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ABSTRACT Electric induction motors are the type of motor most commonly operated in industry, and
for this reason technologies that predict faults and reduce the corrective maintenance are of great interest.
In this context, this paper presents a predictive maintenance tool of electric motors using the concepts
of Digital Twin (DT) and Industrial Internet of Things (IIoT). The proposed system is innovative, as it
monitors the motor current and temperature by means of sensors and a low-cost acquisition module, and
these measurements are sent via Wi-Fi to a database. The concept of DT was leveraged by providing the
measurements as inputs to a high-fidelity strongly-coupled model of the monitored monitor, using the Finite
Element Method (FEM). The results obtained are satisfactory, because the sensors used presented acceptable
errors that do not interfere with the reliability of the results. The computer simulation showed relative errors
below 4% in the conductivity analysis and 10% in the temperature analysis. In addition, the simulation allows
verifying the internal temperature of the motor, its resistive losses, and the intensity of the magnetic flux at
each pole. It is worth pointing out that the internal analysis performed is only possible due to the combination
of IIoT and computer simulations. Therefore, they allow a better diagnosis of the motor’s operational status
and also a time estimate for the next maintenance service, thus being ideal for the industrial sector.

INDEX TERMS Condition monitoring, digital twin, finite element analysis, induction motors, Internet of
Things.

I. INTRODUCTION
Electric machines play a key role in modern society, espe-
cially in industrial operations. Used as the driving force
for pumps, fans, compressors, conveyor belts, electric vehi-
cles and other devices, electric machines are responsible for
consuming 50% of the total energy generated worldwide
[1], [2]. Among these machines, the induction motor is the
most widely used in industry [3].

The associate editor coordinating the review of this manuscript and
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Like any other electromechanical device, induction motors
are subjected to mechanical stress (e.g., vibration), thermal
(heat) and electromagnetic stresses during operation [4], [5].
In the absence of proper maintenance, the motor progres-
sively wears out and, eventually, a disruptive failure occurs.
Failures represent large financial and operational losses due
to unplanned corrective repairs and production downtime [6].
Therefore, great attention is paid to the maintenance of induc-
tion motors.

In recent years, the industry has been adopting the pre-
dictive maintenance approach, also called condition monitor-
ing. In this paradigm, shutdowns for manual inspection and
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repairs are performed with optimal periodicity, based on the
actual current state of the equipment [7], [8]. In this way,
outages are scarce when the equipment is in good working
condition, and become more frequent in the end of its life
cycle.

Predictive maintenance requires continuous monitoring of
the equipment with sensors, in order to estimate its actual
state [9]. In this context, the technology of monitoring sys-
tems has been positively affected by the emerging concepts
of Internet of Things (IoT) and Digital Twin (DT), both fun-
damental to Industry 4.0 [10]. IoT is based on the networking
of all objects [11]. When IoT is applied to industry, sensors
are themselves connected to the Internet and measurements
are sent to the cloud, from which they can be fetched and
displayed to maintenance personnel in a convenient way for
real-time remote monitoring. This application is called the
Industrial Internet of Things (IIoT) [12].

The IIoT is connecting the physical world of sensors,
devices and machines with the Internet, and by applying deep
analytics through software, is turning massive data into pow-
erful new insights and intelligence [13]. This advancement
emphasizes extremely low latency, high reliability, security
and privacy, and can handle large amounts of data. In addition,
the core of IIoT is to widely connect devices to perform
massive data collection and then use the algorithm models to
perform in-depth data analysis to achieve broader value [14].

Another concept commonly found in Industry 4.0 is DT,
which is the construction of a realistic computational model
(virtual replica) of the monitored device by means of analyt-
ical methods and tools [15]. High-fidelity virtual models are
usually achieved with Multiphysics numerical simulations,
such as the one performed in [16], in which a structural
coupling technique was used to model a power transformer
under stressful operating conditions. With a digital twin it
is possible, for example, to estimate the remaining device
lifetime and to evaluate its behavior under certain operating
conditions [17].

