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ABSTRACT Demand Response (DR) has gained popularity in recent years as a practical strategy to increase
the sustainability of energy systems while reducing associated costs. Despite this, Artificial Intelligence (AI)
and Machine Learning (ML), have recently developed as critical technologies for demand-side management
and response due to the high complexity of tasks associated with DR, as well as huge amount of data
management to take decisions very near to real time implications. Selecting the best group of users to
respond, learning their attitude toward consumptions and their priorities, price optimization, monitoring and
control of devices, learning to engage more and more consumers in the DR schemes, and learning how to
remunerate them fairly and economically are all problems that can be tackled with the help of Al techniques.
This study presents an overview of Al approaches used for DR applications. Both the Artificial Intelligence
and Machine Learning algorithm(s) are employed while discussing commercial efforts (from both new and
existing businesses) and large-scale innovation projects that have applied Al technologies for energy DR.
Different kind of DR programs implemented in different countries are also discussed. Moreover, it also
discusses the application of blockchain for DR schemes in smart grid paradigm. Discussion of the strengths
and weaknesses of the evaluated Al methods for various DR tasks, as well as suggestions for further study,
round out the work.

INDEX TERMS Arttificial intelligence, blockchain, demand response, demand side management, demand
response, Internet of Things (IoT), smart grids, machine learning.

I. INTRODUCTION systems, they possess greater challenges to operation and

Power grid operators face significant new hurdles due to
the emerging growth of renewable energy sources (RES).
There must be a quick adjustment in energy infrastructure
to meet the growing diversity of integrated energy sources.
RES in general are notoriously hard to estimate when it
comes to their power production because of their inherent
instability and intermittent nature (i.e. they are totally
dependent upon variable solar and wind energy). Because
of the requirement for flexible power system to ensure
the continued and safe functioning and stability of power
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management [1]. Integrating fast-response electrical power
production system, demand-side management, and other
energy storage devices are the primary methods for offering
flexibility [2]. Also, the digitalization converts conventional
grids to modern smart grids to manage electrical grids. Power
systems may be made more efficient, secure, dependable,
robust, and sustainable with the use of new technologies
like the IoT, real-time management and control of power
at different level and smart contracts [3]. Several nations
have set ambitious goals for the widespread implementation
of advanced metering infrastructure (AMI) [4], [5]; for
instance, the UK’s Ofgem has mandated the installation of
53 million smart meters for electricity monitoring and control
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2020 [6]. There has to be automated methods for analyzing
the enormous amounts of data produced by this infrastructure
(IoT, AMI). The evolution into faster, decentralized, and
intricate power systems [7] also brings forth new challenges
that may eventually become unmanageable for manual
control system. Artificial intelligence techniques have been
suggested as an important method for dealing with these
issues in power grids. More stable and efficient power system
may be achieved via the application of Al to forecast power
demand and production, optimize the maintenance and use
of energy assets, get a deeper understanding of energy
consumption patterns, and more. Al play its crucial role
in human life because it makes decision making process
easier and very near to the actual/real-time decision also
automatically schedules different appliances being used for
different purposes at domestic and industrial level.

A. MOTIVATION AND SCOPE OF THE REVIEW

Although AI methods have long been studied and utilized
in many power system applications in different areas, but
currently researchers paid attention about the application
of Al in the context of demand response. Increasing the
scale and scope of DR initiatives is an important factor for
power system operators as it has been highlighted as one
of the potential techniques to allow more demand flexibility
to the power system. For DR schemes to perform better,
an automated framework that can be more flexible and
learn about its context (such as customer preferences) is
necessary. In reality, it is becoming clearer that Al may
contribute significantly to the future success of DR schemes
by automating the process while learning the preferences
of end-use customers. This framework is only possible with
inculcating Al techniques for demand side management.

The dramatic uptick in study within this field is indicative
of the growing need for Al-based solutions within the DR
industry. As can be observed in Figure 1, between 2011 and
2021, the number of scholarly articles on this topic increased
dramatically. As a result, there is a growing need for a
comprehensive evaluation of the many artificial intelligence
(AD) algorithms now in use throughout DR’s many different
application domains. While many of these papers make
important contributions, they typically only examine one
AI/ML method and one application area at a time. Based
on the body of information presented so far in current
publications, we believe there is a pressing need for an
in-depth analysis that charts the growth of the field and serves
as a guide to the most promising Al approaches utilized in
certain sub-areas of DR. Because of this, the goal of this study
is to give a comprehensive analysis of the different Al data-
driven methodologies for DR applications. Our evaluation
has three main purposes:

At first, we want to provide a thorough review of the
artificial intelligence (AI) methods underlying this field,
as well as the primary particular applications/tasks in power
DR in which these methods have been applied. Therefore,
providing a holistic view of the development of the area
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FIGURE 1. Number of articles published related to different Al techniques
used in DR.

and directions for future study. In addition, we believe our
evaluation will be a valuable resource for future scholars
and professionals in the subject. Specifically, this entails
educating them about the Al strategies that have proven
effective in solving problems similar to theirs in terms of
DR. Specifically, this involves a methodical evaluation of the
pros and cons of using a certain Al method in each particular
field of use. Finally, we wanted to provide more context
than is provided by just reviewing academic publications by
discussing some of the research efforts in this field that are
supported by industry. Our investigation reveals a total of
forty businesses/commercial efforts and twenty-one major
projects in this space, demonstrating the high level of activity
and investment in this area. To the authors * knowledge, this
is the most extensive analysis to date of the use of artificial
intelligence (AI) in the field of energy demand side response.

B. RELATED REVIEWS ON DEMAND RESPONSE (DR)

The literature on energy-demand-response reviews is abun-
dant. In [8] looked at the Several advantages of DR
in smart grids which consists of different smart sensors
used for control, monitoring, and communication systems.
Innovations in DR systems, load forecasting approaches, and
communication channels are studied in [9]. Long-term, less
obvious effects of DR, such as its influence on energy market
pricing and on customers, were investigated in [10]. In [11]
looked at the technical side of DR for frequency regulation,
while economic effect of DR are investigated in [12].
In addition, the optimum management of DR techniques and
DR pricing schemes were improved in [13].

Particularly in [14] there is a literature analysis on different
Artificial Intelligence (AI) techniques for DR, discussing
how AI might be used to create a scheduled monitoring
system for a Smart home that is being monitored under
DR. For example, [15] compared and evaluated several self-
organizing optimization algorithms for demand response
in smart buildings while in [16] author used clustering
technique to mitigate the load profile and managing load
demand intelligently and [17] narrowed their attention to
the use of reinforcement learning for DR specifically.

VOLUME 11, 2023



M. A. Khan et al.: Al Enabled DR: Prospects and Challenges in Smart Grid Environment

IEEE Access

In addition, [18], explored the use of smart meter and its data
analysis for DR application while [19], [20] examined Al
based load prediction, concentrating mostly on deep learning
and artificial neural networks (ANNs) [21]. aggregation of
thermal inertia, particularly from district heating networks is
emphasized in [22] and [23] highlights the emerging concept
of integrated demand response, which integrates multiple
energy types and vectors (including electricity, natural gas,
and heat). Our main focus, on the other hand, is on electricity
demand and demand side management that goes into further
detail on the artificial intelligence methods that make this
possible.

While the above-mentioned assessments of Al technolo-
gies for DR applications have proven helpful, it is worth
noting that they are often limited in scope. They often
focus on one particular facet of artificial intelligence, such
reinforcement learning [17] or one area of application, like
home energy management systems [14]. The goal of this
research is to present a more all-encompassing and global
perspective on the Al methods now used in DR schemes
to facilitate power system function. To identify possible
research gaps and propose future study directions in this
rapidly expanding domain, we believe that a systematic
review of this size and breadth is necessary and desirable.
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FIGURE 2. Layout of the paper.

C. STRUCTURE OF THE REVIEW

This paper’s structure is given in Figure 2 and is organized
as follows. Section 2 will first introduce DR and its
connection to the electrical grid and energy markets. The
next Section3 introduce Al and its different techniques
like machine learning, deep learning and other techniques
under Al and its fundamental ideas before classifying the
evaluated literature. Section 4 describes the applications
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of AI techniques in demand side management specially
for DR like for forecasting techniques, Load management
or Energy management. DR programs being implemented
in different countries are explained in section 5 while
blockchain application on DR in smart grid is explained in
detail in section 6. While challenges and future scope is given
in section 7 which followed the conclusion in section 8.

1. DR RESOURCES, OPEARTION, AND MARKET
STRUCTURE

The conventional design of the power grid is based on a
one-way flow of energy from generation end to consumer
end. High voltage generators under centralized control are
employed to provide this supply. Demand side management
and notably demand response have emerged as viable options
for the efficient and reliable operation of the electric grid as
a result of the proliferation of grid service markets and the
inclusion of DER in recent years. However, a DR model,
in contrast to conventional power grids, calls for a two-way
communication system and intelligent algorithms to analyze
the produced data. Because of this, smart meters are a
crucial part of a smart grid and play a pivotal role in DR
models [24]. Information gathered may also be used by
Al-based solutions to improve DR initiatives. The purpose
of this section is to provide an overview of DR services and
define their place in the existing framework of the electrical
market.

Demand side management is a broader area in electrical
power system of which demand response is a subset, and is
achievable because of emerging technologies and innovations
in conventional grids i.e., due to smart grid operations [25].
When we talk about “Demand Response” in this article,
we’re talking to the ways in which commercial and industrial
consumers of electricity alter their consumption patterns.
Customers agree to modify their typical load profile as
required from the utility provider in order to get maximum
possible benefits for both sides by decreasing or shifting
their energy usage away from peak hours [25]. Although
DR encompasses a wider range of energy sources (such
as thermal energy, gas, etc.), this study will just discuss
electrical power aspects of the generation side. Figure. 3.
Shows the classification of DR, where DR programs based on
motivation offered to customers are further divided into two
distinct categories, which corresponds with the classifications
provided by [9], [26], and [27].

A. PRICE BASED DR PROGRAMS

With the goal of getting end-use consumers to shift their
energy consumption habits, the electricity price in this
scenario fluctuates over different time intervals. Time-of-use
pricing, critical-peak pricing, and real-time pricing are all
examples of such schemes [10].

