
Received 15 November 2022, accepted 9 December 2022, date of publication 15 December 2022, date of current version 5 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3230008

Resource-Restricted Environments Based
Memory-Efficient Compressed Convolutional
Neural Network Model for Image-Level
Object Classification
ZAHRA WAHEED 1, SHEHZAD KHALID 1, SYED MURSLEEN RIAZ 2,
SAJID GUL KHAWAJA2, AND RIMSHA TARIQ2
1Department of Computer Engineering, Bahria University, Islamabad 44000, Pakistan
2Department of Computer Engineering, College of Electrical and Mechanical Engineering, National University of Sciences
and Technology, Rawalpindi 46000, Pakistan

Corresponding author: Zahra Waheed (engg.zahra@gmail.com)

ABSTRACT In the past decade, Convolutional Neural Networks (CNNs) have achieved tremendous success
in solving complex classification problems. CNN architectures require an excessive number of computations
to achieve high accuracy. However, these models are deficient due to the heavy cost of storage and energy,
which prohibits the application of CNNs to resource-constrained edge-devices. Hence, developing aggressive
optimization schemes for efficient deployment of CNNs on edge devices has become the most important
requirement. To find the optimal approach, we present a resource-limited environment based memory-
efficient network compression model for image-level object classification. The main aim is to compress
CNN architecture by achieving low computational cost andmemory requirements without dropping system’s
accuracy. To achieve the said goal, we propose a network compression strategy, that works in a collaborative
manner, where Soft Filter Pruning is first applied to reduce the computational cost of the model. In the next
step, the model is divided into No-Pruning Layers (NP-Layers) and Pruning Layers (P-Layers). Incremental
Quantization is applied to P-Layers due to irregular weights distribution, while for NP-Layers, we propose a
novel Optimized Quantization algorithm for the quantization of weights up to optimal levels obtained from
the Optimizer. This scheme is designed to achieve the best trade-off between compression ratio and accuracy
of the model. Our proposed system is validated for image-level object classification on LeNet-5, CIFAR-
quick, and VGG-16 networks using MNIST, CIFAR-10, and ImageNet ILSVRC2012 datasets respectively.
We have achieved high compression ratio with negligible accuracy drop, outperforming the state-of-the-art
methods.

INDEX TERMS Memory-efficient network compression, pruning, quantization, image-level object classi-
fication, resource-restricted edge-devices.

I. INTRODUCTION
Deep Learning made impressive success in the field of artifi-
cial intelligence including many computer vision and pattern
recognition tasks and has been under intensive research [1].
It is known for decades due to the vital factors contributing to
its emerging success such as the use of big data, robust feature

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

extraction, and powerful computational resources. Amongst
deep learning algorithms, Convolutional Neural Networks
(CNNs) have evolved as state-of-the-art and have accom-
plished record-breaking results in applications of computer
vision such as image classification, object detection, and
natural language processing [2]. The superior performance
of deep networks is closely related to the depth and width of
the network, such that, the networks with a large number of
layers and millions of trainable parameters achieve excellent

1386
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9160-5774
https://orcid.org/0000-0003-0899-7354
https://orcid.org/0000-0003-4555-1693
https://orcid.org/0000-0002-5196-8148

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

inference accuracy [3]. Regardless of the excellent perfor-
mance of deep networks, the promising results of CNNs are
credited to millions of parameters, computations (FLOPs)
and storage requirements [2]. However, this in turn lays a
heavy burden on memory and computational resources. For
example, AlexNet has about 61 million parameters in the
ILSVRC 2012 classification challenge, which is 100 times
that of the LeNet model. Similarly, ResNet-152 needs to
perform 11.3 billion FLOPs for the classification of an image
of 224 × 224 with a capacity of 230MB in the ImageNet
classification challenge in 2015 [2]. Since more parameters
demandmore storage requirements, energy consumption, and
more floating-point operations (FLOPs), hence exceeding the
computing power of the edge devices. Therefore, it becomes
extremely challenging to deploy deep CNNs on resource-
constrained edge devices with low computational and power
budgets. This has made it essential to downsize CNN to have
low computational costs while having high performance.