A Digital Twin is defined as a multi-physical, multi-scale,
probabilistic, ultra-fidelity simulation that reflects, in time
form, the state of the corresponding twin based on histor-
ical data, real-time sensor data, and physical model [18].
In this way, making it different from traditional simulations
because the data used for simulation of the physical system
is collected and recorded from the physical system space
via IoT. This definition meets the main characteristics of the
Digital Twin model to be demonstrated in this paper. The
main technologies of the DT concept can be summarized
into three categories, namely data related technologies, high
fidelity modeling technologies and model-based simulation
technologies [19], [20].

According to [21], data-related technologies are responsi-
ble for the process of data collection and transmission. They
employ a lot of sensors, meters, readers, cameras, scanners,
etc. However, the data that Digital Twins need is usually of
large volume, high speed and great variety, which is difficult
and expensive to transmit to the Digital Twin in the server

cloud. Thus, pre-processing methods for the collected data
are needed to reduce the network load and eliminate possible
data leakage. One of the ideal methods for data preprocessing
is edge computing [22].

Given this, DT can be leveraged to a large extent by IoT
if the real-time data produced is used as input to build the
Digital Twin model. The use of IoT and DT for monitoring
is promising because it allows predictive maintenance to be
applied to a variety of assets using fewer personnel, as well
as to provide more information about the device that cannot
be collected by sensors.

Applied to factories, this technology involves the collec-
tion and analysis of equipment data in real time, bringing
several benefits. The collected information is made available
to a user in a friendly way anywhere in the world through
dashboard visualization (dashboards) implemented in web
pages ormobile applications (for tablets/smartphones). Better
tracking of industry assets allows for more assertive decision
making, assistance in predictive maintenance of equipment
and production optimization [23], [24].

Given the potential gains of this tool, many works have
been published on induction motor monitoring [25], [26],
[27]. The workflow of IoT-based monitoring is to employ a
microcontroller to read the analog measurements collected
by sensors and, via a Wi-Fi module, to send the digitized
data to an IoT-cloud provider over the Internet [25], [26].
In addition, the authors of [27] have also developed algo-
rithms that estimate the operating state of the machine by
analysis of simple characteristics of the power supply current
waveforms. However, these works do not use finite element
analysis methods like the one proposed in this paper, which
would result in more realistic models.

Other recent works using DT and IoT for fault prediction
are [28] and [29]. At [28] introduces a system capable of
identifying combined faults of a rotating machine and pre-
dicting faults, in a non-invasive machine manner. This identi-
fication is done using different machine learning techniques
– namely support vector machines, k-nearest neighbors and
random forests – where they are compatible for classification
purposes. In the paper of [29], an IoT platform for real-time
monitoring and remote visualization of power substations is
proposed. In thework [30], neural networks are used byMAT-
LAB/Simulink software that monitors performance and per-
forms remote prognostics of electric motor health in real time
through the cloud, which is made the Digital Twin through
simulations using the finite element method. Furthermore,
a paper recently published by the authors in [1] proposes a
monitoring based on DT system that numerically models the
monitored motor using only input current measurements.

In this scenario, the main contribution of this work is
the use of the Finite Element Method (FEM) for the com-
putational development of a induction motor Digital Twin,
considering a strong numerical coupling thermo-magnetic
simulations [31]. Additionally, an IIoT system is used,
which provides motor’s parameters (current and tempera-
ture) as input data for the computer simulation. Moreover,
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improvements are also implemented in this work in order
to achieve more accuracy results, such as: additional moni-
tored variable (temperature), offering a better accuracy of the
virtual motor model developed in FEMM and, consequently,
a better analysis of the real motor conditions considered; val-
idation of the motor’s parameters mentioned above, aiming
to obtain more reliable measurement values for the proposed
system. In addition, new results were obtained such as the val-
idation of themotor current and temperature sensors, resistive
losses analysis in the stator and rotor, simulated temperature
analysis in the rotor and stator of the machine, and analysis
of the conductivity of the motor windings.

The methodology of this paper is described as follows:
Thermal and current sensors are used to measure the temper-
ature and input current of a motor, respectively. Connected to
the sensors is a microcontroller that samples and digitizes the
measurements. Next, a Wi-Fi sends the digital data to a cloud
platform, where it is stored in databases. The measurements
stored in the cloud are accessible on the Internet via a web
page. Furthermore, the measured data stored in the cloud are
used as inputs to a numerical Finite ElementModel simulated
in FEMM (Finite Element Method Magnetics) software [32]
to achieve a virtual replica of the motor according to the Dig-
ital Twin concept. The purposes of the numerical simulations
are to realistically reproduce the operation of the monitored
motor and to obtain extra information that is not collected by
sensors, allowing one to have a deeper understanding of the
monitored device condition in a non-invasive way.