B. INCENTIVE BASED DR PROGRAMS
End-use customers are incentivized to lower their power
use via these programs by providing them with offers to
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FIGURE 3. Classification of DR resources, operation and structure.

do so upon request or in accordance with a contractual
agreement. Direct-load controls (DLCs), interruptible tariffs,
and demand-bidding programs are all examples of this kind
of scheme [28].

Each of these methods of management calls for tailoring
the incentives or contracts offered to customers in light
of their actual behavior. There are also two distinct types
of markets for electricity: retail, where electricity retailers
directly contract with end-users for electricity delivery,
and wholesale, where retailers, suppliers, producers, grid
operators, and third-party aggregators all work together to
ensure that retailers can deliver power to their customers
without jeopardizing the reliability of the grid. Three distinct
markets—the energy market, the capacity market, and the
ancillary services market—make up the wholesale electricity
market and work together to incentivize various parties to
contribute to the nation’s power distribution and the grid’s
efficient operation and reliability. The energy and auxiliary
service sectors are linked with demand-side responsiveness.
Contracts between market participants may be conducted
bilaterally (over the counter (OTC)) or by a proper broker
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company, depending on the national policy. The items may be
exchanged on the spot market (day ahead and/or intra-day) in
both circumstances and for ancillary service in spot market.
If a resource provider makes a definite promise to provide
a particular quantity of electricity into the grid, they must
fulfil that promise or face financial consequences. Therefore,
it is crucial for DR monitoring companies to agree the end
consumer and offer power flexibility.

As distributed energy resources (DER) become more
integrated into power networks, innovative approaches are
needed to meet the technological constraints of a smart grid
(mainly frequency and local voltage regulation). DR is one
of the best options. Smart DR plans may be built upon the
infrastructure that is being put in place with the usage of
smart meters for homes and commercial buildings along with
IoT-enabled smart appliances being deployed in smart homes.
Furthermore, in order to effectively regulate demand without
adversely impacting end-user comfort, these tactics will use
Al-based smart algorithms.

In the next part (Section 3), we describe different artificial
intelligence (AI) methods offered and researched in literature
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in the interest of automating DR. Section 4 then discusses the
applications of Al and ML to various DR services.

ill. Al APPROACHES/TECHNIQUES IN DEMAND
RESPONSE
Al, or artificial intelligence, is the study and development
of intelligent entities (agents) [29]. These smart agents are
computer programs that can analyze their surroundings and
take appropriate action to accomplish certain objectives.
Computer science, neurology, economics, information the-
ory, statistics, psychology, control theory, and optimization
are just few of the many disciplines that contribute to Al.
Hence Agents with artificial intelligence (AI) may vary
from robots with true thinking capabilities to search algo-
rithms utilized in board games. Different methods have
been used since the advent of Al in the 1950s to develop
intelligent computers. Among these methods are statistical
learning [30], [31] soft computing [32] and knowledge-
based systems [33] In this work, we will examine the data-
driven, soft-computing, non-symbolic approach to Al. This
study also examines Al methods in both the single-agent and
multi-agent contexts in order to provide a more complete
picture. Figure 4 shows many types of Al approaches that
have been used to DR and how they have been classified.

A. MACHINE LEARNING AND STATISTICAL METHODS

In the age of big data and the Internet of Things, automated
analysis of the “data tsunami” that is variable constantly
being generated is crucial. Machine learning is an essential
part of artificial intelligence (Al) that consists of a collection
of techniques that aim to learn from data. Methods that auto-
matically recognize patterns in data and utilize these patterns
to make predictions and other kinds of decision making in an
uncertain environment fall under the umbrella of this set of
Al approaches [34]. Machine learning is an interdisciplinary
field that largely uses ideas from computer science, statistics,
mathematics, and engineering. Murphy [34] lists supervised
learning, unsupervised learning, and reinforcement learning
as the three primary categories of machine learning.

With an already labelled collection of input-output pair-
ings, the purpose of supervised learning is to learn a
mapping between the input vector x and the outputs y. The
inputs xi might range from a basic real number to a highly
structured object, and this collection of data is known as
the training set (e.g. an image, a timeseries, a graph, etc.).
By using kernel-based and tree-based approaches in addition
to linear regression models, supervised learning techniques
have been largely employed in DR to anticipate the demand
and power pricing. Supervised ANNSs are also widely used for
forecasting purposes.

Using unsupervised learning techniques, the system is
merely provided with the inputs and is tasked with finding
potentially relevant patterns of interest within them. Because
the patterns that need to be recognized are unknown in
advance and there are no clear error measures to employ,
unsupervised learning is a less well-defined technique. Due
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to the scarcity of labelled data, this is useful in DR. Clustering
has been the primary use of unsupervised algorithms in
DR, whereby items (such as load profiles) are grouped
together such that their members are similar to one another
but different from those in other clusters. Consumers have
been categorized, and typical load profile shapes have been
identified, with the help of several clustering techniques.
Therefore, this categorization may be used to choose
consumers for DR programs, pay consumers for participation
in DR programs, and identify families who can benefit from
DR schemes.

The concept of ““interactional learning” is central to
almost all learning philosophies. To learn from experience,
Reinforcement Learning (RL) is one of the most fascinating
computer methodologies. RL is a method that considers the
whole challenge of an agent learning to achieve a certain
objective in the context of an unknown environment [35].
The two most distinguishing features of RL are the use of
a trial-and-error search strategy and the provision of delayed
reward. RL has been used from a very long ago for DR to
monitor and control the various kinds of loads at domestic
level or Electric vehicles while taking into consideration the
customer preferences. RL technique proved to be on of the
best and easiest model for DR to manage the complex data
for both customer and service provider. Researchers have also
utilized the RL framework in order to estimate the budget for
utility [36], [37], [38] and to create a scalable and efficient
model for a group of customers [39].

B. NATURE-INSPIRED ALGORITHMICS

When developing new computational methods, scientists
have always looked to natural and biological systems for
inspiration. Artificial intelligence (Al) researchers have used
algorithms inspired by nature to perform tasks including
looking for relevant information and figuring out the best
course of action to achieve a goal [29]. Meta-heuristics
inspired by evolution, biological swarming, and physical
processes are the most common types of algorithms drawn
from nature. The term ‘““meta-heuristics’ is used to describe
a group of iterative processes that supplement heuristic
procedures through the application of proper hieratical flow
model to find the most optimum and efficient solution
using different kind of nature inspired intelligent learning
strategies [40].

Algorithms inspired by nature have been utilized exten-
sively in the field of DR, mostly for consumer-level load
scheduling (algorithm included in HEMS) and for assisting
aggregators and retailers in optimizing the price of their
DR service provider clients. In the DR setting, where the
scheduling problem might be computationally costly, meta-
heuristics have been widely used because they can discover
solutions in a fair amount of time.

Evolutionary algorithms, also known as Evolutionary
Computation (EC), are a heuristic-based technique that
mimics key aspects of biological evolution in a computing
setting, including different kind of biological processes
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like reproduction, mutation, recombination, and selection.
The process is evaluated for different number of iterations
until the optimization function on an individual reaches a
termination criterion. Genetic algorithms (GA) are biological
model inspired by natural processes in humans, animals
and birds according to Charles Darwin’s theory of natural
selection [41], [42], [43], [44], [45] and have emerged as
the dominant approach from the evolutionary computation
in the literature on energy DR [43], [44], [45], [46].
Implementing these meta-heuristic genetic algorithms gives
maximum possible efficiency for turning different appliances
ON/OFF at domestic and industrial level. For example,
a differential Evolutionary Algorithm (EA) which is utilized
in battery management system in order to manage the data
of lithium-ion battery in datacenter [47], and a bi-level
Evolutionary Algorithm (EA) which is used to find the
maximum efficient electricity tariff for consumers under DR
strategies [48] are all examples of evolutionary algorithms
being used in the DR setting.

Swarm intelligence is a branch of artificial intelligence
that studies how imitating the behavior of biological swarms
might help with problem solving [48]. The Particle Swarm
Optimization (PSO) method [49] and the Ant Colony
Optimization (ACO) algorithm [50] are the two most popular
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examples of swarm intelligence algorithms in the research
literature. For further details on these algorithms, see the
reviews [51], [52], [53]. Swarm Al systems may become
trapped in local optima and have a sluggish convergence
pace, much as evolutionary approaches [40]. In contrast to
GA, where “poor” particles are eliminated, all particles’
histories are used in swarm Al systems to aid in the
search [54]. In addition, swarm Al approaches often have
fewer parameters that need fine-tuning before deployment.
Swarm Al algorithms are often employed by energy aggre-
gators and retailers to determine the best scheduling and
pricing strategies to minimize costs associated with demand
response. The optimization issues in DR are notoriously
non-convex because they include a high number of variables,
quadratic optimization functions, and limitations derived
from the calculation of the AC power flow. Heuristic
optimization is well-suited to this situation since it can
quickly locate a near-optimal solution while requiring less
effort than other mathematical methods. A most popular
example of these heuristic optimization methods in DR is
particle swarm optimization (PSO).

In addition to these algorithms, several nature-inspired
meta-heuristics have been discovered, many of which defy
easy categorization. With inspiration from the mechanisms
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present in biological immune systems [55], the CLONALG-
based [56] Artificial Immune System (AIS) algorithm is
utilized to set prices for the aggregators. The Wind Driven
Optimization (WDO) algorithm [57], which is based on
atmospheric motion, is used to find an optimum schedule of
appliances at the household level, and the simulated annealing
approach, which was developed on the annealing concept, is
used for DR.

C. ARTIFICIAL NEURAL NETWORKS

Computer models called Artificial Neural Networks (ANNs)
take cues from the structure and function of real-world
neural networks. This study presents ANNs as a separate
category because to their widespread use in DR applications;
nevertheless, ANNs might technically be classified as either
a machine learning method or a method inspired by nature
in the field of artificial intelligence. Multiple fields have
made use of ANNs for tasks such as classification, clustering,
pattern recognition, and forecasting [58]. In DR, ANNs
have used for load forecasting, and they have been of
varying designs and complexity (number of layers). ANNs
are used in the majority of DR applications to predict the
future consumption of an infrastructure (building, appliance,
consumer group), the flexibility of a load, or the short-
term pricing of power (which can be for hours, minutes
and even world is progressing towards seconds to one day
ahead). In certain cases, ANNs may serve as a viable
alternative to nonlinear regression methods. For instance,
most load forecasting implementations takes inputs like
previous consumptions, weather, day, hour and sometimes the
price. Inputs for a price forecast are often prices from the
past. A lot of literature has led to the identification of two
primary classifications, single hidden layer ANN and Deep
Learning.

