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ABSTRACT This paper addresses the adaptive inverse optimal output regulation problem for a class
of uncertain nonlinear systems driven by an exosystem. The unknown parameters, internal disturbances,
and unmeasured states are contained in the nonlinear system. Firstly, the output regulation problem is
decomposed into a feedforward control design problem which can be solved by the internal model based on
the output regulation theory, and an adaptive inverse optimal stabilization problem. Then an auxiliary system
is designed, and a new state observer related to the auxiliary system is given. By combining adaptive control
technology and inverse optimal control method, a novel adaptive output feedback inverse optimal controller
is developed to make the output of the system track the reference signal fast. With this control strategy, all
the signals of the closed-loop system are uniformly ultimately bounded (UUB), and the newly well-defined
cost functional which is connected with the auxiliary system and the controller can be minimized. Finally,
a simulation case is put forward to verify the feasibility of the newly raised controller and the state observer.

INDEX TERMS Uncertain nonlinear systems, optimal output regulation, state observer, adaptive
backstepping control, inverse optimal control, internal model, the state observer.

I. INTRODUCTION
The nonlinear output regulation problem (ORP) has received
great attention as the development of control theory and
applications. The ORP aims to design a controller which can
not only guarantee the stability of the system, but also ensure
the output of the system to track the reference signals or reject
the disturbance, where the reference signals and disturbances
are both generated by an exosystem. The nonlinear ORP
can be encountered in many practical problems, such as
attitude tracking and disturbance rejection of aircraft [1],
[2], [3]. Recently, many fruitful results have been sprung
out to solve the ORP [4], [5], [6]. At the same time,
some researchers note that there always exist uncertainties
in many practical engineering systems, such as unmodeled
dynamics and unknown parameter vectors [7], [8]. These
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will have a significant influence on the performance, so it
is meaningful to research the output regulation problem of
uncertain nonlinear systems. At present, adaptive control is an
effective way to solve the uncertainty in the system [9], [10],
[11], [12], [13], [14]. Based on adaptive control, in [12], [13],
and [14], the ORP for a class of uncertain nonlinear systems
that were driven by an exosystem. When the exosystem is
equal to zero, the output regulation problem is a stabilization
problem [9], [10], [11]. That is to say, the stabilization is
just a special case of the output regulation problem. For a
class of uncertain nonlinear systems with unknown parameter
vectors and disturbances, a control strategy was put forward
in [15] based on the adaptive internal model and dynamic
surface control, and then the ORP was solved. However, the
studies mentioned above do not pay attention to the issue of
optimal control, which is a critical problem in the modern
control field. In many control systems, optimal controllers
are needed because of scarce resources. Taking the attitude
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tracking control of spacecraft as an example, it may minimize
fuel consumption, or it needs the optimal combination of fuel
and time consumption.

Recently, a lot of effort has been made regarding optimal
control [16], [17]. For nonlinear systems, the difficulty in
coping with the optimal control problem is to seek the
solutions of the Hamilton-Jacobi-Bellman (HJB) equation.
To avoid this problem, in [18] and [19], with the help of neural
networks, the approximate solutions of the HJB equation
were obtained. Then the optimal control problem of nonlinear
systems was addressed. However, the approximate errors
will be produced with the method of [18] and [19]. If the
errors are not small enough, then the optimal performance
can be damaged. The inverse optimal control was proposed
in [20] and [21], which is a method to design a controller
based on the control Lyapunov function (CLF), rather than
to design the controller by minimizing the pre-determined
cost functional. In the framework of [21], the stabilization
problem of nonlinear systems with unknown parameter vec-
tors was investigated in [22]. Nevertheless, there still exists a
restriction that the nonlinear functions must be known, which
will limit the application scope. By removing this restriction,
the unknown nonlinear functions were approached by fuzzy
logic systems (FLSs). Then an adaptive fuzzy state feedback
inverse optimal controller was designed [23]. In practical
problems, most of the states cannot be measured directly,
so a fuzzy state observer and an adaptive fuzzy output
feedback inverse optimal controller were designed in [24].
Some applications of the inverse optimal control method can
be seen in [25] and [26]. However, it is worth mentioning that
the inverse optimal method is mainly employed to solve the
stabilization problem of nonlinear systems. This method does
not use to solve the ORP, which is widespread in practical
problems. In reference [27], the inverse optimal control
method was extended to the ORP of nonlinear systems with
a minimum phase. But there are two main limitations in [27].
One is that the control system does not have any uncertain
terms, which are usually appeared in system modeling, and
the other is that all the states are measured directly.