II. THE MOTOR MONITORING AND ANALYSIS SYSTEM
In the context of this article, a DT application is designed to
perform the monitoring of industrial electrical equipment and
transmission of the measured data via the internet to users in
control of the industrial operation. The project described in
this document is hereafter calledMotorMonitoring andAnal-
ysis System (from Portuguese, Sistema de Monitorização e
Análise de Motores - SMAM).

Fig. 1 shows the architecture of the SMAM system which
comprises of four stages, namely the electrical machine being
monitored, current and temperature acquisition cloud storage
and post-processing of data through Finite Element Analysis
(FEA) and real-time graphs. In brief terms, there are sensors
connected to the motor continuously measuring the tempera-
ture on its frame and feed current.

An IoT microcontroller samples the sensor readings at
regular time intervals and sends the digitized data through
a Wi-Fi access point to a cloud platform. The sent data
are stored in a database in the cloud, and are accessible in
real-time through a web page for visualization and further
analysis by the end-user. This data is used as input for the
computer simulations.

A. INDUCTION MOTOR
In this project, a three-phase 1.1 kW induction motor (param-
eters in Table 1), connected in delta, is monitored. Its shaft
is connected to a Foucault brake (also called eddy current

FIGURE 1. The framework of the implemented monitoring system.

TABLE 1. Parameters of the induction motor.

brake), which acts as the mechanical load. The Foucault
brakes consist of an aluminum plate and current coils. The
coils’ DC current is varied through a potentiometer, hence
producing varying Foucault currents in the aluminum plate.
These eddy currents produce a magnetic field opposite to the
rotation of the motor axis [33], acting as a brake for the motor.
In section IV, the motor will be subjected to different loads by
varying the current on the Foucault coils.

B. CURRENT ACQUISITION
The motor supply current is monitored in one phase in the
IoT device, consisting of the following components: clamp
current sensor SCT-013, signal conditioning circuitry and
ESP32microcontroller. The SCT-013 is a non-invasive sensor
that measures AC currents up to 100 A. It is based on the
electromagnetic induction effect [33], where the magnetic
field of the phase current induces a proportional current in the
sensor clamp. The split-core current transformer is composed
of ferrite in the core and a dielectric strength of 1000 V
between the shell and the output, in addition to the nominal
input current range between 10% up to 120% and the sup-
portable operating temperature of -25◦C up to 70◦C [34].
The sensor signal passes through a passive circuit (Fig. 2a)

to be conditioned to a form suitable for being read by ESP32
accurately, spurious oscillations are filtered out and ampli-
fication is performed to levels within the controller’s range.
The conditioned signal is displayed on the ESP32’s analog
pins, digitized, and sent to the cloud via Wi-Fi. The ESP32
samples the current signal every second.
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FIGURE 2. Diagrams of the (a) current and (b) temperature signal
conditioning circuits. Nodes pointed by labeled balloons indicate the
points at which the voltage signal is sampled by ESP32’s analog pins.

FIGURE 3. Setup of the motor’s feed current and temperature
measurement by SMAM and reference equipment (Hioki, multimeter and
thermal camera).

A Hioki power quality analyzer was also installed to mea-
sure the supply current on the same phase monitored by the
ESP32. This is a class A commercial equipment according to
IEC 61000-4-30 [35]. The current from the analyzer is used as
reference data, that is compared with the measurements from
the proposed acquisition system for adjust and validation pur-
poses. The Hioki analyzer is configured to sample the current
signal every second. Fig. 3 shows the overall configuration
of the measurements with the induction motor and the two
current measurement systems (SCT-013 current sensor and
Hioki analyzer).

Before the SMAM is deployed, the SCT-013 sensor must
be calibrated in a preliminary round of measurements, using
readings from other equipment as a reference. In this arti-
cle, such equipment is the Hioki analyzer. The Hioki and
the SMAM are set to measure the motor supply current
on the same phase. By varying the current in the eddy coils,
the motor is subjected to four increasing loads, one at a time
and for fiveminutes each. Current data is recorded throughout
the experiment, including the load transitions. Fig. 4 illus-
trates the current signals measured by the two sensors during
the calibration phase.

