
IEEE RELIABILITY SOCIETY SECTION

Received 12 October 2022, accepted 13 December 2022, date of publication 21 December 2022, date of current version 9 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3231456

Improving Cross-Project Software Defect
Prediction Method Through Transformation and
Feature Selection Approach
YAHAYA ZAKARIYAU BALA 1,3, PATHIAH ABDUL SAMAT 1,
KHAIRONI YATIM SHARIF 1, AND NORIDAYU MANSHOR2
1Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang
43400, Malaysia
2Department of Computer System, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
3Department of Computer Science, Federal University of Kashere, Gombe 771103, Nigeria

Corresponding author: Pathiah Abdul Samat (pathiah@upm.edu.my)

This work was supported in part by University Putra Malaysia, and in part by Tedfund Nigeria.

ABSTRACT In the traditional software defect prediction methodology, the historical record (dataset) of
the same project is partitioned into training and testing data. In a practical situation where the project to
be predicted is new, traditional software defect prediction cannot be employed. An alternative method is
cross-project defect prediction, where the historical record of one project (source) is used to predict the
defect status of another project (target). The cross-project defect prediction method solves the limitations
of the historical records in the traditional software defect prediction method. However, the performance of
cross-project defect prediction is relatively low because of the distribution differences between the source
and target projects. Furthermore, the software defect dataset used for cross-project defect prediction is
characterized by high-dimensional features, some of which are irrelevant and contribute to low performance.
To resolve these two issues, this study proposes a transformation and feature selection approach to reduce
the distribution difference and high-dimensional features in cross-project defect prediction. A comparative
experiment was conducted on publicly available datasets from the AEEEM. Analysis of the results obtained
shows that the proposed approach in conjugation with random forest as the classification model outper-
formed the other four state-of-the-art cross-project defect prediction methods based on the commonly used
performance evaluation metric F1_score.

INDEX TERMS Cross-project, feature selection, software defect, transformation.

LIST OF ABBREVIATIONS
AUC Area Under Receiver Operating Characteris-

tics Curve.
CKSDL Cost-sensitive Semi-supervised Dictionary

Learning.
CPDP Cross-Project Defect Prediction.
CTDP Collective Transfer Learning Defect Predic-

tion.
DBSCAN Density-Based Spatial Clustering of Appli-

cations.
DPC Density Peaks Clustering.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Ali Babar .

EM Expectation-Maximization.
EMD Earth Mover Distance.
FCR Feature Class Relevance.
Fr Feature Relevance.
FRV Feature Relevance Vector.
FS Feature Selection.
FV Feature Vector.
GA Genetic Algorithm.
GIS Genetic Instance Selection.
HYDRA Hybrid Model Reconstruction Approach.
KNN K-Nearest Neighbor.
LDF Local Density of Features.
LR Logistic Regression.

2318
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0640-552X
https://orcid.org/0000-0001-8915-7554
https://orcid.org/0000-0003-3894-1773
https://orcid.org/0000-0001-9696-3626


Y. Z. Bala et al.: Improving Cross-Project Software Defect Prediction Method Through Transformation and FS Approach

MCW Multiple Components Weight.
MFTCPDP Manifold Feature Transformation Cross-

Project Defect Prediction.
NASA National Aeronautics and SpaceAdministra-

tion.
NB Naïve Bayes.
NN Neural Network.
RF Random Forest.
S Source Project.
SDP Software Defect Prediction.
SFD Similarities of Features Density.
SF Selected Features.
SMET Source Mean Transformation.
SMOT Source Mode Transformation.
St Transformed Source.
Sr Reduced Source.
SVM Support Vector Machine.
T Target Project.
TCA+ Transfer Component Analysis plus.
TDS Training Data Selection.
TFSCPDP Transformation and Feature Selection

Cross-Project Defect Prediction.
Tr Reduced Target.
UMR Unified Metric Representation.
WPDP Within Project Defect Prediction.

I. INTRODUCTION
Currently, there is a significant increase in software complex-
ity [1]. An increase in the size and complexity of the system
over time has led to an increase in the demand for efficient
methods that can minimize cost and maximize the quality
of the software product. In response, testing activities are
conducted to verify the correctness of the system’s operation
through its execution. Defects can be identified by testing.
The early identification of defects in the development process
can help reduce the cost of maintenance [2]. However, the
cost of software testing is almost half of the development
cost [3]. Consequently, in a situation where resources are lim-
ited, managing the available limited resources is paramount.

A software defect prediction (SDP)model can be applied to
detect the most defect-prone component of a software system
prior to testing activities, thereby reducing the number of
resources required to test every module of the software sys-
tem [4], [5], [6], [7], [8]. Thus, maintainable and high-quality
software can be produced, despite the low budget.

The effectiveness of the SDP model depends on the accu-
racy of the training set. The training set is normally extracted
from previous records of the same project. However, in prac-
tice, for new projects or companies that lack local defect
data repositories because of the cost of maintaining such
repositories, it will be very difficult to apply SDP [9], [10].

An alternative to the traditional SDP is cross-project defect
prediction (CPDP), in which the historical data of one project
(source) available in repositories are used to predict defects
in another project under development (target) [11], [12], [13].