Motivated by the above investigations, this paper inves-
tigates the adaptive inverse optimal ORP for a class of
uncertain nonlinear systems with unknown time-varying
bounded disturbances, unknown parameter vectors, and
unmeasured states. The proposed controller not only ensures
that all signals of the closed-loop system are UUB, but
also minimizes the cost functional. Although the [27] also
researches this kind of problem, the unknown time-varying
bounded disturbances, unknown parameter vectors, and
unmeasured states are not taken into account in [27], so the
existing controller is invalid. The main difficulty of our paper
is how to give a reasonable cost functional. Although the
form of the cost functional is similar to [20], [21], [22], [23],
[24], and [27], there are still some differences. Because of the
exosystem, the internal model must be employed such that the
exosystem can be immersed in it. Then, the internal model
must be considered in the cost functional which is different

from [20], [21], [22], [23], and [24]. Due to unmeasured
states, the proposed cost functional must be related to the state
observer, so the cost functional in [27] is unsuitable.

To overcome the above difficulties, compared with the
existing results, the innovations of this paper are as follows:

(i)A novel adaptive output feedback inverse optimal con-
troller is developed by utilizing adaptive control technology,
and inverse optimal control method. Different from previous
studies, the newly designed controller is associated with
the auxiliary system. By using the inverse optimal control
method, it is proved that all signals of the closed-loop system
are UUB. And compared with the [15], the output of the
controlled system can track the reference signals faster.

(ii)An well-defined cost functional which is connected
with the internal model and the state observer is given. The
functions l(x) and γ in the given cost functional are designed
differently from [20], [21], [22], [23], [24], and [27], and the
proposed controller can minimize the proposed functional.

(iii) An auxiliary system is constructed. A new internal
model and a state observer are given related to the auxiliary
system, and the state observer can be designed to estimate the
unmeasured states.

The rest of this paper is organized as follows. Section 2 pro-
vides a brief problem formulation on the output regu-
lation problem as well as some preliminary knowledge.
Section 3 demonstrates the design of the state observer.
An internal model is designed in Section 4. An adaptive
fuzzy inverse optimal controller is designed in Section 5.
Section 6 presents the stability analysis of the closed-loop
system and the minimization of cost functional. Finally,
Section 7 includes numerical simulation results, and the
conclusion is drawn in section 8.

II. PROBLEM FORMULATION AND PRELIMINARY
Consider a class of nonlinear systems as follows

ξ̇i = ξi+1 + f Ti (4i)θ + gi(4i)d(t)+ Di(w),

i = 1, 2, · · · , n− 1,

ξ̇n = u+ f Tn (4n)θ + gn(4n)d(t)+ Dn(w),

y = ξ1,

e = y− R(w), (1)

where 4 = [ξ1, ξ2, · · · , ξn]T is the state vector, 4i =

[ξ1, ξ2, · · · , ξi]T ∈ Ri(i = 1, 2, · · · , n), u ∈ R is the control
input, y ∈ R denotes the output, θ ∈ Rr is an unknown
parameter vector. fi ∈ Rr and gi ∈ R(i = 1, 2, · · · , n) are
known smooth and bounded functions. d(t) is an unknown
time-varying bounded disturbance, Di(w)(i = 1, 2, · · · , n)
and R(w) are undesirably external disturbance and reference
input respectively, e is the tracking error,w is produced by the
following exosystem

ẇ = Sw, (2)

where w ∈ W , W is a compact set.
It is worth mentioning that systems (1) and (2) can be

obtained in practical problems. For example, the dynamic
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model is established to solve the attitude tracking and
disturbance rejection problem of a rigid spacecraft, and the
model can be disturbed by the external disturbance torque.
This is a special example of ORP [2].

The control objective of this paper is to design a state
observer, an adaptive laws and an adaptive inverse optimal
output feedback controller, such that the output of (1) can
track the reference signals, all the signals of the closed-loop
system are UUB and the cost functional is minimized.

To study the ORP, the following assumptions are
introduced.
Assumption 1 [17]: Let fi(4i) ∈ �r ⊂ Rr and gi(4i) ∈

� ⊂ R, 1 ≤ i ≤ n, they are bounded satisfying ‖fi(4i)‖ ≤
mi, |gi(4i)| ≤ li, where mi and li are known constants, �r
and � are compact set.
Assumption 1 is combined frequently with the work of

adaptive backstepping control, as it is seen in [10] and
[17], which solve the tracking control problem of nonlinear
systems.
Assumption 2 [6]: The matrix S has distinct eigenvalues

on the imaginary axis.
Assumption 2 means that w is bounded and persistent,

and the exosystem is neutrally stable. This is a common
assumption for the QRP.
Assumption 3 [6]: For nonlinear systems like

ξ̇ = f (ξ,w)+ g(ξ,w)u,

e = h(ξ,w),

w = S̃w, (3)

there exists a continuously differentiable mapping ξ = π(w),
with π (0) = 0,∀w ∈ W ∗, and a continuous mapping α(w)
that solve the equations

∂π (w)
∂w

S̃w = f (π,w)+ g(π,w)α(w),

0 = h(π,w), (4)

whereW ∗ is a compact set.
Assumption 3 is a necessary and sufficient condition for the

existence of the solutions for an output regulation problem,
which can be seen in many articles [5], [6].

