more challenging than the
scenarios where task is dropped or task is not generated
from any devices. In this model, edge computing servers are
positioned to execute task requests coming from multiple
smart connected devices where delay-sensitive task requests
are generated from all these types of devices. Once the task
request is received from users, devices make decisions for
computation execution in local or to offload remote servers
mainly in terms of delay, energy consumption, and edge
server capacity levels. Therefore, the execution models of
devices and edge servers are explained comprehensively in
the following two subsections.

A. CONNECTED DEVICE LOCAL EXECUTION MODEL
In the edge computing network supported by multiple
devices, each device is considered to run L bits task locally.
In the device execution model where we define Zl =
LXl , which denotes all central processing unit (CPU) cycles
required to complete the execution of the task on the smart
connected device, and Xl is the number of CPU cycles taken
to process one bit of data. By using these definitions, the delay
cost for local task execution of each smart connected device
is expressed as below:

Di,l[n] =
Zl∑
z=1

(
fi,z[n]

)−1
, (4)

where we define maximum computation capacity of the end
user in terms of CPU cycle frequency as f max

l , i.e., ∀z ∈
{1, 2, . . . ,L Xl} , f ni,z ≤ f

max
l , n ∈ N , i ∈ K.

Moreover, the energy consumption due to task computa-
tion in each connected smart device is calculated as stated in
[18] and [19]:

Ei,l[n] = κ
Z∑
z=1

(
fi,z[n]

)2
, (5)

where κ presents the effective switched capacitance [33].
Additionally, EH devices have a better capacity to carry

out computing activities, such as offloading to an edge server
for execution or performing computation locally in the edge
computing environment [34]. Therefore, in this study, the task
execution decision process is customized to the EH approach
to properly use renewable energy in smart connected devices.
We assume that the energy that arrives Ei,H [n] in each con-
nected smart device is uniformly distributed, with the highest
value of Emax

i,H satisfying 0 ≤ ei,l[n] ≤ Ei,H [n], where ei,l[n]
indicates the quantity of harvested energy.

B. EDGE TASK EXECUTION MODEL
Compared to the task execution ability of the local device, the
edge server has a greater computing capability and a more
consistent power supply than the local device. Therefore,
in this model, a generated task is analyzed to see if the task
might be offloaded to the edge server based on the duration
of the task execution and smart connected device energy con-
sumption with consideration of each edge server’s capacity
and channel conditions. When selecting the task execution
computationmode, we assume that each task is only allocated
to just one server. Accordingly, we define sni,j as a selection
indicator where sni,j ∈ {0, 1}. If the i-th smart connected
device chooses the j-th edge server for offloading the task
execution, the result is sni,j = 1. To cover all edge server
selection processes, the calculation is expressed as below:

M∑
j=1

sni,j = 1, n ∈ N , i ∈ K, j ∈M. (6)

In the proposed UAV-integrated system model, we apply
the Rician fading channel model for UAV-type smart con-
nected devices to adequately address line-of-sight (LoS) links
and scattering between UAVs and BSs and make the pro-
posed solution more realistic [31], [35]. On the other hand,
we exploit the commonly-adopted Nakagami-m distribution
model which is known to capture fading of radio propagation
and the fluctuations of various small-scale fading environ-
ments [36] to different types of smart connected devices
besides UAVs in the proposed system model.

To express the data rate in the time slot n, we adopt Shan-
non’s capacity calculation to our model as

R
(
hi,j[n],Pi[n]

)
= B log2

(
1+
|hi,j[n]|2Pi[n]

σ 2

)
, (7)

VOLUME 11, 2023 1327



B. Atan et al.: AI-Empowered Fast Task Execution Decision for Delay-Sensitive IoT Applications

where the transmit power of each smart connected device is
defined as Pi[n] with the maximum transmit power Pmax

i .
Also, in this equation, hi,j[n] represents the channel gain
between each smart connected device and edge server, B
shows the allocated bandwidth to each device, and σ 2 is
defined as noise power received at each edge server.