Single hidden layer, feedforward ANN has wide range
of application in the DR sector. For the most part, single
hidden layer ANNs have been used in the DR literature
for load and pricing forecasting. In addition to these
applications, single hidden layer ANNSs have been utilized to
represent complicated functions like cooling system control
algorithms [59] or urging users to manage and shift the load
to the off-peak hours [60], But this can be directly linked to
the day temperature, weather and electricity cost.

Deep learning is a kind of ML that processes data in
its raw format and automatically discovers the data which
is needed to be represented for detection or classifica-
tion [61]. It involves learning several layers of representation
and abstraction. Like single hidden layer ANNSs, deep
architectures have mostly been used for load and pricing
forecast in DR. In addition, deep architectures have been
used for customer response prediction [62], DR event-
aware home appliance control [63], identifying consumer
socio-demographics to inform targeted DR mitigation strate-
gies [64], and customer clustering based on the estimated
load curve which is already encoded in the system using deep
learning based autoencoders [65].
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D. MULTI-AGENT SYSTEMS

Because the demand side of power systems is often decen-
tralized, there is a pressing need for methods that can learn,
plan, and make choices in the context of a system comprised
of various interacting intelligent agents. Multi-agent systems
(MAS), a branch of distributed artificial

intelligence, give the analytical tools necessary to investi-
gate such issues. This review focuses on the subfields of MAS
known as automated negotiations, which focus on finding
a common agreement between different participants in the
game/scheme, cooperative/coalitional game theory, which
focuses on the study of coalitions among these players and
designed agreements.

One important idea of Game Theory is “game,” which
is represented by a mathematical model that ‘““captures the
essential aspects of the interaction between self-interest
entities” [66]. Understanding what makes a result of a game
logical is a central goal of game theory, and many solution
ideas have been devised to help narrow down the possibilities.
One such notion is the Nash Equilibrium.

A subfield of game theory known as ‘“‘coalitional” or
“cooperative” game theory in which the aim is to foresee
which coalitions will emerge. As opposed to focusing on the
strategies used by each player individually, cooperative game
theory [66] instead divides the payout among the participants.
Cooperative game theory has seen extensive use in the DR
setting, particularly in instances where legally enforceable
agreements have been established (i.e. incentive-based DR).
Selecting the best group of power users to take part in
DR schemes and dividing up the coalition’s payout are two
primary uses of cooperative game theory in DR (known as
solution concept). Depending on the requirements that the
aggregator is trying to satisfy, the solution idea relates to
the method in which the income is divided in between the
participants in DR for power demand flexibility.

Strategically speaking, Mechanism design is a subset of
social choice theory which postulates that different kind of
participants would act in a manner that maximizes their
own utility. Since the ability to ensure specific qualities
is crucial to the maximum possible optimum solution
for DR schemes, mechanism design has been frequently
employed in DR literature. Consumers are encouraged to
submit accurate bids using incentive-based mechanisms
designed with the help of mechanism design in DR.
Several articles [67], [68], [69] suggest DR techniques that
guarantee consumers will optimize their utility function by
providing accurate reports of their preferences. Incentive
compatible mechanisms (IC) are those that may be used
in conjunction with incentives. Future pricing and end-user
choices for various time periods throughout the day inform
the scheduling and payment function proposed in [68].
Two “‘penalty-bidding” mechanisms based on a dominant-
strategy equilibrium are presented in [69], whereas [68]
offer a mechanism that takes the opposite, “reward-bidding,”
approach. Last but not least, [70] present a cooperative
mechanism that is both efficient and incentive compatible,
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meaning that participants do not benefit from increasing
their baseline consumption in order to demonstrate a false
demand decrease. The aggregator chooses a selection of
agents, submits bids on their behalf to the electrical flexibility
market, and then splits the proceeds with them based on their
pledge to cutting down on energy use, while punishing those
who actually raised their usage.

Among a group of agents, products as in [71], resources as
in [72], and tasks as in [73] may be divided up via negotiation.
The existing research classifies allocation processes into two
broad categories “Auctions” and “Negotiations” [74]:

e Auctions are systems wherein a group of people compete
with each other in an automated process controlled by a third
party. Here, the norms and the procedure are set in stone.
Using concepts of mechanism design, the goal of auction
theory is to arrive at an optimum auction model which ensures
a set of desired qualities.

e The goal of any negotiation is to reach an agreement
between two or more parties through an exchange of informa-
tion that includes offers, counteroffers, and arguments [239].
Negotiations encompass a diverse and an unclear set of
iterations which are used to distribute goods, resources,
services, or tasks. More complicated and individualized
agreements, as well as more decentralized and adaptable
protocols, are all possible with the help of automated
negotiating methods.

IV. APPLICATION AREAS OF Al IN DEMAND RESPONSE
Many electrical power system factors, including load and
energy price forecasts, selecting the most appropriate cus-
tomers for DR schemes, and developing automated systems
for managing demand-side resources, must be considered for
the successful implementation of DR programs. Forecasting,
real-time management of networked infrastructure, taking
best decision very near to optimal decision, adapting to a
dynamic behavior, learning from load profile and many other
areas where Al technologies have been used in DR [75]. Here,
we categorize the different applications of Al in the field of
DR that have been found in the published literature.

A. FORECASTING IN DR

Forecasting has been one of the primary applications of Al
methods. It has been discovered that artificial intelligence
(AI) techniques are being implemented for forecasting
of power prices for different kind of loads in the DR
environment. Schedules for delivering power in the near
future may be influenced by forecasts, and longer-term
plans for the system and service providers can also benefit
from forecasts [76]. Improving power scheduling with
short-term forecast helps aggregators provide better services
and customers react more closely to appropriate DR signals.
If service providers and operators have more accurate long-
term estimates, they will be better equipped to make decisions
about how much flexibility to provide, which customers to
prioritize for DR, and how much to compensate or charge
those customers.
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1) LOAD FORECASTING

Load forecasting and estimate are crucial to the safe and
effective functioning of any electricity grid. Proper demand
forecasting is a crucial tool for addressing several DR
concerns, such as ensuring adequate planning, compensating
DR participants, and determining the capacity potential of DR
resources [19]. Long-term load forecasting (>24 hours) and
short-term load forecasting ( 24 hours) are commonly used
to categorize demand forecasting. The publications included
in this overview are those that focus specifically on the load
forecasting issue in the DR context. The analysis in [19]
provides a more comprehensive look of load forecasting
in the smart grid setting for anyone interested in learning
more.

There are a number of publications in the literature that
attempt to predict demand, some of which account for poten-
tial changes in demand brought about by DR. Most of the
studies [77], [78], [79], [801, [81], [82], [83], [84], [85], [86]
focus on estimating demand for the next day or two, while
others [87] look forward a week. Also, load forecasting has
been done at many other aggregation levels, including for
single-family homes [78], [88], [89], [90], commercial build-
ings [80], [83], [91] and individual appliances [92], [93] such
as chillers, ice banks, and lights. The load forecasting for sin-
gle consumer or a group of consumers for day ahead predic-
tion depends on previous load profile and weather conditions
as presented in [92] using ANN-based method for home load
forecasting. Artificial neural networks may also be used for
appliance-level load predictions. Deep neural networks with
a principal component analysis (PCA) based feature selection
strategy to estimate loads of home appliances is presented
in [93], whereas [83] use ANNSs to anticipate loads of HVAC
systems.

Baseline load estimate describes the scenario when load
forecasting is performed without considering DR. In the
context of DR, the baseline load can be determined as the load
that is feeding power in the absence of the DR programs. [94].
Rewarding DR participants requires accurate estimates of
typical power usage, which may be obtained from the base-
line consumption measurement of consumers [94]. Baseline
load estimate research for homes [94], [95], commercial
buildings [96], [97], and industrial plants [98] may be found
in the aforementioned works.

In addition to the above, the practice of flexibility
forecasting has been the subject of several research inves-
tigations. A flexible load is one that can be adjusted in
response to changes in the time of day, the weather, and the
smart-grid control signal [99]. Studies have estimated the
DR heat-load flexibility of homogeneous [100], [101], [102]
and heterogeneous [103] VPP heat-load clusters. Both the
DA market and other energy markets are open to trading
the estimated flexibility [100], [103]. Research in this area
includes energy flexibility prediction, forecasting of smart
homes air conditioning systems [98] and peak time DR
capacity calculation [104].
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2) PRICE FORECASTING

Electricity price forecasting has been done at both the
aggregator and the end-user levels. In a multi-aggregator
context, in which out of group of customers, only one
consumer is implementing a DR scheme is described in [105]
for predicting the regional wholesale energy price from the
demand bids of the different aggregators to the SO. The ideal
incentive rates for various customers are determined in part
by a model employed by Lu and Hong [106] to anticipate
the price of electricity on the wholesale market. The bulk of
the publications [107], [108], [109] focus on the consumer
level and attempt to predict the residential load a day before
in order to manage the production under the influence of price
incentives. In contrast [110] predict the hourly fluctuations in
power costs for businesses.

3) GENERATION FORECASTING

The purpose of the generation forecasting is to anticipate
the amount of power that will be generated or required
to be generated from renewable sources. Better Renewable
Energy Systems (RES) projections has grown with the
inclusion of demand response by implementing proper DSM
techniques to offer more flexibility to power system with
the rising renewable energy resources. In [111], the authors
discuss current research that assesses the efficacy of artificial
intelligence (AI) approaches used to RES prediction models,
considering a wide variety of forecasting horizons, and a
wide variety of renewable energy generating sources. Results
show that benchmark ML models can process big datasets
and provide reliable forecasts; however, by integrating
machine learning algorithm models can enhance the system
reliability. Two reviews cover different aspects of solar
power forecasting: [112] discusses PV forecasting using
ML and metaheuristic techniques, while [113] zeroes in on
time-series statistical, physical, and ensemble approaches.
In [114], the authors examine the current status of SVM as
it pertains to solar and wind forecasting. Although the SVM
regressor is straightforward and accurate, it does not scale
well to big data sets and performs poorly with high levels of
noise.