According to Assumption 3, let π1(w) = R(w). The solu-
tions of regulator equations satisfy the following equations

π1(w) = R(w),

πi+1(w) = π̇i(w)− f Ti (5i)θ − gi(5i)d(t)− Di(w),

i = 1, 2, · · · , n− 1,

α(w) = π̇n(w)− f Tn (5n)θ − gn(5n)d(t)− Dn(w), (5)

where 5i = [π1, π2, · · · , πi] ∈ Wi ⊆ Ri, Wi is compact
set. Define the state transformation as xi = ξi − πi(w), and a
newly closed-loop system is produced as

ẋi = xi+1 + FTi (Xi)θ + Gi(Xi)d(t),

i = 1, 2, · · · , n− 1,

ẋn = u− α(w)+ FTn (Xn)θ + Gn(Xn)d(t),

e = x1, (6)

where Xi = (x1, x2, . . . , xi), Fi(Xi) = fi(4i) − fi(5i),
Gi(Xi) = gi(4i) − gi(5i), i = 1, 2, . . . n. Then we have
‖Fi‖ ≤ Mi, |Gi| ≤ Li, where Mi and Li, i = 1, 2, · · · , n are
given constants. Based on the above operation, it can be seen
easily that the ORP of controlled system (1) and exosystem
(2) can be converted into a stabilization problem of (6).

To achieve the target of this paper, the following important
definition and lemmas are needed.
Definition 1 [21]: The inverse optimal gain assignment

problem for the system (6) is solvable if there exists a class
K∞ function γ whose derivative γ ′ is also a class K∞
function, a matrix value function R(x) satisfying R(x) =
RT (x) > 0 for all x, positive definite unbounded functions
l(x) and E(x), and a feedback law u = u∗ that is continuous
away from the origin with u∗(0) = 0. Then the cost functional

J (u)= sup
d∈D
{ lim
t→∞

[E(x)+
∫ t

0
(l(x)+ uTR(x)u− γ (|d |))dτ ]}

(7)

is minimized, whereD is the set of locally bounded functions
of x.
Lemma 1 [21]: If γ and its derivative γ ′ are class K∞

functions, the Legendre-Fenchel transform will satisfy the
following properties:

(1) `γ (v) = v(γ ′)−1(v)− γ ((γ ′)−1(v)) =
∫ v
0 (γ
′)−1(s)ds;

(2) ``γ = γ ;
(3) `γ is a class K∞ function;
(4) `γ (γ ′(v)) = vγ ′(v)− γ (v).
Lemma 2 [21]: For any two vectors a and b, the following

inequality holds

aT b ≤ γ (|a|)+ `γ (|b|), (8)

and the equality is achieved if and only if b = γ ′(|a|) a
|a| , that

is a = γ ′−1(|b|) b
|b| .

III. STATE OBSERVER DESIGN
In this part, a state observer is designed to estimate the
unmeasured state.

Giving nonlinear system like

ẋ = a(x)+ b(x)u+ q(x), (9)

where x ∈ Rn and u ∈ R are the state vector and the control
input, a(x) and b(x) are smooth functions, q(x) is an unknown
bounded disturbance vector. An auxiliary system of (9) can be
constructed as

ẋ = a(x)+ `γ (2|LV |)
(LV )T

|LV |2
+ b(x)u, (10)

where γ is a function which can be selected according to
Lemma 1, V (x) is the same as that in (20), and LV is Lie
derivative.

Now, define a function γ (v) = v2
µ
, `γ (2v) = µv2, µ 6= 0 is

an arbitrary constant. Using (9) and (10), the auxiliary system

VOLUME 11, 2023 865



G. Meng, Y. Lv: Observer-Based Adaptive Inverse Optimal Output Regulation for a Class of Uncertain Nonlinear Systems

of (6) can be built as

ẋi = xi+1 + FTi (Xi)θ + µGi(Xi)
n∑

k=1

∂V
∂zk

Gk (Xk ),

i = 1, 2 · · · n− 1,

ẋn = u− α(w)+ FTn (Xn)θ + µGn(Xn)
n∑

k=1

∂V
∂zk

Gk (Xk ),

e = x1. (11)

For convenience, rewrite (11) as

ẋ = Ax + Ke+ B(u− α(w))+
n∑
i=1

Bi(FTi (Xi)θ

+µGi(Xi)
n∑

k=1

∂V
∂zk

Gk (Xk )), (12)

where

A =


−k1 1 · · · 0
...

...
. . .

...

−kn−1 0 · · · 1
−kn 0 · · · 0

 , K =


k1
...

kn−1
kn

 ,
B = [0, · · · , 0, 1]T , Bi = [0, · · · , 0, 1, 0, · · · , 0]T , and the
parameter ki is chosen such that the matrix A is Hurwitz.