The current samples recorded at the same time by Hioki
and SMAM are plotted against each other; the SMAM mea-
surements are associated with the horizontal axis. The result,

FIGURE 4. Preliminary calibration of SMAM’s current sensor. Feed current
measured by Hioki and by SMAM (before and after calibration).

FIGURE 5. Fitting of calibration function.

shown in Fig. 5, is an illustration of the relationship between
the readings from two sensors that capture the same event
(current in the same phase) over time. A linear function is
fitted to the points using the method of least squares. This is
a calibration function whose input is the raw current reading
from the TCS and the output is what the reference equipment
would read if it were measuring the same current at the exact
instant.

Once installed, the calibration function equation is imple-
mented in the ESP-32 software in order to correct the SMAM
current measurements in the implementation phase. The blue
curve in Fig. 4 shows the SMAM measurements corrected
with the fitted function from Fig. 5, and the close agreement
with the Hioki data is evidence of a successful calibration
procedure.

C. TEMPERATURE ACQUISITION
In addition to the supply current, the SMAM also monitors
the temperature on the motor case side. The sensor used is
an NTC (Negative Temperature Coefficient) thermistor. The
MF52 series NTC thermistor is coated with an etoxylin resin
and interconnected by a copper wire, where the rated power
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FIGURE 6. Temperature sensors and FLIR thermographic camera setup.

is close to 50 mW and a temperature range from −55 ◦C to
125 ◦C [36].
A known resistor is connected in series with the NTC to

form a voltage divider, as shown in Fig. 2b. The voltage
across the resistor is read by the ESP32’s analog pins. The
microcontroller code calculates the resistance of the NTC
using the ratio of the voltage divider circuit and calculates
the temperature from the resistance using the Steinhart-Hart
equation.

For validation, the temperature is also measured by a
thermocouple connected to a multimeter (Minipa model
ET2042E) and a thermal camera (FLIR T620). Fig. 6 shows
the temperature-related part of the measurement setup. The
thermocouple and NTC sensors are attached to the side of
the motor housing; care was taken to ensure that the sensors
always touch the motor surface for accurate readings. The
thermal camera is positioned at a distance of 1 meter from the
engine, and its image is focused on the insulating tape holding
the other sensors. The camera was set up with emissivity =
0.94, the same value for the insulating tape.

The temperature readings are recorded in different ways for
the three sensors. The SMAM continuously sends samples to
the cloud. The thermocouple measurement is recorded man-
ually and from the thermal camera a thermographic image is
captured, of which an example is shown in Fig. 7. Preliminary
measurements with all three devices revealed that no calibra-
tion of the NTC sensor was necessary.

D. COMMUNICATION WITH THE WEB SERVER AND DATA
STORAGE IN THE CLOUD
In this work, communications with the web server are
performed using the HTTPS (Hypertext Transfer Protocol

FIGURE 7. Example of thermal image captured by FLIR camera.

Secure) protocol since HTTPS has encrypted credentials,
such as: SSL (Secure Socket Layer) and TLS (Transport
Layer Security), they are responsible, in the whole process of
sending, for the security of data against espionage and tam-
pering [37]. Thus, this type of encryption was used for con-
nection between the server and the developed system, because
there is a concern with data security to avoid unwanted intru-
sions into the confidential information of the industry, thus
avoiding problems in the production system.

For the exchange of messages with the server was cho-
sen the JSON model, because its format is intended to be
a language of easy computational and human reading [38].
The web server defined was the Heroku Postgres cloud plat-
form, a free, online database service that internally uses
PostgreSQL database technology [39]. After sampling the
measurements collected by the temperature and current sen-
sors, the ESP32 microcontroller sends the digitized data to
Heroku Postgres by calling the HTTP POST method. The
data received by Heroku is accessible through a specific web
page, where the end user can monitor the measurements in
real time. The information is secure because only selected
users who have received the web page link can access the
data.

In addition to being able to view the stored measurements,
the end user can also schedule data retrieval for further anal-
ysis by issuing GET requests (an HTTP method) to Heroku.
After sampling the measurements collected by the temper-
ature and current sensors, the ESP32 microcontroller sends
the data viaWi-Fi following the IEEE 802.11 communication
protocol.