In [115], a variety of ML techniques are investigated for
use in the production of wind and solar electricity. In [116],
the authors analyze several PV forecasting methods, from the
most basic to the most complex, and draw the conclusion
that certain methods work better than others in different
climates. Models for PV forecasting one day in advance
using deep learning neural networks are the subject of [117].
In [118], we take a look at how CNN may be used for
multi-site PV forecasting. In [119], the most prominent ML
techniques for predicting wind speed and power are reviewed.
These techniques include data preparation, initialization of
different parameters, their optimization, and at the final stage
of error minimization. These hybrid methods often provide
better results than using individual models alone. In [120],
the authors examine the use of Artificial neural network
for variable wind energy production, bringing together the

VOLUME 11, 2023

primary techniques used in prediction techniques and noting
their advantages and disadvantages. Wavelet transform is
employed to convert the initial data into its small component
to smooth out the peaks and valleys in the initial data [124].
Several research [121], [122], [123] have used this technique.
The DSO and BRPs have a difficult time coping with
distributed solar energy due to a lack of information on the
prosumers’ aggregated small-scale solar power. To get around
this issue, [124] makes guesses about the total power output
of unmonitored distributed solar installations on residential
roofs.

4) FLEXIBILITY FORECASTING

Flexible loads, decentralized storage facilities, and (DERs)
may all be combined into one large pool of potential
flexibility, and the advent of aggregated flexibility prediction
makes it possible to define the default area’s share of this
resource. Aggregated distribution grid flexibility may be
used to lessen the demand for grid expansion and improve
the efficiency of power system by improving power system
operations [125]. The computation of aggregate flexibility is
elaborated on in [126].

In order to (i) give flexibility facility to power system
agents (ii) reduce end-user energy bills through Home Energy
Management Systems, and (iii) participate in electricity
markets by using optimal bidding strategies [127], [128] the
aggregator is the service provider responsible for gathering
and controlling its portfolio of flexibility sources [128] and
develops new flexible business model methods. Demand-
side flexibility aggregation becomes crucial for balancing the
future power system due to the growing penetration of inter-
mittent RES and the sizeable number of residential users with
potential flexible sources [128], [129]. In [125], ML-based
regression models are used to forecast residential cus-
tomers’ flexibility for real-time applications. [130] presents
a framework for flexibility forecasting and how it can be
managed across various energy sources and domains. [131]
decides to construct a flexibility load forecasting model
for DR capacity scheduling using the GBM ensemble
technique.

The aggregator provides a financial incentive signal
in [132] with the intention of encouraging a shift in demand-
side consumption. [133] estimates the adaptability potential
of wet appliances (dishwasher and washer machine) in
France. Residential load flexibility projections are com-
puted in [133] using the NILM method. [134] considers
predetermined customer preferences, loads, and PV forecast
uncertainty to define a workable flexibility space from
controllable home resources. The proportion of end users who
must be able to submeter in order to determine the aggregate
demand composition is examined in [104]. According to the
findings, only 5% of submetering coverage is necessary to
accurately predict the aggregated load composition at the
substation level. [135] proposes a scalable and non-intrusive
methodology for determining the flexibility of thermal
loads.
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B. SCHEDULING AND CONTROL OF LOADS FOR DR

For service providers and their customers, the sheer variety
and quantity of DR devices available presents a significant
issue. It is not practical for service providers to manually
schedule and control their DR units throughout their portfo-
lio. Further, automating the scheduling and management of
the many demand-side appliances is crucial for increasing
consumer engagement in DR schemes, since otherwise
customers would experience response fatigue [136] and stop
participating in the DR program altogether. When it comes to
DR, scheduling and management of the different units may
be handled either by the service provider (aggregator) or by
the individual user (consumer). The size and breadth of the
units used distinguishes between the two tiers as the primary
distinction between them. When it comes to scheduling and
controlling devices at the aggregator level, the algorithms
utilized must be more flexible and adaptable to a wider variety
of circumstances than those used at the consumer level.

1) LOAD SCHEDULING AND CONTROL AT THE
AGGREGATOR LEVEL

While DR unit control is intuitive, improving solution
time efficiency requires careful consideration of how and
when certain events will occur in a scheduling issue.
The scheduling process may be seen as a multi-objective
optimization problem with constraints. A huge amount of
literature data is available on scheduling DR resources while
considering no limitations [137], also including imposed
network constraints [138] while keeping balanced system
conditions [139] like [140] can be taken an example of
planning the load a day before with proper monitoring
of generation sources. Additionally, [141] perform proper
management for the forecasted DR units for DA in order
to increase utility provider benefit cost and users flexibility
while minimizing fluctuation from variable resources (like
wind and solar) on the grid. For utilization and monitoring
of commercial and industrial loads flexibility [142] created a
cooperative and decentralized agent-based platform that takes
into consideration the dynamics of each building separately.
Scheduling the charging of EV fleets is also the subject of
study for the purpose of DR service provision [143].

2) LOAD SCHEDULING AND CONTROL AT THE CUSTOMER
LEVEL

Energy management systems (EMS) [57], [144], [145], are
composed of several systems that work together to automate
the scheduling of the different consumers and their loads at
residential and non-residential buildings. Automatic choices
are made by EMS in response to DR signals, with consid-
eration given to power costs, customers’ lifestyle trade-offs,
and the most efficient usage of appliances and equipment.
The implementation of DR systems by households and small
businesses and factories depends on automated EMSs. Load
scheduling for DR under an EMS is investigated in [146]
and [147], proposing a user-independent power scheduler
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for residential appliances that accounts for limitations across
appliance classes.

Minimizing electricity cost [45], [57], [125], [148], [149],
[150], [151], [152], energy consumption [57], [63], Peak
to average ratio (PAR) [57], [150], and maximizing
social welfare [153] and reducing environmental pollu-
tion [154] are common goals in the monitoring and control
aspects of customers’ loads. These goals must be achieved
while taking into account the tastes of the consumers.
There are two primary ways to determine what people
want. An intelligent algorithm, which may be either pre-
defined [144], [145] or learnt [155], [156], can be used to
reflect human preferences for the operation of household
appliances. The second strategy involves putting limits on
what is considered a realistic timeline [149], [150], [151].
TCLs, such as heat pumps [144], [148], [157] and water
heaters [144], [157], air conditioners [144], [158], [159],
battery storage systems [144], [160] and electric vehi-
cles [144], [160], [161], [162] are common examples of
appliances that are controlled in a DR setting. Although
most papers [150], [151], [155] focus on residential buildings
as consumers, there is a lot of research literature focusing
on scheduling like for scheduling of different loads at
small commercial buildings level is presented in [162],
while charging points for smart Electric Vehicles may got
overloaded at peak hours, so they need to schedule their loads
and customers while considering the customer level load
scheduling in order to provide a better DR service [162], and
also at industrial level optimization model which consisted
of multivariable price function has been used to mitigate the
load problems [163].

C. DESIGN OF INCENTIVE/PRICING SCHEME FOR DR
Both the aggregator’s and retailer’s bottom lines and the DR
scheme’s effectiveness are impacted by the pricing or incen-
tive mechanism’s design. A DR program’s ability to recruit
new members and keep current ones engaged depends in part
on the quality of its reward system. When it comes to pricing
mechanisms, the vast majority of papers utilize Al methods to
determine the best interactive scheme a day in a meritocratic
electricity market [66], [80], [107], [108], [138], [139], all
while maximizing the profit of the service provider within
the bounds of realistic market constraints and the discomfort
of consumers for load reduction/shifting. Further, [164] use
the numerical model relationship between real-time total cost
and energy expenditure in a DR scenario for real-time pricing,
and [110], [165] have constructed a model based on the
cost elasticity matrix which is proposed for dynamic pricing.
A novel tariff structure, dubbed prediction-of-use (POU),
is proposed by [25], which determines the rate by comparing
the end-use users expected and actual power consumption.
Electricity prices, including upper and lower limits, are being
investigated concurrently by [134] for a bi-level model of
consumer pricing.

Several articles [24], [26], [27] discuss the topic of how
to appropriately compensate a group of consumers who
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are collectively lowering or shifting demand during a load
attenuation event via the use of incentive mechanisms.
In addition, Lu and Hong [109] analyze the profitability of
both users and service providers (aggregators) in a structured
energy market to determine the appropriate incentive rates
for various electrical users. A two-part reward function
is developed by [135] to incentivize DR participation,
with participants receiving rewards for their individual and
collective efforts to achieve a reduction objective. One portion
is the agent’s compensation for its role in the reduction
effort, and the other part represents any fees or fines it must
pay. Money is offered (a reward) to customers in return for
cutting down on consumption in a model developed by [115],
which simultaneously learns the likelihood that consumers
will take up the offer. To begin building a multi-round bidding
model, [141] learn the interruption load compensation price.
In [134] author also suggest a novel DR mechanism that uses
Vickrey-Clarke-Groves pricing to provide a customizable
suite of DR contract options. This novel system selects a
selection of consumers to cut down on consumption while
also factoring in the likelihood that the goal will be attained
(reliability). By including variable preparation costs, different
effort levels, and multi-unit consumption reduction, [132]
generalize prior work [166]. This paper suggests a reward-
bidding technique as an alternative to a penalty-bidding
mechanism for achieving effective incentives. Other research
focuses on the design of contracts for incentive-based DR.
For example, [167] examine bilateral contracts (between
a retailing agent and a business client) in a multi-issue
negotiation context. In a similar way, [58] devise incentive
agreements for ancillary services, in which service providers
engage in the commodity supplementary service market
and coordinate engagement with end users at the retail
level. Other than the two-way dialogue between the service
provider and the customer, their work also considers the
interaction amongst customers.

D. LOAD/CUSTOMER SEGMENTATION

Segmenting/Grouping power users into categories is a
crucial application for DR which is an assistance to utility
providers in creating DR programs, pooling services, assess-
ing the load capabilities of joining various DR programs,
etc. [168]. The produced groups of consumers are created
in the study literature to carry out various tasks in the
DR context. A significant portion of the evaluated works
classify customers to find potential participants for DR
programs [77], [169], [170], [171], [172] and identify the
best group of consumers who are already enrolled in DR
programs to contact in order to reduce demand during DR
programs [173], [174]. According to [64], load profiles
can be used to extract socio-demographic data, and the
characteristics of these consumers can be used to choose
potential DR participants. The typical daily load profiles
that are created for each group are then used in [175] to
create customized power price plans for price-based DR
programs. DR resources are grouped in [176] to determine
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compensation rates. The most effective resources are well-
compensated in this way, which encourages them to take part
in the DR programs which provide them maximum possible
benefits. The creation of DR programs and demand control
strategies [168], the gathering of DR resources [177], [178],
the evaluation of a DR project’s potential benefits, and
the identification of hourly loads for carrying out DR
programs [179] are other uses of classifying consumers. In a
number of works, customers are categorized based on their
quotation data [188], behavior [180] for EVs engaging in
DR, predicted effects of the DR program [181], number
of residence occupants, building size, building type, and
terrain type. While [182] partitioned the flexibility of EVs
for DR services by clustering EV charging sessions, in [183]
author designed flexibility envelopes of TCLs for DR. For
DR, [184] combined the flexibility of batteries and modest
non - dispatchable loads using a unique clustering approach.
The overall flexibility of an aggregator’s portfolio of assets
has been calculated using clustering approaches in the more
general situation of energy markets, such as the work in [185].