The state observer can be constructed as

˙̂x = Ax̂ + Ke+ B(u− α(w))+
n∑
i=1

Bi[FTi (X̂i)θ̂

+µGi(X̂i)
n∑

k=1

∂V
∂zk

Gk (X̂k )], (13)

where θ̂ is an estimation of θ , x̂ = [x̂1, x̂2, · · · , x̂n]T .
Let ẽ = [ẽ1, ẽ2, · · · , ẽn]T = x − x̂, we have

˙̃e = Aẽ+ FT (·)θ̃ +
n∑
i=1

Bi(FTi (Xi)− F
T
i (X̂i))θ

+µ

n∑
i=1

Bi
n∑

k=1

(GTi (Xi)
∂V
∂zk

GTk (Xk )

−GTi (X̂i)
∂V
∂zk

GTk (X̂k )), (14)

where FT (·) = [FT1 (X̂1),F
T
2 (X̂2), · · · ,F

T
n (X̂n)]

T , θ̃ = θ − θ̂ .

IV. INTERNAL MODEL
In this section, an internal model is constructed.
Assumption 4 [6]: There exist a set of real numbers

a1, . . . , an−1 such that α(w) satisfies the equation

LpSα(w) = a0α(w)+ a1LSα(w)+ ap−1L
p−1
S α(w), (15)

where LSα(w) = (∂α(w)/∂w)Sw and the characteristic
polynomial xp−ap−1xp−1− . . .−a0 has distinct roots on the
imaginary axis.

This is a common assumption to solve the ORP, which can
help us design an internal model.

According to Assumption 4, we obtain

∂χ (w)
∂w

Sw = ψχ(w), α(w) = 0χ (w), (16)

where

ψ =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
a0 a1 · · · ap−1

 , χ(w) =


α(w)
LSα(w)
...

Lp−2S α(w)
Lp−1S α(w)

 ,

0 =
[
1 0 · · · 0

]
, (ψ,0) is observable, so the Sylvester

equation Tψ − MT = NT have unique non-singular
solution T .
Under the above analysis, the exosystem with the output

α(w) can be immersed in the normalized form of the internal
model as follows

η̇ = (M + Nφ)η,

α(w) = φη, (17)

where φ = 0T−1, η ∈ Rn×1,N ∈ Rn×1,M ∈ Rn×n is a
Hurwitz matrix, (M ,N ) is controllable.
For the normalized form of internal model, based on the

principle of deterministic equivalence we can obtain the error
form of internal model as

˙̂η = (M + Nφ)η̂ + χ (·), (18)

where χ (·) is a designed function.
The internal model is an useful tool to deal with the ORP,

and it can help us design a feedforward controller which is a
part of the whole controller.

V. ADAPTIVE INVERSE OPTIMAL CONTROLLER DESIGN
In this section a controller is designed, and the controller
can make all the signals of the closed-loop system UUB.
In addition, the proposed cost functional can be minimized.

Define a series of coordinate transformations as

z1 = x1,

zi = x̂i − αi−1, i = 2, · · · , n, (19)

where αi is virtual control law. Then our task is to design the
control input u.
Design the CLF as

V = Ve + Vη + V0, (20)

where Ve = 1
2 ẽ

TQẽ, Vη = 1
2 η̃

TRη̃, η̃ = η̂ − η − Ne, V0 =
n∑

k=1

1
2 z

2
k +

1
2κ θ̃

T θ̃ , κ > 0 is a designed constant, R = RT and

QT = Q satisfyingMTR+RM = −2U ,ATQ+QA = −2P.
U and P are positive definite matrices.
By virtue of (14), the derivative of Ve can be calculated as

V̇e = −ẽTPẽ+
1
2
[θ̃TF(·)Qẽ+ ẽTQFT (·)θ̃
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+

n∑
i=1

θT (Fi(Xi)− Fi(X̂i))BTi Qẽ

+ ẽTQ
n∑
i=1

Bi(FTi (Xi)− F
T
i (X̂i))θ

+ ẽTQµ
n∑
i=1

Bi
n∑

k=1

(Gi(Xi)Gk (Xk )

−Gi(X̂i)Gk (X̂k ))zk +
n∑
i=1

((Gi(Xi)Gk (Xk )

−Gi(X̂i)Gk (X̂k ))zk )TBTi Qẽ]. (21)

Based on Young’s inequality, we obtain

1
2
θ̃TF(·)Qẽ ≤

1
4
‖Q‖2

n∑
i=1

M2
i θ̃

T θ̃ +
1
4
ẽT ẽ,

1
2

n∑
i=1

θT (Fi(Xi)− Fi(X̂i))BTi Qẽ

≤
1
2
nẽT ẽ+

1
2
‖Q‖2

n∑
i=1

M2
i θ

T θ,

1
2
ẽTQµ

n∑
i=1

Bi
n∑

k=1

(Gi(Xi)Gk (Xk )− Gi(X̂i)Gk (X̂k ))zk

≤

n∑
i=1

aiz2i +
1
2
µn2‖Q‖2ẽT ẽ, (22)

where ai = 1
2

∑n
k=1 µL

2
i L

2
k .