Although CNN models usually require a large number of
parameters to ensure their high performance, there is a lot
of redundancy in their parameterization, resulting in high
deployment costs and limited application scenarios [4]. In this
context, network compression has gained increasing attention
for reducing deployment costs in both memory and com-
putation. To obtain a lightweight network with low storage
and computational costs, researchers have put a considerable
amount of effort into the compression of CNN architec-
tures [2]. Various methods are presented to achieve com-
pression while maintaining system performance, including
Pruning, Quantization, Low-Rank Decomposition, weight
sharing, etc. [5]. Amongst these existing methods, Network
Pruning has attracted great attention from researchers in the
past recent years.

Pruning is considered the most reasonable method used
to reduce the model size (number of parameters) and
floating-point operations (FLOPs) by removing non-critical
or redundant parameters from the network. Moreover, prun-
ing not only reduces the network’s complexity but also
tends to reduce over-fitting and improves generalization [6].
Figure 1 illustrates the effect of pruning on CNN architecture.
In addition, quantization is also a widely accepted network
compression method, which attempts to directly compress
the full-precision model and reduce a lot of memory [2].
Figure 2 demonstrates an example of quantization where
data is divided into finite levels and each level is assigned
a specific value to reduce high precision parameters to low
bit-width.

It has been observed in research that pruning and quan-
tization can be very effective in reducing the number and
precision of parameters in deep networks [7]. Additionally,
pruning can reduce the number of weights by up to 90%,
as described by Han et a. [8]. Despite the success of these
two methods, there is still a need to design an efficient com-
pression model that can reduce memory consumption while
preserving the system’s performance [9]. This idea will facil-
itate the application of deep CNNs on resource-constrained

FIGURE 1. Effect of pruning on neural network architecture (a) Original
Unpruned Network, (b) Unstructured pruned network (c) Structured
pruned network.

FIGURE 2. Quantization example.

edge devices. In this context, deep compression methods
have been under investigation for the past recent years, that
combine two or more compression techniques to run deep
networks on resource-restricted devices with fast inference
and lowmemory and energy requirements. Deep compression
methods intend to achieve a high compression ratio by mak-
ing good utilization of pruning and quantization both while
preserving model’s performance. This would result in a small
storage requirement, that all trainable parameters can easily
be stored on-chip with less energy consumption

However, this paper aims to provide a memory-efficient
network compression framework to optimize the memory
utilization of the CNN model. The main target of provid-
ing this system is to overcome memory and power limita-
tions while applying CNNon resource-restricted devices. The
proposed framework is a combination of two broadly used
network compression techniques; pruning and quantization.
It makes efficient use of these twomethods while maintaining
the system’s overall performance. First, the original model
undergoes pruning to eliminate parameter redundancy from
the network while in the next step, weights are quantized
for reducing the number of bits required to represent weight
parameters. This not only reduces the number of computa-
tions but also reduces the overall memory requirement of
the model, hence, making the deployment of CNNs on edge
devices more feasible. Some of the major contributions of the
proposed framework are as follows,

1) A memory-efficient network compression framework
is proposed by integrating network pruning and quan-
tization methods to obtain a low-memory and high-
performance CNN model for resource-restricted edge
devices.

2) We propose a novel pipelined network compression
scheme that works in two stages. In the first stage,

VOLUME 11, 2023 1387

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

we compress the model by applying Soft-Filter Prun-
ing (SFP). In the second stage, different parts of
the network are quantized using two different quan-
tization methods. The proposed Optimized Quantiza-
tion method is applied to starting layers (named as
NP-layers)of the network while Incremental Quanti-
zation (INQ) is applied to the latter layers (named as
P-layers) of the network. To the best of the author’s
knowledge, this is the first attempt to integrate pruning
and quantization in this manner.