Additionally, in this edge task execution model, the task
computing capabilities of edge servers are limited in terms of
the connection capacity and required CPU cycles, which are
defined as Zs. To indicate the connection capacity of the edge
servers, each available bandwidth of the edge server is split
equally into N sub-bands and each device is assigned to one
sub-band with ω MHz bandwidth within the corresponding
time interval n. The corresponding limitation is evaluated as∑

i∈K
I
(
Ini
)
· sni,jZs ≤ f

max
s n, n ∈ N , j ∈M, (8)

where f max
s indicates the maximum amount of CPU cycle

frequency of each server and we define the indicator function
as I(·). To add, execution latency on each edge server is
ignored and the total delay equals to transmission latency of
each task request.

As a result, we calculate the cost of transmission delay
given below if the task is offloaded to the edge servers

Di,s[n] =
L

R
(
hi,j[n],Pi[n]

) . (9)

The energy consumption cost of each edge server is defined
by

Ei,s[n] = Pi[n]Di,s [n] = Pi,m[n]
L

R
(
hi,j[n],Pi[n]

) . (10)

It is worth noting that in this study, changes in the total battery
energy level of each smart connected device are taken into
consideration since they have an impact on the task execu-
tion process, which is mostly ignored in traditional mobile
network systems.

IV. INTELLIGENT TASK CLASSIFICATION FRAMEWORK
A significant number of tasks are generated by IoT devices
in which a variety of IoT applications offer latency-sensitive
features. Therefore, it is critical to effectively handle the task
execution process. In this paper, we focus on an AI-based
classification strategy that has great potential for expediting
task execution decisions, where ML approaches have a great
ability to quickly utilize the available resources as opposed to
traditional models. Thus, we present an intelligent fast task
classification framework consisting of training and testing
processes as shown in Figure 2.

In this section, we discuss how the number of tasks is gen-
erated in the IoT applications initially. After that, we explore
dataset generation and task classification strategy for the
proposed edge computing model. Then, we evaluate the edge
server selection process to complete end to end framework.

A. DATASET GENERATION
Optimizing cellular or IoT networks is challenging since the
number of configurable parameters has increased dramati-
cally over the years [37]. Data-driven ML algorithms are one
option to provide automated solutions for IoT services. When
the available data is large and multidimensional, ML or, more
particularly, deep learning (DL) algorithms can be used to
extract valuable features and classification of the data [16].
In this study, since multiple connected devices are assumed
to be existed in the network with time-sensitive applications,
various parameters play a role to determine offloading deci-
sions in conventional optimization approaches which might
lead to greater time delays. With the help of AI algorithms,
we could utilize the limited number of input parameters to be
used in the decision making process.

As illustrated in Figure 2, raw data which is considered as
the input of the training process is generated based on our
system model and using the Lyapunov Optimization based
Dynamic Computation (LODCO) algorithm [18]. The raw
data consists of a randomly generated number of samples
within a particular time period. The same raw data is pro-
cessed throughout the training and testing phases in order
to compare classification performances. In the feature selec-
tion step, four main system parameters are chosen which
are edge server capacity, packet execution deadline, energy
consumption, and channel condition. These are selected as
the main parameters to create a dataset to be processed by
learning algorithms. The values or ranges of these parameters
are defined in Table 1 which we take into account while cre-
ating the dataset. To add, these four parameters are randomly
distributed in each time slot to get a randomized dataset and
provide better prediction results from the learning process.

Furthermore, the first parameter of the system is the edge
server connection capacity denoted by 0nj , which refers to the
number of users connected to each server in the n-th time slot.
The second parameter is τi representing the execution dead-
line, where the task must be completed within the specified
time period for each user. To define the battery energy level
of each IoT device, we use βi, which is randomly distributed
for each user and used EH approach stated in System Model
section. The final parameter represented by hi,j[n] is the gain
in the wireless channel between each connected device and
edge servers where the channel is modeled as Rician for
UAVs and Nakagami for other users. Before the training
dataset is generated, we apply a sorting algorithm to classify
whether an active task request is received from users or not
which is defined as an ‘‘Active Request’’ (AC) comes from

TABLE 1. System parameters for task classification process.
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FIGURE 2. Task classification learning model framework for IoT applications in edge computing networks.

the user or ‘‘No Active Request’’ (NAC) comes from the
user in Figure 2. The sorting algorithm labels the task as
Class 4 (Ci,n[n]) at the n-th time slot if there is no request
sent by users.) Note that our dataset is divided where 50%
data points are used to train the multi-class ML algorithms
while the other half is used to test the performance of the algo-
rithms. Through this, we aim to identify effectively working
classifier.