Substituting (22) into (21), we get

V̇e ≤ −a0ẽT ẽ+ 2
n∑
i=1

aiz2i + D0 +
1
2
‖Q‖2

n∑
i=1

M2
i θ̃

T θ̃ ,(23)

where a0 = λmin(Q) − 1
2 − µn2‖Q‖2 − n,D0 =

‖Q‖2
n∑
i=1

M2
i θ

T θ.

Due to (10), it yields

˙̃η = (M + Nφ)η̂ − (M + Nφ)η + χ (·)− N (x̂2

+ ẽ2 + FT1 (X̂1)θ + µG1(X̂1)
n∑

k=1

∂V
∂zk

Gk (X̂k )). (24)

The function χ (·) can be designed as

χ (·) = −(M + Nφ)Ne+ N (x̂2

+µG1(X̂1)
n∑

k=1

∂V
∂zk

Gk (X̂k )), (25)

thus the derivative of Vη is given as

V̇η = −η̃T Sη̃ +
1
2
η̃TNTφTRη̃ +

1
2
η̃TRNφη̃

−
1
2
η̃TRNFT1 (X̂1)θ −

1
2
θTF1(X̂1)NTRη̃

−
1
2
η̃TRNẽ2 −

1
2
ẽT2N

TRη̃. (26)

With the help of Young’s inequality, we obtain

−
1
2
η̃TRNẽ2 ≤

1
4
η̃T η̃ +

1
4
‖RN‖2 ẽT2 ẽ2,

−
1
2
θTF1(X̂1)NTRη̃ ≤

1
4
η̃T η̃ +

1
4
‖RN‖2M2

1 θ
T θ. (27)

Taking (27) into (26), we get

V̇η ≤ −3η̃T η̃ +
1
2
‖RN‖2M2

1 θ
T θ +

1
2
‖RN‖2 ẽT ẽ, (28)

where 3 = λmin(U )− λmax(RNφ)− 1.
The derivative of V0 is

V̇0 =
n−1∑
i=1

zi[zi−1 + αi + Hi]−
n∑
i=1

∂αi−1

∂e
zi[ẽ2

+FT1 (X1)θ + µG1(X1)
n∑

k=1

zkGk (Xk )]

+ zn[u− α(w)+ Hn −
∂αn−1

∂θ̂

˙̂
θ ]

−

n−1∑
i=1

∂αi−1

∂θ̂

˙̂
θ − κ−1θ̃T ( ˙̂θ − κ

n−1∑
k=1

FTk (X̂k )zk )

+

n−1∑
k=1

θ̃TFTk (X̂k )zk , (29)

where ϕi = Gi(X̂i) −
i−1∑
j=1

∂αi−1
∂ x̂j

Gj(X̂j), ηi = FTi (X̂i) −

i−1∑
j=1

∂αi−1
∂ x̂j

FTj (X̂j), Hi = −µGi(X̂i)
i−1∑
k=1

zkϕk (X̂k ) −

µϕi(X̂i)
i−1∑
k=1

zkGk (X̂k ) − µziGi(X̂i)ϕi(X̂i) − k1ẽ1 +
i−1∑
j=1

∂αi−1
∂ x̂j

(x̂j+1 + kjẽ1)− ηi(X̂i)θ̂ +
∂αi−1
∂e x̂2, i = 1, 2, · · · , n.

By using Young’s inequality, it is easy to obtain

znknẽ1

≤
1
2
z2n +

1
2
k2n ẽ

T
1 ẽ1,

θ̃TFTk (X̂k )zk

≤
1
2
z2k +

1
2
M2
k θ̃

T θ̃ ,

−
∂αi−1

∂e
ziẽ2 ≤

1
2
z2i +

1
2
(
∂αi−1

∂e
)2ẽT2 ẽ2,

−
∂αi−1

∂e
ziFT1 (X1)θ ≤

1
2
z2i +

1
2
(
∂αi−1

∂e
)2M2

1 θ
T θ,

−
∂αi−1

∂e
ziµG1(X1)

n∑
k=1

zkGk (Xk )

≤
1
2
nµz2i +

1
2
µ

n∑
k=1

(
∂αi−1

∂e
)2L21L

2
k z

2
k . (30)

Based on (29) and (30), the virtual controller can be
designed as

αi = −cizi − zi−1 − Hi − (
3
2
+

1
2
nµ)zi −

∂αi−1

∂θ̂
σ θ̂
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+
∂αi−1

∂θ̂

i∑
k=1

FTk (X̂k )zk + κ
i−1∑
k=1

zk
∂αk

∂θ̂
FTk (X̂k )