3) We propose a novel quantization algorithm Optimized
Quantization (OQ) for the starting trainable layers of
the network. Unlike traditional quantization methods
that attempt to quantify parameters randomly up to
selected levels, this proposed method first obtains opti-
mal levels to which quantization has to be carried out
using the proposed Optimizer.

4) This work proposes a novel optimizer structure aimed
at obtaining optimal quantization levels with minimal
accuracy loss and memory requirements. This Opti-
mizer works in a pipeline, where quantization and
Canonical Huffman coding is performed to get reduced
memory and minimum accuracy loss. In the next step,
regression is applied to determine the relationship of
memory and error with other parameters of the model.
Finally, the Genetic Algorithm is used to get the best
levels with minimum fitness value. This is the first
network compression model where Optimizer is used
with the unique cause of obtaining optimal levels for
the quantization process.

5) We have introduced two preference variables α and β
for the selection of the final compressed model after
applying OQ. α is related to accuracy loss, while β
refers to the amount of memory saved, where the sum
of the two variables equals 1. Based on user preference,
we decide the value of each variable, for example,
if accuracy loss and memory saved are equally critical,
then we set α = β = 0.5.

The rest of the paper is organized as follows, and Section II
discusses various network compression methods based on
pruning and quantization. We introduce our proposed net-
work compression framework and corresponding algorithms
in Section III. Datasets and CNN models details along with
extensive experimental results are given in Section IV while
Section V concludes the paper.

II. RELATED WORK
Over the past few years, various methods have been used
for the acceleration and optimization of CNNs. Consider-
ing the burden of increasing computational complexity of
CNNs, network compression is the most widely used CNN
optimization method. Network compression basically aims at
building a compressed CNN model that is fast and flexible
when implemented on embedded systems. In this context,
different CNN compression methods have been investigated,
and in this section, we mainly focus on two widely used

network compression techniques, namely network pruning
and quantization. We have summarized some of the promi-
nent network compression methods used in the literature.

A. NETWORK COMPRESSION USING PRUNING METHODS
Pruning is considered one of the pioneer network compres-
sion methods which have been applied broadly in the past
decade. Weight pruning is the most popular unstructured
pruning method that has been used for network compression.
The first weight pruning method i.e. Optimal Brain Damage
(OBD) is introduced in [10]. It removes weights based on
their saliency measure in an iterative manner. It results with
60% pruning of LeNet when it is trained on MNIST dataset
with accuracy higher than the original model. The main
shortcoming that comes with this method is that OBD did
not consider larger network like AlexNet and ResNet in its
work. Considering this problem, authors have come up with
new methods where different and better regularization tech-
niques are used for measuring weight importance for larger
networks. As in [11], an improved weight pruning method is
presented which is known as Optimal Brain Surgeon (OBS).
It has used Taylor expansion to select the least important
weights which need to be pruned. Results have shown that this
method outperforms OBD method but more computational
cost is added due to fine-tuning. Furthermore, an enhanced
version of weight pruning is presented in [12], which is based
on Incremental Pruning Less Training. This method elimi-
nates least important weights from filters rather than elimi-
nating the entire filter from the network. This method works
in two steps; in first step, weights pruning is carried out based
on L2-norm regularization with less training which hampers
the overall performance of the system. In second step, pruned
network is retrained to recover the accuracy loss. System has
achieved substantial improvement in accuracy i.e. more than
90% for both VGG-lite and LeNet models when they are
tested on MNIST and CIFAR datasets in 20 epochs which
is less than the time consumed by conventional methods.
T-H. Chen et al. [13] have performed weight pruning
based on statistical analysis of weights distributions. Thresh-
old required to prune least important weights is obtained
by applying Gaussian function due to gaussian spread of
weights. Mask is determined by thresholding whose dot prod-
uct is taken with original weights. This results with least
important weights whose values are close to zero, which are
then pruned to get a sparse network. 1/3 of weights are pruned
for ResNet and AlexNet models when tested on CIFAR
dataset with an accuracy drop of around 0.8% in 100 epochs.
S. Moon et al. [14] have proposed a novel memory-reduced
multiple accuracy pruning method. This method is combina-
tion of multiple CNN optimization techniques. In first step,
different pruning ratios is used to get a stacked-CNN architec-
ture where upper part is accuracy-aware obtained by reviving
pruned weights from lower energy-aware part of the network.
Weights of most accurate networks are stored only which has
reducedmemory utilization. In addition, multi-indexing tech-
nique is used to store indices of surviving weights that belong

1388 VOLUME 11, 2023

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

to the pruned network. The best energy-accuracy trade-off has
been achieved in edge-level devices by using this method.