The CPDP resolves the issue of limited data in traditional
SDP. However, the predictive performance of CPDP is below
the applicability level because of the distribution discrepancy
between the source and target projects [1], [14]. Another
factor affecting the performance of CPDP is the issue of high-
dimensional features in both the source and target project
(dataset), some of which are outliers and irrelevant [15].
Therefore, reducing these two issues has become a focus of
CPDP research.

Researchers have proposed various approaches to improve
the performance of CPDP. This includes the Burak-instance
filtering technique proposed by Turhan et al. [9], the Peters
instance filtering technique proposed by Peters et al. [16],
instance weighting proposed by Ma et al. [17], a combination
of multiple models proposed by Xia et al. [18], the collabo-
rative filtering method proposed by Sun et al. [19], transfer
component analysis (TCA+) proposed by Nam et al. [20],
cost-sensitive semi-supervised dictionary learning (CKSDL)
proposed by Wu et al. [21], heterogeneous CPDP using the
dictionary learning method proposed by Li et al. [22], multi-
source CPDP proposed by Bai et al. [23], and Zhao et al. [24],
CPDP based on domain adaptation proposed by Jin [25], and
the landmark-selection-based kernelized discriminant sub-
space alignment (LSKDSA) method for CPDP proposed by
Li et al. [26].

Analyses of the methods above revealed that methods
developed based on feature transformation improved the pre-
dictive performance of the CPDP technique better than the
others. However, improvements in the predictive performance
of CPDP remain open. We propose a cross-project defect
prediction based on transformation and feature selection tech-
nique called TFSCPDP. The basic idea behind TFSCPDP is to
improve the predictive performance of the CPDP by reducing
the issues of distribution differences and high-dimensional
features.

Experiment was conducted on the AEEEM datasets to
ascertain the effectiveness of the TFSCPDP using the com-
monly used evaluation metric F-measure. The TFSCPDP
outperformed the benchmark approaches based on the exper-
imental results.

The paper is structured as follows: the existing approaches
in the area of cross-project defect prediction are briefly
described in Section 2; in Section 3, the proposed trans-
formation and feature selection approaches are introduced;
Section 4 describes the experimental procedures adopted in
the study, which include the performance evaluation metrics,
datasets, and result analysis; and Section 5 presents the con-
clusion and future work.

II. RELATED WORKS
A. CROSS-PROJECT DEFECT PREDICTION
A feasibility study on the CPDP technique was conducted
by Briand et al. [27] using a model trained on the his-
torical data of one java project and predicted defects in
another java project developed in the same environment.

VOLUME 11, 2023 2319



Y. Z. Bala et al.: Improving Cross-Project Software Defect Prediction Method Through Transformation and FS Approach

Zimmermann et al. [10] conducted a large-scale experiment
on CPDP. Their results showed that only 3.4% was suc-
cessful because of the data distribution discrepancy between
the source and target projects. This triggered a series of
research projects on improving the predictive performance of
the CPDP technique.

Some studies have used a similarity measure to choose
suitable training data for the CPDP. He et al. [28] and Her-
bold [29] computed statistical indicators of the features of
source projects and constructed a new distribution vector.
A similarity measure was used to select the most similar
source project for the target project and used as training data
for the CPDP. Turhan et al. [9] proposed a Burak filtering
method in which k instances in source project that are most
similar to the instances in the target project are selected and
used as training data for CPDP. Peters et al. [16] proposed an
improvement in the Burak filter method in which a clustering
algorithm was used to select training data from instances in
a source project. Yuan et al. [30] proposed an approach that
has two phases; phase1: features from both the source and
target projects are clustered using the density peaks clustering
(DPC) technique. Phase2: features in the cluster are selected
based on three ranking methods: local density of features
(LDF), similarities of features (SFD), and feature class rel-
evance (FCR). The selected features were then used as the
training dataset for the CPDP.

Some studies have developed semi-supervised cross-
project defect prediction methods. Wu et al. [31] proposed
a novel approach to reduce the gap between source and
target projects. In this approach, intermediate features from
the original datasets are extracted and irrelevant instances
from the source dataset are illuminated using an autoencoder.
Xu et al. [32] proposed a novel approach in which semantic
features are pulled directly from the source code instead of
using the label of the software defect dataset. A CPDP model
was built using the extracted source code for cross-project
defect prediction.

Currently, studies have focused on developing the CPDP
method using multiple source projects. Poon et al. [33] pro-
posed a credibility-based naïve Bayes model in which a
reweighting technique was used to reduce the distributional
difference between source and target projects. Wen et al. [34]
proposed an approach in which four different techniques were
used for source selection (mean-log, median-log, median-
score, and std-log) and feature selection techniques such
as relief, correlation, oneR, InfoGain, and Gain Ratio.
Ren et al. [35] proposed a multisource CPDP model based
on the dissimilarity space. In this approach, cluster centers
are automatically selected from the target project to form
a prototype set. To form a dissimilarity space, the dissim-
ilarity between the source, target, and prototype is calcu-
lated using the arccosine method. The earth mover distance
(EMD) was used to compute the cost of transforming the data
distribution of both training and testing data to be similar.
Source projects with low costs were chosen as the train-
ing datasets. TrAdaBoost was used as the prediction model.