− 2aizi −
1
2
µ

n∑
k=1

(
∂αi−1

∂e
)2L21L

2
k zi, (31)

where ck > 0 and σ > 0 are designed constants, so (29) is
converted into

V̇0 ≤ −
n−1∑
i=1

ciz2i + β ẽ
T ẽ+ δθT θ + εθ̃T θ̃

+ zn(u− α(w)+ Hn −
∂αn−1

∂θ̂

˙̂
θ )− κ−1θ̃T ( ˙̂θ

− κ

n∑
k=1

FTk (X̂k )zk )−
n−2∑
i=1

∂αi

∂θ̂
zi+1(
˙̂
θ

− κ

n−1∑
k=1

FTk (X̂k )zk )−
n−2∑
i=1

∂αi

∂θ̂
σ θ̂ . (32)

where β = 1
2

n∑
i=1

( ∂αi−1
∂e )2, δ = 1

2

n∑
i=1

( ∂αi−1
∂e )2M2

1 , ε =
n−1∑
i=1

M2
i .

Choose the adaptive law as

˙̂
θ = κ

n−1∑
k=1

FTk (X̂k )zk − σ θ̂, (33)

where σ > 0 is a designed constant.
From (19), we conclude that each αi will vanish when z =

0. Then based on the [21] and theMean Value Theorem, there
exists a smooth function φk such that

−

n−1∑
j=1

∂αn−1

∂ x̂j
x̂j+1 −

∂αn−1

∂θ̂

˙̂
θk

−
∂αn−1

∂e
x̂2 + ηnθ̂ =

n∑
i=1

φnzn. (34)

Substituting (33), (34) into (32), we have

V̇0 ≤ −
n−1∑
i=1

ciz2i + β ẽ
T ẽ+ δθT θ + εθ̃T θ̃

+ zn[u− α(w)+ (
3
2
+

1
2
µn)zn

+

n∑
i=1

8izi]+
σ

κ
θ̃T θ̂ +

1
2
k2n ẽ

T ẽ, (35)

where 8i = φi + µGn(X̂n)ϕk (X̂k ) + µϕn(X̂n)Gk (X̂k ),
i = 1, 2, . . . , n − 2,8n−1 = φn−1 + 1 +
µGn(X̂n)ϕn−1(X̂n−1) + µϕn(X̂n)Gn−1(X̂n−1),8n = φn +

µϕn(X̂n)Gn(X̂n).
Let u0 = u− φη̂ + φNe, then u0 can be designed as

u0 = −(cn + 2+
1
2
µn+

n∑
i=1

82
i

2ci

+
1
2
µ

n∑
k=1

(
∂αi−1

∂e
)2L21L

2
k )zn

= −M−1(x̂)zn, (36)

where M−1(x̂) = cn + 2 + 1
2µn +

n∑
i=1

82
i

2ci
+

1
2µ

n∑
k=1

( ∂αi−1
∂e )2L21L

2
k > 0.

Substituting (36) into (35) results in

V̇0 ≤ −
1
2

n∑
i=1

ciz2i + znψη̃ −
1
2

n∑
i=1

ci(zi −
8i

ci
zn)2

−
1
2
z2n +

σ

κ
θ̃T θ̂ +

1
2
k2n ẽ

T ẽ+ β ẽT ẽ+ δθT θ

+ εθ̃T θ̃ +

n∑
i=1

biz2i . (37)

By applying Young’s inequality, we get

znφη̃ ≤
1
2
z2n +

1
2
‖φ|2η̃T η̃,

σ

κ
θ̃Tθ̂ ≤

σ

2κ
θT θ −

σ

2κ
θ̃T θ̃ . (38)

Then the derivative of V is

V̇ ≤ −
n∑
i=1

ciz2i −�θ̃
T θ̃ +2ẽT ẽ−9η̃T η̃ + D, (39)

where � = σ
2κ −

1
2‖Q‖

2
n∑
i=1

M2
i − ε > 0,2 = a0 −

1
2k

2
n −

1
2‖RN‖

2
− β > 0, 9 = 3 − 1

2‖φ‖
2 > 0,D =

D0 + ( 12‖RN‖
2M2

1 +
σ
2κ + δ)θ

T θ.

VI. STABILITY AND PERFORMANCE ANALYSIS
In this part, the feasibility of the controller can be proved,
including the stability of the closed-loop system and the
minimization of the cost functional.
Theorem 1: For system (6) and auxiliary system (10),

if the Assumptions hold, there exists state observer (12),
internal model (17), adaptive law (33), and control input
(36) which guarantee all the signals in the closed-loop
system are UUB, the observer can estimate the unmea-
sured states well. Moreover, the inverse optimal control
input u∗0 = −ρu0 can minimize the following cost
functional

J (u) = sup
d∈D
{ lim
t→∞

[2ρV (x̂)+
∫ t

0
(l(x̂)+ uT0M (x̂)u0

− ρϑγ (
ρ|d |
ϑ

))dv]}, (40)

where ρ ≥ 2, ϑ ≤ 2, M (x̂) is designed in (36), and

l(x̂) = −2ρ[−
∂V

∂θ̃

˙̂
θ +

∂V
∂η̃
˙̃η +

∂V
∂ ẽ
˙̃e+ LFV −

∂V
∂x

H η̃

+ `γ (2|LGV |)−
∂V
∂x

M−1(x̂)(
∂V
∂x

)T ]

+ ρ(2− ϑ)`γ (|LGV |)+ρ(ρ − 2)
∂V
∂x

M−1(x̂)(
∂V
∂x

)T .