On the other side, different methods have been studied
under the category of structured pruning, which are aimed
to remove redundant structure (i.e. filter, channel or layer)
from the network despite of removing parameters from a
structure. In this context, a filter-based pruning method is
proposed in [15]. It globally finds the importance of all filters
and dynamically prunes them, followed by fine-tuning pro-
cess to recall the filters which have been pruned mistakenly.
The system is tested for three large networks i.e. AlexNet,
VGG-16 and ResNet on ImageNet2012 dataset. Results have
shown that 2.12x speedup and 1.15% top-5 accuracy loss has
been achieved for AlexNet, that is superior to existing meth-
ods. Another filter pruning method based upon two fuzzy
membership functions is given by authors in [6]. Two fuzzy
functions are used to compute the degree of importance of
filters. The decision of filter pruning ismade by incrementally
alpha-cut the least important filters. This method is tested
for VGG-16 and VGG-19 models on MNIST and CIFAR
datasets. It is observed that 74% and 77% storage reduction
has occurred for VGG-16 and VGG-19 respectively. FLOPs
reduction occurred around 63% and 39% for VGG-16 and
VGG-19 respectively with 40% filter reduction. This has
significantly reduced the overall computational complexity
of the network. Xu Han et al. [8] has proposed a Parasitic-
Mechanism (PAM) based filter pruning. In first step, Parasitic
Layer is constructed which intelligently learns unimportant
filters during training process for pruning. The parasitic layer
is constructed on the basis of convolutional layer in two
steps; first filters are soft-pruned under PAM algorithm using
the defined criterion while in the second step, the network
is tuned to compensate accuracy loss, hence ended up in
promising results than traditional methods. An improved
filter pruning method is proposed by M. M. Pasandi [16].
It gradually prunes weak filters based on L1-norm and STD
which are used as pruning criterions. It recovers weak filters
back into the network from attenuation. This novel concept
of not eliminating filters completely and recovering them
from attenuation would help to avoid degradation in system
performance that may occur due to pruning. It is found
that high accuracy i.e. greater than 90% is achieved when
system is tested on CIFAR-10 dataset for VGG-16 model.
A soft-mask filter pruning method is given by authors in [17].
It prunes output feature map of least important filters based
on L2-norm regularization while preserving filter weights.
This results in a compact network with an accuracy of 99%
and FLOPs reduction of 41% when it is tested on CIFAR
dataset for ResNet model. It is found that fine-tuning is
considered the core step of pruning which takes good amount
of time to carry out the whole process, hence increasing
the computational cost of the network. In [18], authors have
presented a No Fine-tuning method which takes off the com-
putation burden of fine-tuning by adding network slimming
process. Network slimming basically set a buffer to store
a contribution value against each filter. This method has