B. CLASSIFICATION LEARNING STRATEGY
The effective implementation of massively heterogeneous
IoT networks relies heavily on network and resource man-
agement. In addition to resource allocation challenges,
task management decisions play a pivotal role in imple-
menting the heterogeneous IoT network environment [16].

Unlike traditional task management methods such as opti-
mization models, and heuristics-based methods, ML app-
roaches indicate the great potential for decision making
where ML knows how to learn the variations, classify the
conditions and forecast the results [38], [39].

In this study, we construct the ML model which includes
producing the training samples, selecting informative features
and classification of data. Once the model is trained, the test
dataset can be classified according to preset classes as Class 1,
Class 2, and Class 3 defined during training. We evaluate
that the multi-class learning model predictions outperform
the traditional optimizationmodel, LODCO. To provide com-
prehensive findings over the dataset, decision trees (DT),
ensemble learners (EL), k-Nearest Neighbors (kNN), support
vector machine (SVM) and neural networks (NN) such as
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FIGURE 3. Illustration of simulation environment of the proposed system
model where computation task is generated in each time slot and
assigned to the suitable edge server.

shallow NN (SNN) and deep neural network (DNN) type of
ML classifiers are compared, which are mainly used in the
literature [2], [37], [40].

As shown in Figure 2 (a), the training model, raw data
generated through LODCO algorithm is preprocessed before
obtaining the extracted dataset. After partitioning the dataset
as a training and test dataset we apply different kinds of
classification learners such as DT, kNN, SVM, NN predicts
class labels. After the execution of classification learners,
we compare the performance metrics of each which are
produced by confusion matrices. Then, the best classifier
is selected according to the accuracy, precision, recall, and
Macro F1 score results of the classifiers. Finally, the trained
model is tested by the test dataset to predict other execution
modes among local execution as Class 1, offloading execu-
tion as Class 2, and task dropping as Class 3 for each smart
connected IoT device where we share performance results
of classification learners in the performance evaluation
section.

In Figure 2 (b), we illustrate the end-to-end testing model
of our framework. The test dataset is similarly classified
based on the pre-defined classes in the training model. Addi-
tionally, if the user is labeled Class 2, which refers to edge
server execution mode, we apply the edge server selection
process to identify which server executes the regarding task
for the user. To accomplish the matching of the server, we use
the maximum value of channel gain as max{hi,j[n]}. In the
performance evaluation section, the highest results above
98% are obtained for this mapping. These scores show that
channel gain is the best fit for the edge server selection
process.

V. PERFORMANCE EVALUATION & RESULTS
In this section, we first describe evaluation metrics that
give better comparison results between ML models, such as
accuracy, precision, recall, and Macro F1 scores. Secondly,
a case study is provided to explain the simulation environ-
ment. Finally, simulation results are demonstrated in terms
of performance metric results of ML models, speed rate, and
training time consumption measures including comparison
with traditional techniques.

A. EVALUATION PROCESS
Based on the proposed system model and experimental
design, ML algorithms are evaluated using the following
performance indicators which are calculated by the confusion
matrix (CM). Accuracy (ACC) in classification is an impor-
tant parameter that indicates the classification success rate.
The model performs better if the classification accuracy is
higher. Therefore, in our evaluation, accuracy is one of the
key performance metrics to select the best classifier and is
described as

ACC =

∑
iKii∑
i,jKij

, (11)

where K ∈ R4×4 is the CM of a classifier obtained from the
test samples. The rows and columns of the matrix are denoted
as target and prediction, respectively.

Secondly, precision (PRE) and recall (RCL) indicators
are defined to collect more comparable information between
classifiers. It should be noted that if the dataset is unbalanced,
the ACC is insufficient to display with respect to performance
results. Thus, these metrics are critical to determining the
actual performance of the system. PRE and RCL are calcu-
lated respectively as

PREi =
Kii∑
iKij

, (12)

RCLi =
Kii∑
jKij

. (13)

Finally, the Macro F1 metric is described as below in terms
of PRE and RCL values by using the corresponding formula

Fi =
2× PREi × RCLi
PREi + RCLi

(14)

and then, Fmacro1 is generated as

Fmacro1 =
1
Nc

Nc∑
i=1

Fi, (15)

which is the main comparison metric for the evaluation
process.