According to the manufacturer’s specifications [40], the
module supports a data rate of up to 150Mbps and 20 dBm of
output power at the internal antenna, has internal 32-bit (dual
core) processors operating at 240 MHz and analog-to-digital
converters. In addition, it features a 1 kHz sampling rate and
floating point operations of the MFLOPS (million floating
point operations per second) type [41]. Thus, being sufficient
for the desired communication in the SMAM project, elimi-
nating the need to attach an external antenna to transmit the
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information. This feature ensures a wide physical range for
data transmission.

The measurements made by the ESP32 are sent to Heroku
Postgres. The quality of the signal sent can be indicated
by the bit error rate (BER) which is based on the signal
strength [42]. In the transmission of information, between the
microcontroller and the Heroku server, this rate is low and is
proven by the successful calibration of the SMAM sensors
that is described in topic II-B.

III. FINITE ELEMENT FORMULATION FOR
THERMO-MAGNETIC COUPLED PROBLEMS
The Finite Element Method (FEM) is a numerical technique
used to obtain approximate solutions to boundary value prob-
lems in Engineering. The domain of analysis is discretized
into a finite number of small parts (called elements), and in
each of those elements an algeberaic approximation of the
governing equation is set up. The set of equations formed
in all elements form a global system of equations, which is
calculated to solve for the unknown field(s) throughout the
domain of analysis [43].

Before the global system of equations is calculated, bound-
ary conditions need to be imposed on the solution domain.
The two most important boundary conditions in FEM are the
Dirichlet and periodic.

A high-fidelity, FEM-based model of the induction motor
was built in this work using the FEMM (Finite Element
Method Magnetics) software, widely used in literature. The
inputs to FEMM are only the motor’s geometry and a few
easy-to-measure parameters such as phase current and tem-
perature on the motor frame, excluding the massive amounts
of data needed by deep learning based techniques proposed
in other works. In the preprocessing phase of the simulations,
FEMM solves four types of physics problems: magnetic,
electrostatic, heat flow and current flow. This artifice occurs
for solving Maxwell’s equations.

In this paper, the realistic operation of the induction motor
was simulated numerically, considering the strong coupling
(two-way interdependence) between thermal and magnetic
effects based on the work [44]. To process this simulation,
FEMM needed to solve equations regarding low frequency
electromagnetic models and Thermal Formulation described
in the subsection below.

A. LOW-FREQUENCY ELECTROMAGNETIC MODEL
A detailed mathematical model is given in [43] on the FEM
formulation and thus our focus will be on Maxwell’s equa-
tions in the form solved by software FEMM [45]. Two impor-
tant Maxwell’s equations are the Faraday-Lenz and Ampère
laws, which, in the low-frequency approximation, are respec-
tively written as [33]

∇ × E = −
∂B
∂t

(1)

and

∇ ×H = J = Jc + Jsrc, (2)

where E is the electric field vector, H the magnetic field,
B the magnetic flux density, Jc and Jsrc are the conduction
and imposed (by an external source) current densities, respec-
tively. The conduction current density is related to the electric
field according to Ohm’s law

Jc = σE. (3)

The magnetic constitutive relation is also of interest:

B = µ(B)H, (4)

where µ(B) is the medium’s magnetic permeability (function
of B for nonlinear materials). Due to its zero divergence (∇ ·
B = 0), B can be associated to a magnetic vector potential A
as follows:

B = ∇ × A. (5)

Substituting (5) into Faraday’s law yields:

∇ × E = −∇ ×
∂A
∂t
, (6)

which, in the case of 2-D problems, can be integrated to result
in

E = −
∂A
∂t
−∇V . (7)

In (7), the ∇V term is an additional voltage gradient that,
in 2-D problems, is constant over a conducting body. This
gradient is used by FEMM in harmonic problems to enforce
constraints on the current carried by conductive regions.
By substituting a convenient combination of equations (3),
(4), (5), (7) into (2), we obtain.

∇ ×

(
1

µ(B)
∇ × A

)
= −σ

∂A
∂t
− σ∇V + Jsrc. (8)

Equation (8) is solved in phasor form by software FEMM
for time-harmonic magnetic problems.