(41)
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Proof:
For inequality (39), let

1 = min{2Ci,
22

λmax(Q)
,

29
λmax(R)

,
2κ
�
}, i = 1, 2, · · · , n,

(42)

we obtain

V̇ ≤ −1V + D. (43)

From (43), it can be seen obviously that all the signals in
the closed-loop system are UUB. Next, we will prove the
controller u∗0 can minimize the cost functional (40).
Rewrite system (4) as the following form

ẋ = F(x, θ)+ G(x)d(t)+ B(u− α(w)), (44)

where B = [0, 0, · · · , 1]T , F(x, θ) = [x2 +
FT1 (X1)θ, · · · , xn + FTn−1(Xn−1)θ,F

T
n (Xn)θ ]

T , G(x) =

[G1(X1),G2(X2), · · · ,Gn(Xn)]T .
Based on (8) and (9), the auxiliary system of (40) can be

expressed as

ẋ = F(x, θ)+ G(x)`γ (2|LGV |)
(LGV )T

|LGV |2
+ B(u− α(w)).

(45)

Note that system (44) is UUB based on (43), due to
Lasalle-Yoshizawa invariant set theorem, there exists a
continuous positive functionW (x̂) such that

−
∂V

∂θ̃

˙̂
θ +

∂V
∂η̃
˙̃η +

∂V
∂ ẽ
˙̃e+ LFV + `γ (2|LGV |)

−
∂V
∂x

M−1(x̂)(
∂V
∂x

)T −
∂V
∂x

H η̃ ≤ −W (x̂). (46)

It is easy to see that l(x̂) satisfies

l(x̂) ≥ 2ρW (x̂)+ ρ(2− ϑ)`γ (|LGV |)

+ ρ(ρ − 2)
∂V
∂x

M−1(x̂)(
∂V
∂x

)T , (47)

since ρ ≥ 2, ϑ ≤ 2, W (x̂) > 0, `γ is a class K∞
function. Then l(x̂) > 0. Therefore, the cost functional J (u)
is meaningful.

The function d(t) is expressed as d in the following
derivation.

Substituting (41) into (40), J (u) can be converted into

J (u) = sup
d∈D
{ lim
t→∞

[2ρV (x)− 2ρ
∫ t

0
dV +

∫ t

0
(u0

− u∗0)
TM (x̂)(u0 − u∗0)dv+

∫ t

0
(ρϑ1(d, d∗))dv]},

(48)

where

1(d, d∗) = −γ (
|d |
ϑ

)+ γ ′(
|d∗|
ϑ

)
(d∗)T

ϑ |d∗|
d − `γ (γ ′(

|d∗|
ϑ

)),

d∗ = ϑ(γ ′)−1(2LGV )
(LGV )T

|LGV |
. (49)

By employing Lemma 1 and Lemma 2, the following
inequality can be got

1(d, d∗) ≤ −γ (
|d |
ϑ

)− `γ (γ ′(
|d∗|
ϑ

))

+ γ (
|d |
ϑ

)+ `γ (γ ′(
|d∗|
ϑ

)) = 0, (50)

1(d, d∗) = 0 if and only if |d |
ϑ
= (γ ′)−1(γ ′( |d

∗
|

ϑ
)) d

∗

|d∗| , that is
d = d∗. Thus we have

sup
d∈D
{ lim
t→∞

∫ t

0
ρϑ1(d, d∗)dv} = 0. (51)

Based on the above analysis, we conclude that the inverse
optimal controller u∗0 can minimize J (u) as

Jmin(u) = 2ρV (0), (52)

where ρ ≥ 2. Thus the proof of this theorem is completed.
In order to minimize the cost functional, the parameter %

can be designed as % = 2 based on % ≥ 2. Then the cost
functional reaches the minimum value J (u) = 4V (0).