Chen et al. [36] proposed a novel approach called collective
transfer learning defect prediction (CTDP). This approach
consists of two phases. In the first phase, TCA+ was used to
expand the training datasets using four different normaliza-
tion techniques. Source projects with low costs were chosen
as the training datasets. The best classifier was built using
expanded training data. In the second phase, the particle
swamp optimization algorithm was used to form an ensemble
classifier by allocating adaptive weights to each base clas-
sifier. Xing et al. [37] proposed an approach in which the
distribution difference in the CPDP was reduced by filtering
both the source and target projects using correlation-based
feature selection with a greedy best-first search algorithm.
Ni et al. [38] proposed a novel search-based approach for
source data selection, called genetic instance selection (GIS),
in which appropriate training datasets were identified based
on the fitness F-measure and G-measure output using the
KNN filter technique. Liu et al. [39] proposed an approach
known as two-phase transfer learning for CPDP. In the first
phase, a component called source project estimator (SPE)
used two regression models to select the appropriate source
project. In the next phase, the two selected projects, conju-
gated with TCA+, were used to build two prediction models.
Finally, the consolidated results obtained from the two pre-
diction models were considered.

B. TRANSFORMATION
Transformation in the context of CPDP is the process by
which the source and target project are mapped from original
feature space to the common feature space [1].

Some studies have focus on reducing the data distribution
differences problem in CPDP through feature transformation
and migration. Nam et al. [20] proposed transfer component
analysis plus TCA+method based on feature transformation
and migration, in which the TCA was improved by adding
normalization (data pre-processing technique). After normal-
ization of the data, TCA+ maps the datasets of both the
source and target projects into the latent space where the dis-
tribution discrepancy is minimized. Ma et al. [17] proposed a
method in which instance weighting and transfer learning are
used to predict the distribution of a target project in order to
improve the predictive performance of CPDP. Zhao et al. [1]
proposed amethod based onmanifold feature transformation.
The source and target were transformed into manifold space
to reduce the difference in the data distribution. Finally, the
NB classifier was trained on the transformed source project.
Ni et al. [38] proposed a CPDP method in which features
with high distribution similarity between the source and target
projects are selected using cluster algorithm. Fan et al. [40]
proposed a method in which instances from source project
were extracted and transformed into training data with high
correlation with the target data.

An analysis of the methods above revealed that the feature
transformation method can effectively improve the predic-
tive performance of the CPDP. However, only a few studies
considered the problem of high dimensions in the dataset

2320 VOLUME 11, 2023



Y. Z. Bala et al.: Improving Cross-Project Software Defect Prediction Method Through Transformation and FS Approach

FIGURE 1. Framework for TFSCPDP.

used for CPDP. Therefore, we propose a cross-project defect
prediction method based on the transformation and feature
selection approach TFSCPDP.

III. PROPOSED APPROACH
In this section, the framework for our approach is described,
followed by transformation and the feature selection algo-
rithm and finally the CPDP model construction algorithm.

A. PROPOSED APPROACH FRAMEWORK
As shown in Figure 1. The inputs are the source (S) and
the target project (T). First, a new source project (St) is
obtained after transformation. Second, St and T pass through
the feature selection process. Third, the classifier is trained
on a reduced-source project (Sr). Finally, the trained model is
used to predict the label of the reduced target project (Tr), and
the result is then compared with the real label (performance
analysis).

B. PROPOSED TRANSFORMATION APPROACH
Let’s define the source and the target project as S =

{(F (s)
j )

m

j=1
, y(s)} and the target project dataset T = {(F (t)

j )}
m

j=1

where F (s)
j and F (t)

j εR
mx1 are the feature vectors with Sn

and Tn instances respectively which represent the analysis of
source code of software programmodule. y(s) is a label which
denotes the defect-proneness of a module. y(s)ε{0, 1} where
y(s) = 0 and y(s) = 1 denotes defective and non-defective
module respectively. Assuming that, both the source and the
target are homogeneous (have the same metric sets). In cross
project settings, the distance between the distributional char-
acteristic of features of the source and the target project
d
(
F (s)j ,F (t)j

)
= |F (s)j ,F (t)

j | is large. Where d() denotes
a Euclidean distance. Therefore, the goal of this approach
is to minimize d

(
F (s)j ,F (t)j

)
. let’s the source feature F (s)

j

contains instances x(s)1,j, x
(s)
2,j, x

(s)
3,j . . . x

(s)
sn,m and corresponding

target feature F (t)
j contains instances x(t)1,j, x

(t)
2,j, x

(t)
3,j . . . x

(t)
tn,m

from i = 1 to Sn, Tn and j = 1 to m, then the Source Mean
Transformation (SMET) is given by Eq.(1).

SMET =
(x(s)i,j ∗ F̂

(t)
j )

F̂ (s)
j

(1)

Source Mode Transformation (SMOT) is given by Eq. (2).

SMOT =
(x(s)i,j ∗ F̃

(t)
j )

F̃ (s)
j

(2)

where F̂ (s)
j and F̂ (t)

j are the mean of each feature in S and T
calculated using Eq. (3) and (4) respectively.