B. CASE STUDY
In this section, we describe the simulation environment of
our study based on Figure 3. We assume K = 12 smart
connected IoT devices where two of them are UAVs and
M = 6 edge servers to execute L = 1000 bits task according
to the classification decision. As given in Table 1, each edge
server has 0nj = 5 connection capacity at each time slot.
The execution deadline differentiates for UAV type of users,
which is (τi ∈ [1, 5] ms) where tasks of other users must be
executed in (τi ∈ [5, 15] ms). The battery energy level, βi,
is between [2 × 10-5, 2 × 10-3] joule. To perform the simu-
lations, we set time slot as n = {2000} where the raw data is
generated by 144000 samples which is processed throughout
the training and testing phases, and the outcomes are shown
in Figure 4, Table 2 and Table 3. In addition, we expand the
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FIGURE 4. Comparison of learning methods for task classification in edge computing networks.

time frame as n = {1000, 2000, 4000} to demonstrate edge
server selection process simulation results across a broader
range as illustrated in Figure 5. Furthermore, we provide
user mobility where all users are uniformly distributed within
[10, 100] meters in each time slot n.

In classification, different versions of learningmodels such
as DT, EL, SVM, kNN, SNN, and DNN are used in this study.
The number of leaves is primarily considered in the functions
that control the depth of the trees in DT models where Fine
Tree, Medium Tree, Coarse Tree has maximum 100, 20,
4 number of splits to make many fine distinctions between
classes. In EL models, Bagged Tree uses Random forest
bag ensamble method while Boosted Tree uses Adaboost
for classification. Subspace Discriminant EL method creates
boundaries between classes to find linear combinations of
features. Besides, Bayesian Optimization (BO) approach is
used in Optimizable Tree and Optimizable Ensamble learn-
ing models since BO is one of the most useful non-convex
optimization frameworks for tuning hyperparameters and is
commonly preferred in literature for proper parameter selec-
tion [41], [42]. In addition, SVMmodels differ depending on
the kernel type and scale that linear, quadratic and Gaussian
based kernel functions are utilized to separate data points
of one class from other classes. Furthermore, the different
versions of kNN models are formed by the number of neigh-
bors and distance. In Fine kNN, the number of neighbors
is set to 1 whereas in Medium kNN neighbors is set to 10.
In Cosine kNN, Cosine distance metric is used for classi-
fication while Weighted kNN uses a distance weight, and
the number of neighbors are set to 10 for both. When it
comes to ANN models, SNN has a structure with a single
hidden layer. The number of neurons in this hidden layer
varies between 64, 128, and 256. For DNN, a three-layer
ANN structure is chosen and the number of neurons of the
layers is determined as {64,128,256}, {128, 256, 128}, and

{64, 128, 64}. For the activation function of SNN and DNN,
ReLU and LeakReLU(0.01) functions are separately used in
both ANN classifiers.

The training of ML models and speed tests are carried out
on a system with 16 GB RAM and a 2.6 GHz 6-core pro-
cessor. To ensure fairness in experimental findings, we run
the program 10 times and use average results. For each clas-
sification (k = 5)-fold cross-validation is used for comput-
ing the performance metrics. Additionally, a large variety of
hyper-parameters are also swept to illustrate parameter space
variation.

C. SIMULATION RESULTS
To validate the proposed system model and the intelligent
task classification framework, extensive simulations are per-
formed where different versions of DT, EL, SVM, kNN, SNN
and DNN are used as classifiers.

Figure 4 presents a broad statistical comparison of ML
models including specialized DT, kNN, SVMalgorithms, and
SNN and DNN algorithms in terms of accuracy, precision,
recall, and Macro F1 scores. It can be concluded from the
graph that most of the DT and EL methods have better
performance over SVM, kNN, SNN and DNN ML models.
When comparing the DT models, since the Fine Tree (FT)

TABLE 2. Speed and F1 score comparison of ML models for all types of
IoT devices.
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TABLE 3. Speed and F1 score comparison of ML models for UAV users.