E. ENERGY THEFT DETECTION

Theft of energy, or tampering with one’s electric power
data, is done so that one may pay less for their electricity.
This is one of the biggest crimes ever committed in the
USA. Several methods exist to steal power in an SG.
As shown in Fig. 5, some of the methods include wiping
recorded events, altering stored demand, manipulating the
meter, disconnecting the meter, and so on. In the past, public
reports would prompt power companies to dispatch teams
to inspect electrical infrastructure. Smart meters and other
developments in the metering infrastructure have made it
simpler to identify instances of energy theft. This resulted
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in the development of AMI (Advanced Metering Infrastruc-
tures) [186]. AMIs, however, bring a number of drawbacks,
including the possibility of manipulated meter readings.
Because of this, a new feature engineering framework has
been developed, whose primary purpose is to prevent energy
theft from smart power networks. For market segmentation
purposes, there is a suggested framework in [187] that
uses both genetic programming and finite mixture model
clustering. The purpose of this was to produce a collection
of features that effectively communicates the relevance of
demand over time. In addition, the ability to compare results
from different houses gave it a high degree of accuracy
for spotting irregularities and fraud. Many distinct ML
algorithms were used. The amazing result may be attributed
to the computationally extremely practical nature of this
approach. The Gradient Boosting Machines outperformed
all previous ML classification models with respect to the
classification method. This may be explored more thoroughly
in future studies, and it has important practical implications
for power utilities.

If energy is distributed but never invoiced or paid for,
this is known as non-technical loss (NTL) in SGs. This
has become an international crisis in the electricity supply
sector. In [188] there is a suggestion of a concept based on a
power distribution network, the intermediate monitor meter,
to simultaneously detect bypassing of the meter and NTL of
meter manipulation (IMM). For a thorough analysis of the
power flow and efficient NTL detection, this model separates
the network into finer and more autonomous networks.
The energy balance between the IMMs and the collector
is analyzed, and a suggested method for NTL detection is
created to solve the resulting linear system of equations
(LSE). The authors also described the IMMs’ underlying
hardware layout. This structure was time-effective and robust
enough to endure a detection accuracy of 95%. It was also
confirmed that it detects energy wasted due to customers’ lack
of morals and circumventing of regulations, both of which
are notoriously hard to track down using more conventional
methods of investigation.

A newly proposed detection method, electricity theft
detection using deep bidirectional RNN (ETD-DBRNN),
which is used to capture the internal characteristics and the
external association by analyzing the energy consumption
records, thereby overcoming the shortcomings of existing
ML based detection methods is presented in [189]. Validation
of this strategy was shown by experiments using real-world
data.

It was observed that this technique better captures the
information of the power use records and the intrinsic
characteristics between normal and abnormal electricity
usage patterns than the currently available methods. In reality,
energy thieves’ meter readings should have a stronger
correlation to the value of power theft loss than the readings of
honest users. Due to this, [190] systematically formulated the
issue of power theft identification as a time-series correlation
analysis problem. Two coefficients were constructed to
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assess the credibility of each consumer’s claimed energy
use pattern. The experimental results revealed that this
strategy significantly enhanced the pinpointing accuracy in
comparison to other recently existing methods. The Internet
of Things (IoT) and artificial intelligence (Al) are two crucial
enabling technologies for smart cities. For the purpose of
identifying energy theft, [191] suggested a method that
relies on SG energy privacy protection. By analyzing a
long-term trend, they were able to utilize CNNs to spot
any strange behavior in the metering data. In addition, the
paillier algorithm was used to ensure the confidentiality
of transmitted energy data. This solution demonstrated the
concomitant success of data privacy and authentication. The
experimental results showed that the modified CNN model
was able to identify aberrant behaviors with an accuracy of
up to 92.67 % [191]. Using the new method of multiple
pricing (MP), [192] demonstrated a method of stealthy power
theft (HET). As a means of building the HET assault,
they suggested an optimization problem with the goal of
maximizing attack revenues while evading existing detection
mechanisms. Two algorithms intended to hack smart meters
were also developed. In order to demonstrate the potential
of HET attacks, the authors discovered and exploited a wide
variety of new vulnerabilities in smart meters. To defend
SGs against HET attacks, the authors recommend a number
of defensive and detection techniques, including restricting
the attack cycle, selective protection on smart meters,
and an updated billing methodology. The recommended
countermeasures successfully reduced the attack’s effect with
little effort or expense.
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FIGURE 7. Possible energy theft techniques.

The reintroduction of old problems like energy theft
necessitated the development of cutting-edge detection
systems and architecture predicated on data analysis, machine
learning, and predictive modelling made possible by the
advent of digital power meters. To identify electricity meter
manipulation in its early stages, [193] exhibited a multidi-
mensional innovative detection technique and architecture
by comparing a collection of energy demand time series.
Newer monitoring systems can often only analyze one
time series; thus, this approach was a welcome addition
and improvement. Their goal was to find ways to spot
electrical theft, and they offered three different approaches
to preprocessing data to do so. This approach demonstrated
the metric’s robustness in the face of tampered data. With
detection rates of over 90%, the authors demonstrated the
primary advantage of combining numerous data sources at
once, rather than relying on each one of them separately.
This approach also demonstrated the usefulness of comparing
data from several houses without first categorizing them into
comparable groups.

F. ENERGY MANAGEMENT SYSTEM
In order to improve building energy efficiency and DR
programs, the fast deployment of smart meters in recent
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years has created a large quantity of data (e.g., price-
based, incentive-based and environmental-based. In this
part, we will discuss the IA methods used in EMS on
the building level. By using Al techniques, we can plan
for and control numerous energy assets automatically via
the EMS, therefore addressing a number of problems
plaguing the field of energy management. There has been
a noticeable growth in the use of Al techniques in DR
programs since 2013. Price-based programs and domestic
consumer types have seen the most use of these Al tech-
nologies, followed by small-scale industrial and commercial
structures [8].

Numerous articles discuss the use of Al in energy DR
initiatives. For a broader view, see [202], which explores
the current status of DR applications and analyses the Al
methodologies used across a variety of DR scheme types and
customer types. In addition, a comprehensive overview of
corporations, innovators, and European-funded commercial
initiatives using Al for DR is offered. In particular, [194]
examines the current Al-based approaches to cloud EMS
and how blockchain technology may be incorporated into
them. However, there is a significant number of unanswered
questions about blockchain that need be investigated in the
next years, including its expensive development and storage
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costs, the absence of uniformity in the field, and the scarcity
of specialized knowledge.

The research examples below make use of Supervised
Learning and Unsupervised Learning approaches. In [195],
an MLP-based deep learning model is employed to improve
load consumption and storage management in light of
variable pricing. By optimizing the scheduling of domestic
appliances and RES production, [196] a deep ANN and
Genetic Algorithm help to lower energy consumption during
peak hours. Loads for EMS may be identified by means
of smart plugs using supervised learning algorithms like
DT and Naive Bayes. Using regression trees and RF, the
authors of [197] build a model of a heating system with
the goal of controlling its operation. In [106], authors use
an ANN-based stable price prediction model to address the
problem of pricing uncertainty in EMS. After a demand
response (DR) event mandated by the power company to
minimize peak usage, [198] creates a household scheduling
controller utilizing the hybrid lightning search algorithm
ANN to forecast the best ON/OFF state for home electrical
equipment. While [199] provides a prediction approach based
on LSTM of the end-user reaction behavior to incentive-
based DR program, [62] employs ANN to anticipate and
plan building appliances energy consumption and genetic
algorithms for job scheduling.

The articles under consideration in this area have one major
flaw: they depend on the end user being completely familiar
with the surrounding environment. Although price-based DR
programs get the lion’s share of attention in the literature,
it is clear that a variety of incentive-based DR methods would
benefit the distribution network greatly. To yet, only a few of
papers have shown even somewhat accurate models of the
appliances that can be controlled by EMS. The RL technique
does not need any knowledge of the system model, unlike
standard model-based approaches. Table 10 summarizes this
whole process by dividing each source into three distinct
categories: data-driven method, DR program, and client type.

V. DR PROGRAMS EMPLOYED IN DIFFERENT COUNTRIES
The present emphasis in Europe is on DR monitoring and
SG-enabled monitoring systems, according to a study of
scientific and applied sources. For the past 20 years,
SG initiatives have been carried out; however, because of
inconsistencies in implementation of DR in EU, current
efforts may be difficult in case of transferring smart grid
information data and across the border with nearby countries.
Another issue is the lack of an EU-wide program or
unified DR policy. Countries that create SG-based power
supply networks can let their electrical users take part in
DSM initiatives. Source [200] reports that while domestic
appliances and commercial services shares for 30.9% and
30.4%, respectively, of the total electricity demand in Europe,
industrial users account for 36.1% of that demand. Previous
studies have shown that DSM is most advantageous when
applied to larger consumption area as compared to lower one.
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Only a small number of European nations have so
far allowed aggregators and DR access to their market-
places [201]. In Europe and the US, DR is seen as a crucial
instrument for combining renewable energy sources with
a consistent electrical supply [202], [203]. Similar issues,
such a restrictive power market or a monopoly, are, however,
virtually nonexistent in many developing nations [204]. One
aspect influencing the creation and use of such a DR program
is the nation in which it is implemented. The main reason
for this is that every nation has unique energy resources,
regulatory and policy frameworks, and power markets. As a
result, the supply side needs for DR projects change. For
instance, solar energy is more relevant in some nations than
wind energy is in others, necessitating a different change in
demand [205]. Numerous countries across the globe, such as
Germany, Denmark, Finland, and others, have considerable
levels of varying renewable energy in their power network
and are battling various problems due to fluctuation while
integrating at the grid station due to fluctuations and flickers
which causes reduction in the stability of the grid [206].
Programs across the European countries are heavily depends
on initiatives taken by each country its unique legislative
environment because the unified European electricity market
does not yet exist [207]. Cross-border connectivity would
entail the transmission of power via high-voltage lines
between nations, but it would need the right infrastructure
and transactional procedures [208]. Any nation that has one or
more network points is in charge of these connecting points.
The balance-responsible party (BRP) must create scheme
for power generation and load balanced system which is
known as the balancing duty [200]. Day-ahead, capacity, next
day, intraday, and balancing energy markets are currently
available in each individual EU member state. Each of these
markets has its own participation requirements [207].