VII. SIMULATION
In this section, a simulation example is presented to check out
the above method.
Example: Consider the following nonlinear systems

ξ̇1 = ξ2 + w2 + sin ξ1θ + w1,

ξ̇2 = u− w2 + d(t),

y = ξ1,

e = y− w1, (53)

where 4 = [ξ1, ξ2]T represents the state vector, θ is an
unknown parameter vector, u and y are the control input
and the output respectively, the disturbance d(t) = cos(2t),
w = [w1,w2]T is generated by the following exosystem

ẇ1 = w2,

ẇ2 = −w1. (54)

The solutions of the regulator equation are π1(w) =
w1, π2(w) = −w1 − sinw1θ . Let xi = ξi − πi(w), and a
new closed-loop system is generated

ẋ1 = x2 + (sin(x1 + w1)− sinw1)θ,

ẋ2 = u− α(w),

e = x1, (55)

where α(w) = −w2 cosw1θ − d(t).
Selecting the observer gain as k1 = 3, k2 = 24, the state

observer of (55) is designed as

˙̂x1 = x̂2 + (sin(x̂1 + w1)− sinw1)θ̂ + k1(x1 − x̂1),
˙̂x2 = u− α(w)+ k2(x1 − x̂1),

e = x1. (56)
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FIGURE 1. Trajectory of e in this paper.

According to (17), choose φ =
(
1 3

)
,M =(

0 1
−2 −3

)
,N =

(
0
1

)
, the internal equation is given as

˙̂η1 = η̂2 − e,
˙̂η2 = −η̂1 + x̂2. (57)

According to the design process of the controller, we have

α1 = −c1z1 − (
3
2
+ µ)z1,

z2 = x̂2 + c1z1 + (
3
2
+ µ)z1,

∂α1

∂ x̂1
x̂2 −

∂α1

∂θ̂

˙̂
θk −

∂α1

∂e
x̂2 + η2θ̂

= (c1 +
3
2
+ µ)z2 − (c1 +

3
2
+ µ)2z1

= φ1z1 + φ2z2,

u = η̂1 + 3η̂2 − 3e− [c2 + 2+ nµ

+
1
2c1

(1− (c1 +
3
2
+ µ)2)2 +

1
2c2

(c1 +
3
2
+ µ)2]z2,

˙̂
θ = κ(sin(x1 + w1)− sinw1)x1 − σ θ̂ . (58)

The parameters of adaptive laws and control input are
chosen as c1 = 20, c2 = 10, κ = 1, σ = 0.1,
µ = 1, ρ = 2. The initial values are chosen as ξ1(0) =
0, ξ2(0) = 0.3,w1(0) = 1,w2(0) = 0.5, η̂1(0) = 0,
η̂2(0) = 0, θ̂ (0) = 1.

According to simulation results in FIGURE 1-4, we can
see that the controller and adaptive law (58) designed in this
paper can guarantee that all the signals of the closed-loop
system (55) are UUB, the output of the system (53) can track
the reference signal, and the state observer can estimate the
states of the system (55) as they are shown in FIGURE 3 and
FIGURE 4. Compared with [15], the tracking error in this
paper is smaller, and the speed of convergence is faster, which
can be seen in FIGURE.1 and FIGURE.2.

As it is shown in (40), (41) and (48), we can get that∫ t
0 (ρ − 1)2uTM (x̂)udv =

∫ t
0 (u − u∗)TM (x̂)(u − u∗)dv =

0 by using the controller u = u∗. Furthermore, we have
sup
d∈D
{ lim
t→∞

∫ t
0 ρ1(d, d∗)dv} = 0, so the controller designed in

this paper can make the cost functional minimized as J1(u) =
2ρV (0). However, by using the controller designed in [15],

FIGURE 2. Trajectory of e with the method of [15].

FIGURE 3. Trajectories of x1 and ξ1.

FIGURE 4. Trajectories of x1 and x̂1.

we can not guarantee
∫ t
0 (ρ − 1)2uTM (x̂)udv = 0, it must be∫ t

0 (ρ − 1)2uTM (x̂)udv ≥ 0. Therefore, the minimum value
of the cost functional is J2(u) = 2ρV (0)+ sup{ lim

t→∞
[
∫ t
0 (ρ −

1)2uTM (x̂)udv]}. It can be seen obviously that J1(u) ≤ J2(u),
so the method in this paper can make the cost functional
smaller compared with the method of [15].

VIII. CONCLUSION
In this paper, the issue of the optimal ORP is addressed for a
class of nonlinear systems which are driven by an exosystem.
The considered nonlinear systems contain unknown param-
eter vectors, and internal bounded disturbances. By a state
transformation, a closed-loop system is obtained, and an
auxiliary system is designed. A state observer related to the
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auxiliary system is raised to estimate the unmeasured state.
A novel adaptive output feedback inverse optimal controller
and adaptive law are designed by employing adaptive control
technology and inverse optimal control method. It has
been proved that the new controller makes all the signals
of the closed-loop system be UUB, and the well-defined
cost functional is minimized. Finally, a simulation case is
given to testify the feasibility of the newly raised controller
and state observer. Compared with the result in [15], the
speed of convergence is faster in this paper. In the future,
we will research the finite-time optimal output regulation
for a class of uncertain nonlinear systems with time-delay
and unknown nonlinear functions, and we will consider
combining the proposed control method with the mobile
robots and quadrotors control.
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