F̂ (s)
j =

1
sn

∑sn

i=1
x(s)i,j (3)

F̂ (t)
j =

1
tn

∑tn

i=1
x(t)i,j (4)

F̃ (s)
j and F̃ (t)

j represent the mode of each feature in S and T
calculated using Eq. (5) and (6) respectively

˜F (s)
j = max(x(s)1,j, x

(s)
2,j, x

(s)
3,j . . . x

(s)
sn,m) (5)

and
˜F (t)
j = max(x(t)1,j, x

(t)
2,j, x

(t)
3,j . . . x

(t)
tn,m) (6)

Transformed source project (St) is given by Eq. (7)

St = {(F (St)
j )

m

j=1
, y(s) (7)

Whare F (St)
j represents the arithmetic mean of SMET and

SMOT calculated using Eq. (8)

F (St)
j = 1/2(

(
x(s)i,j ∗ F̂

(t)
j

)
F̂ (s)j

+

(
x(s)i,j ∗

˜F (t)j

)
˜F (s)j

) (8)

C. PROPOSED FEATURE SELECTION APPROACH
The characteristics of software modules are reflected in the
software features [41]. However, some software contains
many features some of which are irrelevant and contribute
in decreasing the prediction performance of software defect
prediction model especially CPDP. Therefore, introducing
feature selection technique to select more relevant features
can improve the predictive performance of software defect
prediction model [42], [43], [44].

IV. DESCRIPTION OF DATASETS AND EVALUATION
METRICS
A. DATASETS
The AEEEM datasets are some of the open-source datasets
commonly used in SDP studies [1]. We can observe
from Table 1 that AEEEM contains five software projects
(datasets) with 61 features each.

B. EVALUATION METRICS
Three evaluation metrics or measurements were used to eval-
uate the proposed approach: recall, precision, and F1_score.
F1_score is a common evaluation metric used in software
defect prediction studies [34]. This is the harmonic represen-
tation of precision and recall, calculated using Eq. (9).

F1_score =
(2 ∗ recall ∗ precision)
recall + precision

(9)

VOLUME 11, 2023 2321



Y. Z. Bala et al.: Improving Cross-Project Software Defect Prediction Method Through Transformation and FS Approach

Algorithm of Proposed Feature Selection Approach
Input: St-Transformed Source project

T-Target project
N-Number of features to be selected

Output: Sr
Tr

1: compute the mean of each feature F (s)
j of S for j=1 to m

and mark it as Fr (feature representative)

Frsj =
∑sn

i=1
x(s)1,j

2: store each Fr in a feature vector (FV)
FV = {F sr1,F

s
r2, . . .F

s
rm}

3: compute the arithmetic mean FVmean of FV

FVmean = 1/m
∑m

j=1
F (s)
rj

4: compute the standard deviation FV std for FV

FV std =

√∑
(F srj − FVmean)(2)

m− 1

5: for each featureF (s)
j , compute the Feature RankingValue

(FRV)

FRV j = (3 ∗ FV std )− abs(F
s
r1 − FVmean)

6: set the values of FRV j in descending order
7: select the top Nth FRV along with their corresponding
features and mark it as Selected Features (SF)
8: select the common features between the SF and St and
SF and T and mark the resulting datasets as Sr and Tr
respectively
Return Sr, Tr

TABLE 1. Datasets.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
In this subsection, the parameter settings are described.
For the proposed feature selection approach, we set N =
12. Four state-of-the-art approaches, manifold feature trans-
formation cross-project defect prediction MFTCPDP [1],
multi-source cross-project defect prediction MSCPDP [24],
kernel twin support vector machines with domain adapta-
tion DA-KTSVM [25], and two-phase feature importance

FIGURE 2. Relevant features in EQ data.

amplification TFIA-CPDP [37], were employed to verify
the effectiveness of the proposed approach. Four classifiers
commonly used in SDP studies, namely, KNN, SVM, RF,
and LR, were adopted in this study [45], [46], [47]. Table 4
presents the results for different machine learners in terms
of the F1-score. As shown in Table 4, the highest average
F1_score was obtained by RF followed by SVM, which
was used for the analysis of our proposed approach. All
experiments in this study were implemented using Python.
In addition, all methods were evaluated using the samemetric
F1_score on the same dataset, AEEEM, for a fair comparison.
Experiments were performed on a PC with the following
properties:Windows 10, 64-bit, Intel(R) Core (TM) i7-4600U
CPU:2.70 GHz, RAM:8G.

B. PREDICTIVE PERFORMANCE OF TFSCPDP BASED ON
DIFFERENT VALUES OF PARAMETER N (NUMBER OF
SELECTED FEAUTRES)
In this subsection, a comparative study of TFSCPDP based
on different values of the parameter N using RF and SVM
learners is presented.

1) PREDICTIVE PERFORMANCE OF TFSCPDP BASED ON
DIFFERENT VALUES OF PARAMETER N USING RF LEARNER
ON AEEEM DATASET
We analyzed the predictive performance of TFSCPDP based
on the value of parameter N using RF on AEEEM, as shown
in Table 2. TFSCPDP’s best performance was obtained with
a value of N = 12, considering the number of times it
won on individual data (indicated in bold) and the overall
F1_score average. Therefore, we can deduce that the best per-
formance of TFSCPDP can be obtained by selecting twelve
(12) relevant features using RF as a classifier on the AEEEM,
as shown in Table 2.