successfully reduced 34% parameters and 37% FLOPs when
system is tested for ResNet-50 model. Furthermore, another
CNN compression method is presented in [15], which is
based on channel pruning. This method is Dynamic Channel
Pruning (DCP) which dynamically prunes the least important
channels and multiplies rest of the channels with weights in
CONV layers. DCP has shown promising results when it is
tested on ILSVCRC2012 and CIFAR datasets for VGG-16
and ResNet-50 models, achieving 3x speedup and 1.96%
accuracy loss. Another channel pruning method via gradient
of mutual information is given in [19]. This method out-
performs the state-of-the-art pruning methods in terms of
parameters and FLOPs when it is tested on CIFAR dataset for
VGG-16, ResNet-20 and DenseNet-40 models. A dynamic
channel pruning method is presented in [20], which adds
channel-wise sparsity at the output of each convolutional
layer by introducing LearningKernel-Activation switchmod-
ule (LKAM). This module activates and de-activates each
kernel dynamically depending upon the input content. This
whole process allows the relevant kernels to perform all
required computation while stopping the not relevant kernels
from performing any computation using LKAM. This has
significantly reduced computational complexity. System has
shown promising results when implemented on embedded
environments for CaffeNet and SqueezeNet models. More-
over, an improved method of channel pruning is presented
in [21]. In this method, channel is pruned based on spar-
sity index which is calculated by using the defined spar-
sity function. Results have shown that memory reduction of
4.32MB, 3.69MB and 3.9MB occurred when system is tested
on CIFAR for VGG-16, GoogleNet and ResNet respectively
in 200 epochs with accuracy drop under 3%. A layer pruning
method is presented in [22]. It prunes least important layer
by using Partial Least Square (PLS) projection as estimation
criterion. It is found that later layers of the network con-
tribute less to the classification accuracy so layer pruning is
performed starting from end of the network. Whereas rest
of the layers are pruned using filter based pruning method.
This method has achieved a significant FLOPs reduction
of 62.69% which is superior than state-of-the-art methods
when tested on CIFAR dataset for ResNet-20, ResNet-56 and
ResNet-110 models.

B. NETWORK COMPRESSION USING
QUANTIZATION METHODS
Quantization-based network pruning has also been in studies
in the past decade, which is used to off-load computational
burden on large CNNs in order to speedup inference process.
A power-efficient parameter quantization technique has been
presented in [23]. This method performs quantization fol-
lowed by fine-tuning process and then integrated with hard-
ware accelerator to further speed up inference. For weight
quantization, gaussian nature of weights distribution is con-
sidered. Using that, few samples for large-valued weights
are chosen while more samples of small-valued weights
are chosen. In the next step, fine-tuning is performed to

VOLUME 11, 2023 1389

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

recover accuracy loss. The minimum error of 0.24% and
0.39% is achieved for VGG-16 andAlexNet respectively with
8-bits representation using Tiny ImageNet dataset. This quan-
tized model is given to multiplier-less hardware to execute
MAC operations and a power reduction of up to 14.2% has
achieved. In [24], a hybrid weight quantization method is
given which is focused to apply CNN on embedded envi-
ronments. This method also aims to minimize the burden of
re-training which is performed to recover accuracy loss that
occurs after quantization. The method works in two steps;
firstly, uniform quantization of weights is carried out while in
the second step quantized weights undergo k-mean clustering
to further quantize weights to the optimal number of bits.
This hybrid quantizer gives high accuracy with 4 and 5 bits
when tested for AlexNet to perform object detection on Ima-
geNet dataset. S. Kim and H. Kim [25] presented an adaptive
quantization method which is a mixture of two types of data
quantization i.e. deterministic and stochastic quantization.
Deterministic quantization converts weights to the near-
est sampling point without considering probability while
stochastic quantization is based on the probability of how
close a weight value is to its adjacent points. Stochastic
quantization is applied to a certain portion of weights while
deterministic is applied to the rest of the weight values.
The method is tested for image classification using VGG-16
and object detection using YOLOV3 models on CIFAR and
COCO datasets respectively. It is found that higher accuracy
is achieved when mixture of both methods is used rather than
using each method sole for 4-bits quantization of weights into
fixed-point format. Another adaptive weights quantization
method is used in [26] in order to facilitate the deploy-
ment of CNN on edge devices. The quantization interval is
determined using double exponential probability and then
converted to fixed-point 8-bit representation. 87% of accu-
racy is achieved by testing system on chest X-Rays images
for the detection of pneumonia. It is also found that the
model reduced up to 3.9x than original with minimum accu-
racy loss using 255 quantization intervals. Z. Bao et al. [27]
has presented a hardware-aware quantization method for
weights and activation on the basis of the learnable clipping
method (LSFQ). This method has multiple stages where in
first step, low-bit width weights and activations quantiza-
tion is performed using linear symmetric quantization fol-
lowed by soft-clipping using a learnt clipper. In next step,
FC and CONV layers are fused with the Batch Normalization
layer as CONV-BN and FC-BN in order to further reduce
inference latency by eliminating additional computational
overhead. This process is further enhanced by incorporating
LSFQ with specialized hardware to further support inference
process. System is evaluated for VGG7, VGG7-tiny2 and
mobileNet-v2 models on CIFAR10 and CIFAR100 datasets.
Further increase in accuracy is observed when LSFQ is
tested on DAC-SDC dataset adding more practicability of
the system. In [28], a computational complexity-aware reg-
ularization method is proposed to speedup inference process
by determining optimal bit allocation using gradient descent