has many leaves over the other tree models it has greater
performance. In EL models, Optimizable Ensemble (OE) has
the highest score due to using hyperparameter optimization
methods. It can be concluded from the graph that Optimizable
Ensemble (OE) and Fine Tree (FT) have a greater perfor-
mance over other learners where F1 score values are 99.37%
and 99.08%, respectively. SVM and kNN models, on the
other hand, have inferior performance results compared to
FT and OE where weighted kNN and fine Gaussian SVM are
performed better in their group by 94.52% and 90.01% F1
score values correspondingly. Besides, both linear, quadratic
or Gaussian based hyperplanes in SVM and Fine, Medium
and Cosine types of kNN learners do not perform effectively
for classification. When we compare DL methods, DNN has
promising results by providing statistical values around 95%
while each SNN model has moderate results around 90% in
all performance metrics. In the group of SNN, 256-layered
with ReLU function activated SNN gives better results in
F1 scores as 91.67% while 128-256-128 layered LReLU
function activated DNN has 91.67%.

In the proposed Intelligent Task Classification Framework,
we consider the highest scores of the performance metrics to
select the best fit for the classification over the heterogeneous
IoT environment including delay-sensitive applications. It is
worth noting that a close approximation to the traditional
LODCO optimization model, which is assumed as 100%
score, is crucial to reveal the success of the proposed frame-
work. Therefore, we select the best performed classifiers in
the group of DT, EL, SVM, kNN, SNN and DNN models
which are FT, OE, weighted kNN, fine Gaussian SVM, RelU
function activated 256-layered SNN and LRelU function acti-
vated 128-256-128 layered DNN.

Statistical and execution time comparison of chosen ML
models for all types of smart connected IoT devices is pre-
sented in Table 2 while Table 3 only provides the results
for UAV users. It can be obtained from these two tables,
all ML models have impressive speed rates across to the
traditional method LODCO. As shown in Table 2, LODCO
algorithm completes classification in around 275.2s while
FT achieves outstanding result with around 0.012s. Similarly,
it can be deduced from Table 3, all ML models can provide
classification results less than a second while FT is the best in
speed with a time of 0.015s. When we compare the F1 score
values, the OE is the first learning model and the FT is the
second model to select for the classification of IoT devices.
Although the rest of the models, such as kNN, SVM, SNN,

FIGURE 5. Example of edge server selection results for FT learning
method.

and DNN, are faster, they still fall far short of the DT F1
scores. It can be concluded that our framework provides us
to select the best fit classifier to achieve greater performance
results and is able to adapt multi-device environment and fast
to response latency sensitive applications such as in UAVs.

Furthermore, as testing process is carried out in accordance
with the chosen best fit classifier, greater statistical rates of
classifiers have a positive impact on the effectiveness of the
edge server selection process in our framework. Figure 5
presents the results of the edge server selection process using
the FT learning approach, which is utilized owing to its
higher speed and F1 scores. Once the edge server execution
mode is selected, maximum channel gain is used to pick
the correct server. It can be stated that our proposed system
achieves greater performance results in an end-to-endmanner
with an accuracy rate above 98% in edge server selection
even in smaller and larger datasets while taking into account
execution time delays.

VI. CONCLUSION
Thanks to smart connected devices and IoT applications,
users and things can connect to any service at any location.
From a user point of view, latency is one of the most crit-
ical parameters for using the applications effectively. The
proposed intelligent task classification framework appears
to be a promising method for implementing real-world IoT
devices in an edge network environment and accelerating the
task decision process, which is critical for latency-sensitive
IoT applications in edge computing networks. Furthermore,
our approach provides end to end edge server task execution
mechanism where a limited number of system parameters are
utilized to accomplish the results. Simulations show that the
proposed approach achieves computation offloading decision
to edge servers in a fast and accurate way by usingMLmodels
when it is compared to the conventional optimizationmethod.

As part of future work, it would be interesting to specialize
the environment not only for UAV type of users but also
for all types of IoT devices to demonstrate more realistic
deployments. Another extension would be have more users
and amassively connected device environment, and apply dif-
ferent learning mechanisms for offloading decisions by con-
sidering both edge and center cloud environment constraints.
Additionally, the mobility scenario would be enhanced and
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tailored for vehicles rather than considering the random dis-
tribution of each time slot as in this paper. Furthermore, the
energy gathering capabilities of the devices and their effects
on the edge computing environment might be focused on as
a next step.
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