By dimensional analysis, each additive term at the
right-hand side of (8) is a form of current density. Defining
the first term as

Je = −σ
∂A
∂t
, (9)

One can interpret that, apart from the gradient term, there
are two types of electric currents involved in induction
motors: source current in the stator armature Jsrc and the
current induced Je by the rotatingmagnetic field. During sim-
ulations, the resistive losses (q) due to current flow through
the copper strands are calculated [46].

q =
1
σ
J2. (10)
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FIGURE 8. Algorithm for numerical simulations with strong
thermo-magnetic coupling.

B. THERMAL FORMULATION
The thermal formulation solves the problem of transient heat
conduction, governed by the equation [45]

ρ cp
dT
dt
−∇ · (k∇T ) = q, (11)

where ρ is the mass density, cp the specific heat capacity, k
the thermal conductivity and T temperature. Equation (11) is
solved by software FEMM by discretizing time with Euler’s
implicit discretization scheme. After calculating the tempera-
ture values at all the finite elements of the analysis domain by
numerically solving (11), software FEMM updates the values
of electric conductivity using the equation [46]

σ (T ) =
1

ρ0 (1+ β0)T
, (12)

where ρ0 is the electrical resistivity at 0◦C and β0 the rate of
variation of resistivity with temperature.

C. ALGORITHM FOR STRONG THERMO-MAGNETIC
COUPLING
The multiphysics coupling was obtained from the pyFEMM
package that allows simulations to be performed in FEMM
from the Python programming language. The code consists
of calculations that are performed iteratively over time, where
each iteration is composed of a magnetic simulation and
followed by a thermal simulation. Fig. 8 shows the block
diagram of the coupling algorithm used.

As illustrated in Fig. 8 the output of each simulation is
used as the input of the other to obtain a strong coupling,
this type of interaction is able to faithfully represent the
simulated physical phenomenon [47], [48]. At the beginning
of each iteration, the magnetic simulation is run, in which
equation (8) is solved numerically to calculate the potential

FIGURE 9. Code snippet (in Python) for calculating the stator conductivity
from the numerical data generated in FEMM simulations.

FIGURE 10. Code snippet (in Python) for modifying the parameters of
motor materials modeled in FEMM simulations.

of the magnetic vector A in all finite elements that form the
analysis region. In addition, the resistive losses in the copper
strands are calculated using equation (10).

Next, the thermal simulation is started where equation (11)
is solved numerically on all finite elements, using the resistive
losses calculated in the previous magnetic simulation as heat
sources. The electrical conductivities are updated at the new
temperatures according to (12). To do this, it is necessary to
state equations (11) and (12) in the code, in addition to the
geometric coordinates of each part of the stator and rotor.
In Fig. 9 the realization of this process in the developed
program is illustrated.

The calculated values are stored and reintroduced into
the magnetic simulation of the next step by means of the
repeat present in the code. The condition set in this repetition
updates the conductivity values with the mimodifymaterial
function as illustrated in Fig. 10. This process is repeated until
the simulated time period is complete.

D. POST-PROCESSING OF DATA USING FINITE ELEMENT
ANALYSIS (FEA)
As the main contribution of this work, the monitored equip-
ment is also numerically simulated using the measured tem-
perature and the the current as inputs. With the numerical
model, it is possible to obtain information that is not provided
by the sensors, for example resistive losses in the stator and
rotor, in order to better understand the state of the monitored
device. The idea is to accurately reproduce the current oper-
ating conditions of the motor with numerical models, which
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TABLE 2. Electric parameters of materials used in FEMM simulation.

allows a complete analysis of its behavior and condition
without the need to shut down the motor or install invasive
sensors.

The open source software FEMM (Finite Element Method
Magnetics) is used in simulations and the following data are
required as inputs: the geometric model, boundary condi-
tions, electromagnetic material parameters and supply cur-
rent. The Galerkin boundary condition (A=0) is used. The
electromagnetic parameters of the modeled motor parts are
listed in Table 2.