The British Empire (UK): The UK’s Office of Gas and
Electricity Markets (OFGEM) was the first organization
which is allowed to initiate a capacity market in 2013 when
Energy Act was passed to encourage the development of
DR [209]. The US began testing DR in the early 2000s.
UK was one of the first market to implement DR in their
power sectors and energy markets [210]. Short term operation
service (STOR) like other initiatives were taken in order to
make a balance between supply and demand [211], the UK
market for DR in the electricity sector began to take off.
In addition to Belgium and Switzerland, the DR analysis
reveals that the UK was the leader among the European
nations that would be the most useful for comparison [23].
The commercial and public sectors make up around one-third
of the portfolios of aggregators, and the UK is one of the best
nations to implement these schemes and participant got fully
interested in participating more and more. [210].

Germany: Germany is frequently seen as a pioneer in the
management of renewable energy [211] which separated its
activities to liberalize its power sector. Additionally, it has the
most trustworthy system available, ENTSO-E [200]. Energy-
saving initiatives are far more prevalent in Germany than
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TABLE 1. Different forecasting models and evaluation metrices for DR programs using Al techniques.

Type of . Lo Data-driven Forecast
F orzgasting Location Highlights technique horizon
Aggregated demand forecasting
Residential buildings' expected daily electricity use. DNN, RF Short-term
The auto-encoders’ features more precisely forecast day- SVM Short-term
ahead load forecasting
us The suggested approach includes an optimal training MLP Mid-term
algorithm consisting of PSO and ALO
Prediction of the monthly total load during a time period of Multiplicative Long-term
four years error model
(MEM)
Based on two-terminal sparse coding and DNN, day-ahead CNN-LSTM Short-term
UK aggregated load forecasting
For one-week prediction, ELM outperforms SVM SVM, ELM Mid-term
Advanced data preparation technique. Outstanding data DNN Short-term
learning and forecasting capabilities are possessed by DBN.
Australia Predicted half-hour electricity demand for the coming week Autocorrelation Mid-term
LSSVM
Load
Forecasting To capture the many annual cycles in power load data, using ~ MLP Short-term
Models France wavelet decomposition with the proposition of new
boundary treatments.
West Estimated hourly and annual electricity usage for 2030 in 14 ~ MLR Long-term
Africa different West African nations
Smart meter load forecasting
uUs Aggregated household load predictions DNN Short-term
For load and price forecasting, energy big data is employed LSTM, MLP Short-term
as a data set.
China An industrial steel plant's demand predictions LSTM Real-time
Probability density and power load forecasting DNN Short-term
Forecasting household loads with probability in the presence ~ LSTM Real-time
Australia of significant volatility
Forecasting of individual and combined residential loads LSTM Short-term
Day-ahead cooling demand for office buildings, categorized K-means-MLP Short-term
Honk Kong
by seasons
SVM and ANN achieve more reliable and precise outcomes MLP, SVM, Short/Long
Cyprus MLR -term
Solar forecasting
More weather features are added to the prediction mode CNN Short-term
China thanks to CNN'S enhanced feature extraction.
Model built using SCADA and weather data SVM Short-term
Focuses on the most important input features for forecasting ~ LSTM Short-term
using the attention mechanism.
Forecasting horizons of five minutes. Model based on short- ~ LSTM Real-time
Australia term multivariate historical data sets
based on trained feed forward neural network and PSO DNN Short-term
Us Forecasting for Multiple Solar Sites CNN Short-term
South PV forecasting using simply weather and calendar MLP, DNN and Short-term
information. For all seasons, the LSTM algorithm provides LSTM
Korea
the best results.
Cape Verde  Using weather forecasting information, an hourly day-ahead =~ LSTM Real-time
Generation prediction of solar irradiance
Forecasting Wind speed/power forecasting
Models Wind power prediction for the very near future. Performance ~ CNN-GBM Real-time
of a single CNN is enhanced with Light GBM
Wavelet transform-based probabilistic wind power CNN Real-time/
China forecasting short-term
It employs the wavelet transformation. Nine models are used ~ LSTM-ElmanNN  Short-term
to compare its performance.
By grouping wind power impact factors, the K-Means K-Means-LSTM  Short-term
creates a new LSTM sub-prediction model.
. Performs extreme optimization forecasting ten minutes and LSTM, SVM Real-time
Mongolia .
one hour in advance.
. The inputs are the spatial average of wind speed, wind RF Real-time
Tunisia . .
direction, and previous power values.
Uses transfer learning and a deep sparse auto-encoder for Ensemble DNN Short/
Europe .. .
base-regressor training. Midterm
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TABLE 2. (Continued.) Different forecasting models and evaluation metrices for DR programs using Al techniques.

Compared to conventional ML, hybrid DNN performs better. ~ CNN-LSTM Real-time
models

Precise and affordable in computing terms GBM Real-time
DNN produces less errors. Greater precision was attained SVM, MLP, Real-time

USA using many data sources DNN
The effectiveness of neurofuzzy models against MLP is Neuro-fuzzy Short-term
demonstrated in this study. ANN
Results from Deep LSTM are superior to those from ELM. LSTM Short/
both NARX midterm
Enhances the forecast's real-time accuracy during ELM Real-time
unexpected dynamic pricing changes.

Australia Good results for prices with high volatility DNN Short-term
When modelling time series with complex nonlinear Hybrid Short-term
properties and outliers, the model can be a reliable outlier-ELM
forecasting technique.

Performance for the MKELM model is superior than that of ELM Short-term
the ELM and KELM.

Canada Studies with a significant amount of input data are advised to  Dimension Short-term
use the proposed technique. The predicting outcomes are reduction, DNN,
improved using the feature extraction tool and rough SVM, LSTM

Pri neurons.

Ff)lrceecas ting Dynamic Trees outperform RF and provide a suitable real- Dynamic Trees Real-time

Models time and short-term solution. short-term
When employing a limited number of input variables, DNN Short-term
inconsistent behavior was seen as the layer count increased.
With more historical data, the model performs better.

Spain The model's most important predictor is the hour feature. GBM Short-term
This study demonstrates how using Tensor flow software MLP Short-term
improves convergence speed.

The factors that produce the greatest accuracy are the spot Co-integration Long-term
and futures prices for Brent crude oil, as well as the Spanish and vector error

wind generation. correction

Due to their strong association with electricity prices, the SVM Short-term
forecasting model takes into account the price of oil and

Germany natural gas.

DNN performs better. Weighted KNN, a model based on Weighted KNN, Mid-term
data autocorrelations, provides accurate forecasts even 29 DNN

days in advance.

Compares the four proposed DNNs for electricity price DNN, LSTM, Short-term
predictions with 23 benchmark models. DNN, LSTM, and GRU, CNN

Belgium GRU perform better than research model.

Performance is improved over SVM and univariate LSTM Jaya-LSTM Mid-term

when hyperparameters are modified using the Jaya
optimization multivariate LSTM algorithm.

DR [202]. The German demand reduction control is playing
a key role in reducing imbalance of supply because it is based
on broad, high-demand targets for the medium and long term,
out of which few are longer-term and more ambitious than
those outlined in the EU energy efficiency regulation [211].
The penetration of RES into the energy system and the
dependability of the grid have a greater influence on the
German DR’s value [202]. The wholesale market in Germany
has become too volatile because to the significant penetration
of RES [212]. The technological capacity of German DR
is 6.4 GW/h, from which 3.5 GW/h is attained within the
present market and regulatory structure. DR might be as
high as 10 GW [213] if a better market and regulatory
environment are created. The nation requires a reliable system
for establishing prices [211].

Finland: Finland is regarded as an innovator in the use of
smart meters and a leader among European nations with a
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DR system [214], [215], [216]. The network’s functionality is
managed by Helsinki, Finland-based transmission company
Fingrid Ltd., which also responds to customer demand
using the market’s established processes [217], [218]. Active
retailers typically insistently offer price tariffs to end-
users when the nation moves to commercial activities,
prompting a change in consumption based on the market
environment [219].

Switzerland: Typically, local governments design and
administer DSM policies. Swiss utilities have been using
ToU and ripple control, two DSM technologies, longer than
other European nations. To maintain the stability of the
electricity grid, fluctuation control is a common method of
load control. The conventional power signal is switched to
a higher frequency signal (50 Hz). Loads such as heaters,
electric boilers, and public street lighting can all be turned
on and off.
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Belgium. DR projects are receiving more attention, partic- retirement of some nuclear power reactors and the constant
ularly in the residential sector, as a result of the scheduled development in RES capacity [40]. In order to encourage

VOLUME 11, 2023

1493



IEEE Access

M. A. Khan et al.: Al Enabled DR: Prospects and Challenges in Smart Grid Environment

Renewable

Energy

Integration

Energy
DR Control ‘ BHicency
Power .
Monitoring and Inéell;g-erlt
Control Ob Jectn es i
Auto/Self
Resource Healing
Management

Reduced Losses

FIGURE 9. Different IOE objectives.

flexibility, the national transmission operator is searching for
measures to reduce energy costs. Such flexibility is especially
crucial during the winter, when demand for electricity peaks
ataround 12,000-14,000 MW, or around 2000 MW more than
in the summer [220].