2) PREDICTIVE PERFORMANCE OF TFSCPDP BASED ON
DIFFERENT VALUES OF PARAMETER N USING SVM LEARNER
ON AEEEM
Secondly, we analyzed the performance of TFSCPDP based
on the value of parameter N using SVM on the AEEEM

2322 VOLUME 11, 2023



Y. Z. Bala et al.: Improving Cross-Project Software Defect Prediction Method Through Transformation and FS Approach

FIGURE 3. Relevant features in JDT data.

FIGURE 4. Relevant features in ML data.

FIGURE 5. Relevant features in PDE data.

dataset, as shown in Table 3, the best performance of
TFSCPDP was obtained with a value of N = 18 consid-
ering the number of times it won on individual data (indi-
cated in bold) and the overall F1_score average on both the
datasets. Therefore, we can deduce that the best performance
of TFSCPDP can be obtained by selecting eighteen (18) rele-
vant features using SVM as a classifier on AEEEM datasets.

C. PREDICTIVE PERFORMANCE OF THE PROPOSED
TFSCPDP USING DIFFERENT LEARNERS ON AEEEM
DATASETS
To verify whether the predictive performance of TFSCPDP
can be further improved using suitable learners, we inves-

TABLE 2. Predictive perfromance of TFSCPDP based on different values
of parameter N using RF on AEEEM dataset.

tigated the performance of TSFCPDP using different learn-
ers (KNN, SVM, RF, and LR) on AEEEM datasets using
F1_score as the evaluation metric. For this experiment, the
value of parameter N was set to (N = 12), and for KNN, the
value of K was set to (K = 3) [23]. As shown in Table 4,
TFSCPDP with RF achieved the highest F1_score (mean of
0.80), followed by SVM with an F1_score (mean of 0.79) on
the AEEEM dataset. These results indicate that RF and SVM
are the best learners for SDP. This conforms with the findings
of Alsawalqah et al. [45] and Elish and Elish [46] on RF and
SVM, respectively.

D. RELEVANT FEATURES SELECTED BY PROPOSED
TSFCPDP
We demonstrated the relevant features selected by our pro-
posed TFSCPDP during the feature selection process. Fig. 2,
3, 4, and 5 present the relevance of the features. This analysis

VOLUME 11, 2023 2323



Y. Z. Bala et al.: Improving Cross-Project Software Defect Prediction Method Through Transformation and FS Approach

TABLE 3. Predictive perfromance of TFSCPDP based on different values
of parameter N using SVM on AEEEM dataset.

indicated that the selected features have a high tendency to
describe software defects.

E. COMPARISON OF TFSCPDP WITH OTHER
APPROACHES FROM THE LITERATURE
Finally, the performance of the TFSCPDPwas comparedwith
that of four state-of-the-art CPDP methods. MFTCPDP was
proposed by Zhao et al. [1],MSCPDP by Zhao et al. [24], and
DA-KTSVMby Jin Cong. [25] and the TFIA-CPDP proposed
by Xing et al. [37].

The experiment was conducted on the AEEEM datasets,
and the following results were obtained: Table 5 presents the
performance comparison between the four current state-of-
the-art CPDPmethods on the AEEEMdatasets. The proposed
TFSCPDP achieved the highest F1_score with (a mean of
0.80) and we can also observe that the proposed TFSCPDP
outperforms the other approaches in many individual datasets
(indicated in bold). Furthermore, we can also observe that

TABLE 4. Comparison of the proposed TFSCPDP using different learners
on AEEEM dataset in terms of F1_score.

the proposed TFSCPDP outperforms other methods across
various combinations and on average scale as well.

1) STATISTICAL VALIDATION
To validate our proposed approach, the Wilcoxon rank
sum test, a non-parametric statistical tool commonly used
in SDP [14], [17], [38], was used to measure the signif-
icant difference between the proposed approach and the
four current state-of-the-art CPDP methods at the 5% sig-
nificance level. Four groups of Wilcoxon rank-sum tests
were constructed: TFSCPDP and MFTCPDP, TFSCPDP and
MSCPDP, TFSCPDP and DA-KTSVM, and TFSCPDP and
TFIA-CPDP, denoted as TSF&MF, TSF&MS, TSF&DA,
and TSF&TF, respectively. Statistical p-values obtained were
0.02 for TSF&MF, 0.00 for TSF&MS, 0.00 for TSF&DA, and
0.44 for TSF&TF. The p-values of TFS&MF and TFS&MS,
and TFS and DA were less than the significant value of
0.05, indicating that the proposed TFSCPDP significantly
outperformed the MFTCPDP, MSCPDP, and DA-KTSVM.
The p-value of TFS&TF is higher than the significant value
of 0.05, indicating that the difference between the proposed
TFSCPDP and TFIA-CPDP is not statistically significant.
However, TFSCPDP outperformed TFIA-CPDP on average
and on the individual datasets (indicated in bold), as shown
in Table 5.

VI. THREATS TO VALIDITY
The TFSCPDP proposed in this article has the following
threats to the validity

1) Although the predictive performance of TFSCPDP on
10 different datasets is better than that of the current state-of-
the-art CPDP methods, this does not guarantee that the same
result can be obtained on other datasets.

2324 VOLUME 11, 2023



Y. Z. Bala et al.: Improving Cross-Project Software Defect Prediction Method Through Transformation and FS Approach

TABLE 5. Comparison of TFSCPDP with RF classifier to other approaches
from the literature on AEEEM dataset based on F1_score results.