To perform the thermal-magnetic coupling using FEM, the
following data are required as input: total losses obtained
from the magnetic simulation in the thermal simulation,
the material according to its thermal properties obtained
from [31], convection boundary condition, also specifying the
thermal conductivity (W/m.K) and the ambient temperature.
The simulation feed-in current and ambient temperature are
based on the values measured by the corresponding sensors,
obtained from the database. Relatively the mesh used con-
tained 92294 triangular elements and 46426 nodes.

IV. RESULTS
A. MONITORING PHASE CURRENT AND TEMPERATURE
ON THE MOTOR FRAME AT DIFFERENT LOADS
The acquisition setup described in section II was employed
to monitor the feed current and temperature of the induction
motor. Notice that the measurements reported here took place
after SMAM’s current sensor was calibrated according to the
procedure of section II-B e II-C.

By varying the current of Foucault coils with the poten-
tiometer, the motor was subjected to four load levels succes-
sively, for five minutes each. In this study we will refer to
those loads as I, II, III and IV. At load I there is no current
into the Foucault coils, there is only the inertia of the Foucault
brakes. At loads II, III and IV the current into the Foucault
coils is 3 A, 3.5 A and 4 A, respectively.

The current data collected by Hioki and SMAM’s cal-
ibrated sensor are illustrated in Fig. 11. The initial peak,
as 20.33A measured by SMAM and 17.90A measured by
Hioki, is due to the direct on-line starting of the motor.
After that, the motor enters steady-state regime with small
jumps in current, considering five minutes apart from each
other, which correspond to the load levels being applied
successively.

FIGURE 11. Motor’s phase current at different load conditions,
as measured by Hioki and SMAM devices.

FIGURE 12. Simulated and measured values of temperature on the side
of the motor frame.

There is good agreement both in transient and steady-state
regimes, with the error of SMAM’s readings relative to Hioki
equal to 13.6% for the starting peak and 4.4% on average
during steady state. The relatively low errors for the current
measurements of SMAMdemonstrate that it is possible to use
low-cost sensors to leverage the benefits of IoT and DT on a
large scale, with little compromise of accuracy.

During the experiment, besides current, temperature on the
side of the motor casing was also monitored by SMAM, ther-
mocouple and thermal camera. After the motor has been run-
ning for five minutes under each load level, the temperature
readings of the thermocouple and thermal camera were man-
ually captured and compared to with the NTC values at that
same time instant. The strongly coupled thermo-magnetic
model of the induction motor was also simulated in FEMM
software to obtain simulated values of temperature.

Fig. 12 shows the simulated and measured temperatures on
the side of the motor casing. All values start close to 27◦C,
which was the room’s ambient temperature before measure-
ments began. It is observed for all sensors the pattern of rising
temperature as load levels increase, which is expected as the
higher motor current dissipates more heat. For all load levels
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FIGURE 13. Simulated magnetic flux density in the induction motor.

the temperature measured by the sensors are very close to
each other. The simulated values tended to be higher than the
measured ones, in part because the effect of heat exchange
with air was not taken into account in simulations.

The percentage errors of FEA temperatures relative to
SMAM’s readings are shown in bars. All relative errors are
less than 10%, indicating that simulations model thermal
aspects of the motor with high fidelity.

B. FINITE ELEMENT ANALYSIS OF TORQUE AND
RESISTIVE LOSSES OF THE INDUCTION MOTOR
The objective of using the finite element analysis is to make
a thorough diagnosis of the electromagnetic behavior of the
motor using a method that has no interference with the opera-
tion of the motor being analyzed. Using this method, it is able
to extract the resistive losses in the stator armature as well as
the torque via the Weighted Stress Tensor method [49].

This simulation is done considering the motor is operating
under different levels of load conditions. As input current to
the simulation, it is considered the steady state currents from
3A to 4A with an interval of 0.5A, as measured by SMAM.
Fig. 13 shows the distribution ofmagnetic flux density (MFD)
in the induction motor at load II (Fig. 12). As expected
by theory, MFD is more intense in the stator’s and rotor’s
ferromagnetic materials.

As mentioned before, torque results are obtained via the
Weighted Stress Tensor method in FEMM how explained
in the reference [49]. Fig. 14 shows the induction motor
torque profile while varying the rotor angle by steps of
5 degrees. It can be observed that there is a maximum torque
of 4.825N.m at 250 degrees and minimum value of 4.47N.m
at 95 degrees. The curve presents an expected pattern of
variation. Since the modelled motor has a cylindrical rotor
(Fig. 13), the air-gap permeance is somewhat constant with
rotation, causing the electromagnetic torque to oscillate by a
relatively small amount around an average value [49].