Baltic States. The balancing management of the Baltic
power system is become more difficult for two reasons. First,
similar to trends in Central and South-Eastern Europe, the
power of easily regulated traditional major power plants is
declining in the Baltics, while the output of less regulated,
less foreseeable, and distributed sources, such as wind power,
is increasing [221]. Second, by 2025, the Baltic states intend
to cut their ties to Russia’s single power grid, forcing the
creation of additional flexibility sources to maintain electrical
balance under both normal and unusual circumstances [222].
This will be made possible by a project that was endorsed
by the Commission of the Connecting Europe Facility of
the European Union Infrastructure Network, which aims to
make the Baltic power systems independent with regard to
frequency with Poland and other countries in continental
Europe. Due to the underdevelopment of the energy-intensive
industry in the Baltics, the DR potential is restricted to
smaller consumer markets [223]. Consumers in Latvia and
Estonia can now access implicit DR thanks to energy supply
agreements where the retail price is linked to the spot price.
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A DR aggregation pilot program has been running in Estonia
since the end of 2017 [224]. The main barrier for aggregators
in Latvia at the moment is the lack of a legal framework
defining the duties and responsibilities of aggregators as well
as the compensation mechanisms amongst various energy
system participants [221]. The Estonian start-up Fusebox and
the Lithuanian transmission firm “Ignitis” began working
together in 2020 with the goal of creating Lithuania’s first
independent power demand aggregator. In terms of energy
security and efficiency, the power demand service is a recent
development in the Lithuanian electricity market.

VI. BLOCKCHAIN BASED DEMAND RESPONSE IN SMART
GRID

The production of power and economic losses of generated
power must be reduced for which one strategy is to use
smart energy solutions (SES) more frequently. However, the
dissemination of SES should be promoted as a tool to achieve
shared objectives rather than for its own sake [225]. Artificial
intelligence (AI) and machine learning (ML) are appeared
as one of the best recently emerged critical technologies
for supporting DR. Due to the complex nature of DR
operations, exploitation of bid data and the demand for near
actual decisions the internet of energy (IoE), which uses the
networks to integrate and communicate different transducers
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and sensors deployed for different measurements, integration
of RES into smart grids, and several other techniques
plays its crucial role and transformed power production
and supply in to new era of technological development by
implementing proper schemes. DSM programs are made up
of energy saving and efficiency improvement consideration,
DR programs, and domestic or commercial load monitoring
programs. By changing the consumer electricity usage
schedule, smart buildings can improve the adaptability of the
power load and provide excellent opportunities for power
DR’s. However, there hasn’t been much research done in
this area, so it’s unclear how big the potential effects of
smart houses engaging in power demand response would
be. Smart houses in particular can take part in power DR
in two different ways: (a) By spreading out the load across
a specific time period, smart homes can flatten the load
curve by ‘“peak shaving and valley filling.” And (b) To
reduce residential power costs, smart houses can move a
load to a time period that is more affordable. Internet of
Everything (IoE) is a term that emerged from the internet
of things (IoT) to describe industrial applications that make
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use of big data processing, ubiquitous computing, and M2M
communication [226]. The IoT extends the reach of the
internet to include the devices deployed on the energy system
by using standardized communication protocols [227]. IoE
is characterized by a variety of energy sources, supply and
demand coordination, centralization and decentralization,
and extensive public involvement [228]. IoE promises a
number of significant advantages, like power monitoring,
energy demand management, expanding renewable energy
integration, less wasted energy, fewer power failures, self-
regulation, and resource management. In order to accomplish
efficient, clean, and secure energy consumption, the Internet
of Energy (IoE) is a grid that connects numerous distributed
power harvesting technologies, electrical energy storage
devices, and various types of loads [24]. To accomplish
efficient, clean, and secure energy consumption, a variety of
loads are used [228].

Smart Grids with IoE. In order to I lower electricity
prices, (ii) control peak loads, and (iii) lower electricity costs
for RES generation variations, which may disrupt energy
systems [229], smart grids allow a two-way link between
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customers and operators. Contrarily, an SG facilitates a solu-
tion for energy production, supply, and storage, with the most
up-to-date information on energy pricing attached [230].
When conventional methods of grid fortification are either
impractical or too costly to implement, SGs in distribution
networks need creative approaches to circumventing network
restrictions [231]. Smart metering’s widespread use and
the potential to combine several decentralized small-scale
RES [34] pose a significant threat to the limitations of
traditional centralized power networks. These facts point to
the need of a shift toward a decentralized and distributed
energy system [230]. However, the high penetration rate and
fast pace of variable RES and battery energy storage systems
(BESS) make energy management in decentralized energy
systems challenging [232].

However, we will discuss the major challenges that DR
systems provide in the area of Smart Grids. The first
source of power market interoperability is the plethora of
utility providers, retailers, and hardware/software developers.
Second, the number of agents and the complexity of their
behaviors in power systems are both increasing due to
widespread use of smart meters, IoT devices, and DERs.
Finally, a decentralized architecture that at least offers the
potential for a settlement agreement in energy transactions
is required to entice buyers and diverse actors in the energy
sector to engage in large-scale DR schemes and assist market
expansion [233]. To capitalize on the expanding market for
energy and the expanding set of stakeholders, businesses
are turning to business-to-business (B2B) e-commerce plat-
forms. Although standardized market processes serve as
the backbone of such platforms, they may be modified
to better serve their intended purpose. The provision of
energy and supplementary services are only two examples
of the kinds of significant tasks that may be balanced via
market procedures. Providers may also provide ancillary
services, which are customized solutions for problems like
emergency power supply or energy conservation. An operator
of the market commences the delivery of balancing services
in accordance with internal/external norms and generator
schedules [234].

The Internet of Things with renewable power sources like
the sun. Solar photovoltaic (PV) farms have had access to Al
methods for improving modelling, operational management,
and output forecasting for over two decades [235]. Every
DR system consists of two main parts: the controller and the
electrical appliance. To rephrase, the DR program helps to
maintain a healthy equilibrium between power manufacturing
and utilization, and the two control loops (additional control
and DR control) collaborate to maintain order in the
system [236]. By facilitating real-time data sharing from
PV sensors and allowing for remote controllability over the
operation of solar units, IoT may aid in the identification
of breakdowns and defects, as well as the performance of
predictive and preventive maintenance [237]. The Internet of
Things (IoT)-based smart PV monitoring systems are given
in [238], [239], [240], and [241]. Using smart monitoring
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systems, PV modules may be tracked and controlled just like
any other node in the Internet of Things [235].

Distribution system operators (DSOs) are anticipated to
focus on the effect of PV intermittency on optimal power
flow (OPF) and voltage regulation as solar power becomes
more widely used. Using DR capabilities to their full
potential is one effective technique for overcoming such PV
integration challenges [242]. Technology developments have
also allowed for a wider range of inverter control tactics to
be included into systems. In addition, these inverters carry
out a number of functions, including as regulating voltage,
generating active and reactive power, and extracting energy
from a photovoltaic (PV) module or array [243]. In terms
of network reliability, frequency is considered crucial [234].
If the frequency of an object deviates from the usual, it means
that either more power is needed or there is too much
already [234]. Since the system frequency decreases when
demand exceeds supply and increases when supply exceeds
demand, DR is a useful tool for keeping the network’s
frequency stable [235]. Most DR equipment has fast on/off
controls to provide a steady power supply from the consumer
end [81].

In a dynamic distribution system, single-phase PV invert-
ers may introduce power inconsistencies from dispersed
generators. Single-phase devices such inverters, voltage
regulators (VRs), and capacitor banks (CBs) may break the
three-phase symmetry of voltages and currents when voltage
control and DR are employed together, leading to an increase
in imbalance levels. Distributed photovoltaic systems may be
connected into the power grid using either a smart PV inverter
or aregular PV inverter. Conventional PV inverters are unable
of performing the complex control tasks required by PV
systems (such as real power restriction, fixed power factor
regulation, volt-var control, volt-watt control, and frequency-
watt control), while smart PV inverters are capable of doing
so. Therefore, smart PV inverters may reduce the number of
voltage and frequency control devices required in an electric
power grid, which in turn reduces the cost of both of these
factors [244].

Technique of conveying messages. Recent advances in
communication technology [89] have made it possible for
modern SGs to transfer data and information swiftly and
reliably in both directions. To increase power dependability
and quality and stop electrical blackouts, DR’s marketing
and emergency signals may be sent utilizing a two-way
communication system (wireless, wire, GSM, and the
internet). Utility billing disputes may be resolved faster with
the use of this technology, and customers who verify DRs can
get incentive offers. Matching real-time supply and demand
data, integrating, and dispersing demand, and generating
energy transactions and DR are all possible thanks to the
IoE. To save on transmission costs, energy data is stored
locally or on a network at a designated node [236]. Through
these protocols, the many nodes may exchange information
with one another and the central control or decision nodes.
Technologies such as LoRa or Sigfox (which provides the
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foundation for cloud-based services in future grids), ZigBee,
Z-Wave, Bluetooth, Wi-Fi, and cellular technology such as
LTE-4G and 5G networks are only a few examples [237].
Problems with data transfer rates, communication delays,
security, and device connection may all be mitigated with
the use of 5G technology [239]. 5G’s reduced latency and
high reliability make it a practical replacement for hardwired
connections. When it comes to SG communication, it’s rather
uncommon to have stringent performance requirements, such
as extremely low latency (usually less than 1ms) [240].
As 5G technologies continue to evolve, a demonstrably better
DR infrastructure will emerge [239], raising the standard in
transmission, reliability, safety, and connection. The latest
standard for communicating DR signals via IP networks
(like the internet) is called Open automated demand response
(OpenADR v2.0). Smart meters, internet-connected devices,
and distributed energy resources (DERs) have led to a
growth in the number of agents and the complexity of
activities associated to power systems [233]. For instance,
the Enel Info +, Smart Demo Grid, and FLEXICIENCY
projects have all built new smart meters with a dedicated
communication channel at home area networks [239]. The
need for outsourcing platforms is rising at the present time.
When it comes to customer service, several platforms use
employees to reduce customers’ wait times [240]. Each DR
installation must have online bidirectional connection with
a national control center [239], and DR aggregators may
employ new technologies to make it possible.

Issues with cyber security in smart grids. The use of
smart grid technology to handle DERs and EV's necessitates
enhanced sensing, communication, and control mecha-
nisms [241]. Infrastructure failures may occur as a conse-
quence of cyber assaults, cascade failures, blackouts, and
other forms of attack on the electric grid [242]. In a residential
home management system, for instance, the usage of heater
or air conditioner data throughout the summer and winter
seasons might provide insight about inhabitants’ availability.
The burglars might use this knowledge to plan an attack on the
home. Because the regulators may access the central server
at any time, which has all the information and data required
from the utility suppliers, this is an extremely important
problem to solve [243]. Smart grids have challenges from
the huge variety of devices connected through wide area
networks. Securing isolated devices within the context of a
larger network is the biggest challenge [244]. More thought
has been given to cyber security in the context of modern DR
initiatives and the corresponding communication networks,
such as OpenADR in the United States and China’s reform
of the management system for air conditioning in public
buildings [239].