2)We carefully selected themost commonly used F1_score
as the evaluation metric in this study. However, other evalua-
tion metrics may yield different results.

VII. CONCLUSION AND FUTURE STUDY
This study proposes a new transformation and feature selec-
tion approach to improve the performance of cross-project
defect prediction. The main aim of the transformation was
to reduce the distribution difference between the source and
target projects, while the feature selection was to reduce the
issues of high dimensionality and irrelevant features.

In the transformation phase, first, the mean distributional
characteristic of the source project was used for transfor-
mation; second, the mode distributional characteristic of the
source was also used for transformation; and finally, the
arithmetic mean of the duo was computed and subsequently
considered as the transformed source. In the feature selec-
tion phase, the distance of each feature of the transformed
source was computed from three times the standard devia-
tion. Features with large distances are selected. Our approach
effectively improved the performance of CPDP by obtaining
a mean F-score of 0.80, which is the highest among the
existing CPDP approaches. Therefore, we can conclude that

our approach not only reduces the distribution difference
between the source and the target but also effectively reduces
the impact of high dimensionality and irrelevant features in
CPDP. Our findings have proven that TFSCPDP can be useful
for SDP applications, particularly when dealing with limited
historical records and large software applications that have
multiple features.

For future studies in CPDP research, we noticed from
the experimental results that a suitable classifier can also
improve the performance of CPDP in conjugation with the
TFSCPDP approach. Therefore, in the future, it is necessary
to focus on combining multiple classifiers to further improve
the performance of CPDP.

REFERENCES
[1] Y. Y. Z. Zhu and Q. X. Y. Chen, ‘‘Cross-project defect prediction method

based on manifold feature transformation,’’ Future Internet, vol. 13,
no. 216, pp. 1–17, 2021.

[2] B. Boehm and R. Turner, ‘‘Management challenges to implementing agile
processes in traditional development organizations,’’ IEEE Softw., vol. 22,
no. 5, pp. 30–39, Sep. 2005.

[3] W. Rhmann and G. A. Ansari, ‘‘Ensemble techniques-based software fault
prediction in an open-source project,’’ inResearch Anthology onUsage and
Development of Open-Source Software. Hershey, PA, USA: IGI Global,
2021, pp. 693–709.

[4] L. N. Gong, S. J. Jiang, and L. Jiang, ‘‘Research progress of software defect
prediction,’’ J. Softw., vol. 30, pp. 3090–3114, Aug. 2019.

[5] X. Chen, Q. Gu,W. Liu, S. Liu, and C. Ni, ‘‘Survey of static software defect
prediction,’’ J. Softw., vol. 27, no. 1, pp. 1–25, 2016.

[6] H. Tracy, B. Sarah, B. David, D. Gray, and S. A. Counsell, ‘‘A systematic
literature review on fault prediction performance in software engineering,’’
IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–1304, Nov. 2012.

[7] Y. Li, Z. Q. Huang, Y. Wang, and B. W. Fang, ‘‘Survey on data driven soft-
ware defects prediction,’’ Acta Electron., vol. 45, pp. 982–988, Apr. 2017.

[8] Z. Li, X.-Y. Jing, and X. Zhu, ‘‘Progress on approaches to software defect
prediction,’’ IET Softw., vol. 12, no. 3, pp. 161–175, Jun. 2018.

[9] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, ‘‘On the relative
value of cross-company and within-company data for defect prediction,’’
Empirical Softw. Eng., vol. 14, no. 5, pp. 540–578, 2009.

[10] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, ‘‘Cross-
project defect prediction: A large scale experiment on data vs. domain vs.
process,’’ in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT
Symp. Found. Softw. Eng., New York, NY, USA, 2009, pp. 91–100.

[11] S. Herbold, A. Trautsch, and J. Grabowski, ‘‘Global vs. local models for
cross-project defect prediction,’’ Empirical Softw. Eng., vol. 22, no. 4,
pp. 1866–1902, Aug. 2017.

[12] X. Chen, L. P. Wang, Q. Gu, Z. Wang, C. Ni, W. S. Liu, and Q. Wang,
‘‘A survey on cross-project software defect prediction methods,’’ Chin.
J. Comput., vol. 41, pp. 254–274, Jan. 2018.

[13] S. Chen, J. M. Ye, and T. Liu, ‘‘Domain adaptation approach for cross-
project software defect prediction,’’ J. Softw., vol. 31, no. 2, pp. 266–281,
2020.

[14] S. Tang, S. Huang, C. Zheng, E. Liu, C. Zong, and Y. Ding, ‘‘A novel cross-
project software defect prediction algorithm based on transfer learning,’’
Tsinghua Sci. Technol., vol. 27, no. 1, pp. 41–57, Feb. 2022.

[15] A. Saifudin and Y. Yulianti, ‘‘Dimensional reduction on cross project
defect prediction,’’ J. Phys., Conf. Ser., vol. 1477, no. 3, Mar. 2020,
Art. no. 032011.

[16] F. Peters, T.Menzies, andA.Marcus, ‘‘Better cross company defect predic-
tion,’’ inProc. 10thWork. Conf. Mining Softw. Repositories, San Francisco,
CA, USA, May 2013, pp. 409–418.