Next, the electrical losses in the motor windings were
analyzed as illustrated in Fig. 15. Considering that resistivity
is directly influenced by temperature as shown in equation
(12), it is expected that the resistive losses increase at each
load level. Furthermore, for each load level, the steady state

FIGURE 14. Simulated electromagnetic torque as a function of rotor angle
for the induction motor considered in this work.

FIGURE 15. Average resistive losses per slot at stator and rotor across
load levels.

current was simulated for a duration of 38 ms in order to
verify that the losses are constant during that period.

Having obtained the losses in the windings, they were
entered as input for thermal simulation, according to the
strong coupling shown in Fig. 8. In order to validate the
results, a FLIR thermographic camera (an infrared camera),
temperature sensors on the thermal acquisition model and
a thermocouple connected to a multimeter were used. The
FEA performed by the software resulted in the temperature
distribution illustrated in Fig. 16 for load level II. It is noticed
that the copper strands are the points with highest temperature
in both coils, as expected. An average temperature of 44◦C in
the motor is observed, which is in line with insulation class
(F) as specified by the manufacturer.

In addition, it is possible to observe in Fig. 17 the average
temperature graphs in the stator and rotor slots.

From this, it is noted that during the steady state time
interval for each load level, the average temperature in the
windings remains approximately constant. Furthermore, due
to not taking into account the cooling effect from the motor’s
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FIGURE 16. Temperature distribution (in Kelvin) in the motor.

FIGURE 17. Average temperature in stator slot and rotor slot.

FIGURE 18. Electrical conductivity in the windings of the stator and rotor.

ventilator, the simulated temperature is above that measured
by the sensors and infrared camera. This has greater impor-
tance as winding can reach temperatures harmful to insulation
and decrease its service life [50].

Moreover, in view of the temperature obtained by the
model, it is possible to calculate the conductivity of the

FIGURE 19. Algorithm for numerical simulations with strong
thermo-magnetic coupling.

windings of the stator and rotor from (12). The results are
presented in the graphs in Fig. 18.

In the graphs, it is observed that the conductivity values
have variations for each current load level. In this case it
is expected that there should be a reduction of the con-
ductivity with the increase in temperature. This is further
affirmed by [50], which proposed a design optimization
of an axial-field eddy-current magnetic coupling based on
magneto-thermal analytical model. As observed in Fig. 19,
there is excellent agreement between the stator simulated
conductivity and proposed by [50], with relative errors less
than 4%, thus validating the results.

V. FINAL REMARKS
This paper deals with an application of the Industrial Internet
of Things (IIoT) and computer simulations as tools for Digital
Twin, with the aim of enabling a more detailed analysis
of the induction motor. For this purpose, an IoT module is
developed with sensors for measuring the motor’s current and
temperature. The measurements are entered into the FEMM
software where strong coupled thermo-magnetic finite ele-
ment analysis (FEA) is performed in order to enable the
operator to understand the thermo-magnetic behavior of the
motor in a non-invasive way, providing useful information for
important tasks such as predicting potential failures.

The proposed system was used on an induction motor
in a controlled environment. Commercial sensors were also
installed to measure the same variables for comparison pur-
poses. The motor’s phase current and temperature in steady
state measured by our system agreed very well with the
readings of the commercial sensors, with relative errors less
than 10%.

The measured current was entered as input to the FEA
model. The temperature at the same point probed by sensors
was calculated in the simulation; values were closely related
to measurements (maximum error of 9.5%). Simulations also
analyzed the temperature distribution, torque profile, resistive
losses and stator copper conductivity, which are parameters
very descriptive of the motor’s operational state and that are
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hard to measure, justifying the use of the DT concept. Those
results presented behavior according to theory and similar to
findings in literature, further validating the numerical model
developed.

Therefore, the system presents a tool that can contribute
to the predictive state monitoring of induction motors, since
it presents consistent results in the permanent regime. Fur-
thermore, the advance knowledge is very beneficial for the
industry, as the motor is only stopped when needed for main-
tenance, reducing costs.
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