Protecting the smart grid using blockchain technology.
The goal of creating a decentralized energy system using
micro-grids, RES, and EVs necessitates a trading model that
is robust, extensible, and effective. In addition, we need to
upgrade our communication, transmission, and distribution
networks so that we may take control of our networks’
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individual operations and services. With more and more
vulnerabilities caused by the centralization of IoE, the
adoption of innovative solutions is increasing rapidly. The use
of smart contracts and encryption in blockchain technology
serves as an example of how decentralization and autonomy
may be achieved. [245] As renewable energy prices decrease
and new technologies become more affordable, consumers
are demanding a more efficient, greener, and long-term
energy system. Through its decentralized trading mechanism,
blockchain technology will promote sustainable electricity
use and help bring about a circular economy [246]. The
blockchain technology was first developed for the digital
currency Bitcoin, and it guarantees secure transactions
by connecting buyers and sellers directly. When Bitcoin
was successful, the next generation of blockchain tech-
nology, the smart contract platform, was developed [233].
A new technology built on the same Bitcoin-inspired
premise, blockchain for smart contracts allows the requisite
distributed-operations-enabling techniques via its decentral-
ized network architecture [13]. Power providers may utilize
blockchain for smart contracts on DERs, such as to accept,
fund, and sell electricity generated by renewable energy
sources (RES) [233]. Due to its importance in facilitating
the implementation and usage of RES and the smart grid,
blockchain technology is poised to play a pivotal role in the
expansion of the IoE market. Secure and efficient energy
transactions are made possible by the widespread use of
blockchain technology and the Internet of Things (IoT).
Simultaneously, it enables the integration of electricity from
distributed generation, utility grids, and other sources [79].
More work has to be done to establish potentially effective
system protocols for blockchain-based power systems, and
all promotional opportunities should be taken advantage
of [240].

The analysis of current research that uses distinct indices
to decrease the effect of DR technology on consumers reveals
a number of particularly noteworthy studies. By generating
consumer convenience and demand rebound indices and
developing objective functions based on these indices, the
authors of [247] provide a novel approach to lowering cus-
tomer dissatisfaction, system capacity, and demand rebound.
In [248], the authors propose a new linear discomfort index
(DI) formulation that takes into account user preferences
during normal appliance usage as part of a self-scheduling
model for HEMS. Building a sustainable energy infras-
tructure requires a plethora of different strategies. As an
alternative, the transition should be carried out carefully,
with consideration given to all relevant technologies and
approaches.

VII. CHALLENGES AND OPPORTUNITIES OF USING Al IN
DEMAND RESPONSE

Artificial neural networks are one of the most widely
used families of techniques and have mostly been used in
forecasting applications. The researchers have implemented
ANNGs utilizing a single hidden layer as well as “‘deeper”
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multi-layer designs for both load and price forecasting.
In contrast hand, the collection of chosen variables that will
be used as inputs, the learning algorithm, and the optimization
of their hyperparameters can all have a significant impact
on how well they function, and there is no one approach
that can ensure the best selection of these. Additionally,
ANNS can be resource intensive and typically need a lot
of data in order to perform better than other less flexible
methods. Due to the current low adoption of DR programs,
this may be a challenge for DR applications. Compared
to ANNS, supervised machine learning approaches are less
flexible, greater bias procedures, and primarily rely on feature
engineering and selection to achieve effective results. On the
other hand, supervised techniques like gradient boosting
and regression trees [249], [250] can manage missing
data effectively than ANNs. The benefit of Al forecasting
algorithms to produce forecasts that span several horizons in
time and space, as well as the ability to include uncertainty
in the forecasts, results in predictions that are more useful.
The performance of Al techniques for predicting, on the other
hand, can vary depending on the hyper-parameter tuning and
feature engineering they employ.

There are not so much labelled data points available in
the current DR environment to categorize customers [251].
As a result, the only workable method to tackle the
issue of segmenting electrical customers is to use unsuper-
vised/clustering models. Although clustering algorithms are
useful in this application, there are several difficulties with
them. These algorithms, among others, suffer from the ““curse
of dimensionality,” require data pre-processing to function,
and it is extremely difficult to evaluate the results [34].

Reinforcement Learning (RL) techniques typically do not
call for the use of an environment model, in contrast to more
conventional DR control mechanisms like Model Predictive
Control (MPC) [35]. This gives designers of DR control
systems that consider consumer preferences an advantage.
Deep RL has also been demonstrated to perform better
in high-dimensional problems [35]. The design of reward
signals, however, is a major problem for RL generally, with
consequences for its proper application in DR [35]. There
have been many instances where RL agents have discovered
novel ways to manipulate their environments so that rewards
are delivered but with unfavorable rules [35]. To the best of
our knowledge, there is very little research literature on this
subject in the energy DR.

Mostly, nature inspired algorithms are used for schedul-
ing purpose. The scheduling problem, in general, can be
extremely difficult, non-linear, and non-convex. Due to their
capacity for exploration and exploitation, these group of
algorithms can locate interesting solutions in a fair amount of
time [40]. They are parallel algorithms, which are robust and
adaptable to changing conditions and environments, among
other major benefits [40]. On the other hand, nature-inspired
approaches do not promise to discover the best solution,
and certain algorithms have their own limitations. Like PSO,
which can become stuck in local optima and have slow
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convergence rates, also GAs occasionally use sophisticated,
occasionally unintuitive functions in selection and crossover
operators and, if not correctly adjusted, can suffer from early
convergence and unpredictable results [40].

Key obstacles in allowing Al approaches are the availabil-
ity and access to high-quality data sources. There is a lack of
high-quality data in the energy industry, making it difficult
to create robust systems [10]. In addition, there is a need to
enhance the freshness, integrity, correctness, and consistency
of data used in energy Al applications [9]. Data management
and data governance techniques will become more important
as digital technologies advance so that these issues may be
dealt with effectively.

Widespread adoption inside and across applications
requires not just agreed upon methods, but also the accessibil-
ity of data points and computation solutions. Companies are
wary of sharing data to protect proprietary information and
keep their competitive edge. Distribution System Operators
(DSOs) and Transmission System Operators (TSOs) may
benefit greatly from an open and honest interchange of
operational information from distribution and transmission
grids. Because of this, TSOs and DSOs must establish what
data they need, the data’s quality, the data’s owner, and
how confidentiality and openness may be maintained [8].
However, optimization schemes and solutions can’t be
created or tested without access to public data sets. Green
Button and OpenEI in the United States and the ENTSO-E
Integrity Platform in the European Union are only two
examples of the many projects that encourage energy data
exchange among stakeholders. However, there is a need for
a rise in publicly accessible data on energy, since doing
so, together with opening up data from the public sector
and adopting common data standards, may assist to spur
innovation.

Data mining, machine learning, data analysis, data pro-
cessing, and data visualization are just some of the cutting-
edge methods that have been used to the energy industry.
The utilization of Big Data has become more simpler
because to the sophisticated technologies that have been
steadily improving and are now more widely available. The
development of new enterprises and the provision of new
services is facilitated by these cutting-edge data analysis
methods. For this reason, it is essential to discover untapped
markets by analyzing current data and developing data-
driven business models examines forty data-driven energy
industry startups as case studies of these novel business
models.

VIil. CONCLUSION

New demands, such as electric vehicles, heat pumps,
and the rising penetration of distributed energy resources
(DERs) provide new difficulties for electrical networks.
Grid operators may keep the electrical grid in balance by
investing low-cost on implementing proper DR schemes,
while eliminating the need for expensive enhancements
of the electrical network or investing in a great deal of
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expensive back-up generation, so DR providing a cost-
effective response to these difficulties. There is a significant
push to add domestic and commercial customers into the DR
portfolio, despite the fact that DR programs were initially
aimed for a selected group of major industrial and heavy
commercial users. This shift demands to appropriately choose
the end users contributing to a certain consumption hour,
but also to plan their usage, control units for DR, and
set the reward/ punishment schemes. Artificial intelligence
(AI) solutions have been widely employed by researchers
to accomplish these goals, particularly in cases when
more conventional methods failed to provide acceptable
outcomes.

To identify and explore the trends for Al techniques in the
energy DR industry, the authors here investigated through
more than 150 articles, as well as 35 plus businesses and
commercial efforts, and 20 significant projects. According to
the research that was analyzed for this paper, Al methods are
a potential tool for DR. Artificial intelligence (AI) usage is
crucial to the future success of DR programs. It is crucial for
successful use in a DR context to have a better grasp of Al
methodologies and their limits.

Our analysis revealed that many distinct AI methods are
in use, but it is evident that certain methods are better suited
than others for certain jobs. Using supervised learning, it was
shown that ANNs are widely utilized for short-term load and
price forecasting. ANNs are often used for multi-variable
function approximation and regression. On the other hand,
RL-based algorithms are typically employed to gather human
input, making them well-suited for control tasks in HEMS
that include a DR solution. For clustering problems at the
aggregator level, such as those involving DR customers,
unsupervised learning is often employed since it does
not need any previous knowledge of the categories. After
classifying and forecasting DR customers’ usage, aggregators
then set a date to activate DR participants and determine
incentives and punishments. It has been noted that standard,
stochastic optimization approaches are less accurate, and that
alternative, nature-inspired optimization techniques (such
as swarm intelligence) may be required for certain jobs.
The ideal pricing and scheduling method may also be
determined using multi-agent systems in game-theoretic
situations.

Our findings also demonstrated that the industrial sector
shares the increased enthusiasm of the research world for
Al solutions in the DR sector, as seen by the proliferation
of new start-ups in this area over the last several years.
Although these Al-in-DR trends are well-established, further
study is obviously required to determine the best solutions for
various situations. Many of the suggested remedies have not
been subjected to rigorous testing in the form of large-scale,
real-world trials and experiments. More research is needed,
together with industry projects and large-scale testing, to pave
the way for the development of more precise models and
Al-based solutions. Taking this road will enable AI/ML
methods to become commonplace in the energy DR industry.
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