[17] Y. Ma, G. Luo, X. Zeng, and A. Chen, ‘‘Transfer learning for cross-
company software defect prediction,’’ Inf. Softw. Technol., vol. 54, no. 3,
pp. 248–256, 2012.

[18] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X.Wang, ‘‘HYDRA:Massively
compositional model for cross-project defect prediction,’’ IEEE Trans.
Softw. Eng., vol. 42, no. 10, pp. 977–998, Oct. 2016.

VOLUME 11, 2023 2325



Y. Z. Bala et al.: Improving Cross-Project Software Defect Prediction Method Through Transformation and FS Approach

[19] Z. Sun, J. Li, H. Sun, and L. He, ‘‘CFPS: Collaborative filtering based
source projects selection for cross-project defect prediction,’’ Appl. Soft
Comput., vol. 99, Feb. 2021, Art. no. 106940.

[20] J. Nam, S. J. Pan, and S. Kim, ‘‘Transfer defect learning,’’ in Proc.
35th Int. Conf. Softw. Eng. (ICSE), San Francisco, CA, USA, May 2013,
pp. 382–391.

[21] F. Wu, X. Y. Jing, Y. Sun, J. Sun, L. Huang, F. Cui, and Y. Sun,
‘‘Cross-project and within-project semisupervised software defect predic-
tion: A unified approach,’’ IEEE Trans. Rel., vol. 67, no. 2, pp. 581–597,
Jun. 2018.

[22] Z. Q. Li, X. Y. Jing, F. Wu, X. K. Zhu, B. W. Xu, and S. Ying, ‘‘Cost-
sensitive transfer kernel canonical correlation analysis for heterogeneous
defect prediction,’’ Autom. Softw. Eng., vol. 25, no. 2, pp. 201–245,
Aug. 2017.

[23] J. Bai, J. Jia, and L. F. Capretz, ‘‘A three-stage transfer learning framework
for multi-source cross-project software defect prediction,’’ Inf. Softw. Tech-
nol., vol. 150, Oct. 2022, Art. no. 106985.

[24] Y. Zhao, Y. Zhu, Q. Yu, and X. Chen, ‘‘Cross-project defect prediction
considering multiple data distribution simultaneously,’’ Symmetry, vol. 14,
no. 2, p. 401, Feb. 2022.

[25] C. Jin, ‘‘Cross-project software defect prediction based on domain adap-
tation learning and optimization,’’ Expert Syst. Appl., vol. 171, Jun. 2021,
Art. no. 114637.

[26] Z. Li, J. Niu, X.-Y. Jing, W. Yu, and C. Qi, ‘‘Cross-project defect pre-
diction via landmark selection-based kernelized discriminant subspace
alignment,’’ IEEE Trans. Rel., vol. 70, no. 3, pp. 996–1013, Sep. 2021.

[27] L. C. Briand,W. L.Melo, and J.Wust, ‘‘Assessing the applicability of fault-
proneness models across object-oriented software projects,’’ IEEE Trans.
Softw. Eng., vol. 28, no. 7, pp. 706–720, Jul. 2002.

[28] P. He, Y. He, L. Yu, and B. Li, ‘‘An improved method for cross-project
defect prediction by simplifying training data,’’ Math. Problems Eng.,
vol. 2018, pp. 1–18, Jun. 2018.

[29] S. Herbold, ‘‘Training data selection for cross-project defect prediction,’’
in Proc. 9th Int. Conf. Predictive Models Softw. Eng., 2013, pp. 1–10.

[30] Z. Yuan, X. Chen, Z. Cui, and Y. Mu, ‘‘ALTRA: Cross-project software
defect prediction via active learning and TrAdaBoost,’’ IEEE Access,
vol. 8, pp. 30037–30049, 2020.

[31] J. Wu, Y. Wu, N. Niu, and M. Zhou, ‘‘MHCPDP: Multi-source heteroge-
neous cross-project defect prediction via multi-source transfer learning and
autoencoder,’’ Softw. Quality J., vol. 29, no. 2, pp. 405–430, 2021.

[32] Z. Xu, P. Yuan, T. Zhang, Y. Tang, S. Li, and Z. Xia, ‘‘HDA: Cross-project
defect prediction via heterogeneous domain adaptation with dictionary
learning,’’ IEEE Access, vol. 6, pp. 57597–57613, 2018.

[33] W. N. Poon, K. E. Bennin, J. Huang, P. Phannachitta, and J. W. Keung,
‘‘Cross-project defect prediction using a credibility theory based naive
Bayes classifier,’’ in Proc. IEEE Int. Conf. Softw. Quality, Rel. Secur.
(QRS), Jul. 2017, pp. 434–441.

[34] W. Wen, B. Zhang, X. Gu, and X. Ju, ‘‘An empirical study on combining
source selection and transfer learning for cross-project defect prediction,’’
in Proc. IEEE 1st Int. Workshop Intell. Bug Fixing (IBF), Feb. 2019,
pp. 29–38.

[35] S. Ren, W. Zhang, H. S. Munir, and L. Xia, ‘‘Dissimilarity space based
multi-source cross-project defect prediction,’’ Algorithms, vol. 12, no. 1,
p. 13, Jan. 2019.

[36] J. Chen, K. Hu, Y. Yang, Y. Liu, and Q. Xuan, ‘‘Collective transfer learning
for defect prediction,’’ Neurocomputing, vol. 12, p. 91, Nov. 2019.

[37] Y. Xing, W. Lin, X. Lin, B. Yang, and Z. Tan, ‘‘Cross-project defect
prediction based on two-phase feature importance amplification,’’Comput.
Intell. Neurosci., vol. 2022, pp. 1–14, Apr. 2022.

[38] C. Ni, X. Chen, and W. S. Liu, ‘‘Cross-project defect prediction method
based on feature transfer and instance transfer,’’ J. Softw., vol. 30,
pp. 1308–1329, Jan. 2019.

[39] C. Liu, D. Yang, X. Xia, M. Yan, and X. Zhang, ‘‘A two-phase transfer
learning model for cross-project defect prediction,’’ Inf. Softw. Technol.,
vol. 107, pp. 125–136, Mar. 2019.

[40] G. Fan, X. Diao, H. Yu, and I. Chen, ‘‘Cross-project defect prediction
method based on instance filtering and transfer,’’ Comput. Eng., vol. 46,
pp. 197–202, Jan. 2020.

[41] T. M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, ‘‘A comparative
study of iterative and non-iterative feature selection techniques for software
defect prediction,’’ Inf. Syst. Frontiers, vol. 16, no. 5, pp. 801–822, 2014.

[42] S. Liu, X. Chen, W. Liu, J. Chen, Q. Gu, and D. Chen, ‘‘FECAR: A feature
selection framework for software defect prediction,’’ in Proc. IEEE 38th
Annu. Comput. Softw. Appl. Conf., Jul. 2014, pp. 426–435.

[43] Q. Yu, S.-J. Jiang, R.-C. Wang, and H.-Y. Wang, ‘‘A feature selection
approach based on a similarity measure for software defect prediction,’’
Frontiers Inf. Technol. Electron. Eng., vol. 18, no. 11, pp. 1744–1753,
2017.

[44] R. Vashisht and S. A. M. Rizvi, ‘‘Feature extraction to heterogeneous cross
project defect prediction,’’ in Proc. 8th Int. Conf. Rel., Infocom Technol.
Optim., Jun. 2020, pp. 1221–1225.

[45] H. Alsawalqah, N. Hijazi, M. Eshtay, H. Faris, A. A. Radaideh, I. Aljarah,
and Y. Alshamaileh, ‘‘Software defect prediction using heterogeneous
ensemble classification based on segmented patterns,’’ Appl. Sci., vol. 10,
no. 5, p. 1745, Mar. 2020.

[46] K. O. Elish and M. O. Elish, ‘‘Predicting defect-prone software modules
using support vector machines,’’ J. Syst. Softw., vol. 81, no. 5, pp. 649–660,
2008.

[47] Y. Zhang, D. Lo, X. Xia, and J. Sun, ‘‘Combined classifier for cross-project
defect prediction: An extended empirical study,’’ Frontiers Comput. Sci.,
vol. 12, no. 2, pp. 280–296, Apr. 2018.

YAHAYA ZAKARIYAU BALA received the B.Sc.
and M.Sc. degrees in computer science from
Adamawa State University, Mubi, Nigeria, in
2008 and 2014, respectively. He is currently pursu-
ing the Ph.D. degree in software engineering with
Universiti PutraMalaysia (UPM). He is also a Lec-
turer with the Department of Computer Science,
Faculty of Science, Federal University of Kashere,
Nigeria. His research interests include software
defect prediction and cross-project software defect
prediction.

PATHIAH ABDUL SAMAT received the B.Sc. and
M.Sc. degrees in computer science fromUniversiti
Teknologi Malaysia (UTM), in 1996 and 1998,
respectively, and the Ph.D. degree in computer
science from Universiti Kebangsaan Malaysia
(UKM), in 2012. She is currently a Senior Lec-
turer with theDepartment of Software Engineering
and Information System, Faculty of Computer Sci-
ence and Information Technology, Universiti Putra
Malaysia (UPM). Her research interests include

formal software verification and model checking.

KHAIRONI YATIM SHARIF received the Ph.D.
degree from the University of Limerick, Ireland.
He is currently a Senior Lecturer with the Depart-
ment of Software Engineering and Information
System, Faculty of Computer Science and Infor-
mation Technology, Universiti Putra Malaysia.
He is also an Adjunct Associate Professor with
the Shibaura Institute of Technology, Japan. His
research interest includes programmers’ informa-
tion need, particularly identifying programmers’

information needs with regards to their task contexts, such as software main-
tenance, program comprehension, code concept mapping, fault localization,
and agile development.

NORIDAYU MANSHOR received the B.Sc.
degree in computer science from Universiti Putra
Malaysia (UPM), the M.Sc. degree in com-
puter science from Universiti Teknologi Malaysia
(UTM), and the Ph.D. degree in computer science
fromUniversiti Sains Malaysia (USM). She is cur-
rently a Senior Lecturer with the Department of
Computer System, Faculty of Computer Science
and Information Technology, UPM. Her research
interests include pattern recognition, image pro-

cessing, and computer vision.

2326 VOLUME 11, 2023