algorithm. It actually computes the product of computa-
tional complexity in terms of MAC operations and comput-
ing performance as MACxbit metric. Results have revealed
that 21% reduction in inference time is achieved when the
method is applied on ImageNet for ResNet18, ResNet50 and
MobileNetv2with improved accuracy. S. Cho and S. Yoo [29]
have discussed a novel Per-Channel Quantization Level Allo-
cation (PCQLA) method to minimize the accuracy loss that
occurs when 2-bit quantization is applied on ResNet-18/50.
Results have shown that 68.9% and 74.9% of accuracy are
achieved for 2-bit activation and 1-bit weights quantization
using ResNet-18 and ResNet-50 respectively. In [30], the
training-aware deep compressionmethod is presented in three
steps. In first step, first layer of network is kept standard
as it contains the significant information that is critical to
feature extraction. For middle layers, depth-wise separable
convolution is applied in place of traditional convolution to
reduce number pf parameters. This is viewed as training-
aware pruning. In the last step, extreme binary depth-wise
separable convolution is implemented to reduce memory uti-
lization. This is viewed as training-aware quantization. This
scheme is different from the conventional deep compression
method as it takes one round of process and has shown better
results than traditional methods.

It is found from the above discussion that there comes a
significant improvement in the performance when multiple
compression techniques are used at the same time. However,
it is observed in the literature that most of the authors attempt
to apply a single compression method for achieving network
compression. Moreover, most of the methods include the step
of fine-tuning in both pruning and quantization to re-train
compressed networks to recover accuracy loss. This adds
an extra burden on computational cost and resources, hence
degrading the overall system’s performance. In addition, the
authors have restricted their research to the use of small
networks, which are not sufficient enough to assess the per-
formance of compression methods with the perspective of
applying them to resource-restricted edge devices. Keeping
these research gaps in mind, we propose a novel memory-
efficient compression framework that involves two broadly
deployed compression techniques, pruning and quantization.
It performs filter pruning followed by weight quantization to
reduce the number of parameters and bit-width of eachweight
parameter to minimize memory utilization while maintain-
ing the system’s high performance. Therefore, making the
application of CNNs on resource-constrained devices more
realistic.

III. PROPOSED SYSTEM
We propose a memory-efficient network compression model
of convolutional neural networks for resource-restricted edge
devices. The general overview of the proposed system is
illustrated in Figure 3. It takes the original CNN model as
input to be compressed. Initially, all layers of the model
undergo pruning to eliminate redundant parameters resulting
in a Sparse Network that is more error resilient and easier

1390 VOLUME 11, 2023

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

FIGURE 3. General overview of the proposed compression Framework: The output compressed network is obtained by applying network pruning, layers
partitioning into NP-layers and P-layers, Quantization on both types of layers. parameters are converted from floating point 32-bit representation into
low-bit width representation.

to converge. In the next step, we divide layers of the network
into two categories; Pruning Layers (P-Layers) and No Prun-
ing Layers (NP-Layers). The reason for dividing the layers is
as the front layers are considered less error resilient and they
contain significant information which is required to extract
low-level features like edges and lines that are critical to
subsequent feature extraction. Therefore, front layers are kept
as NP-layers which include CONV layers only.

However, the weight distribution of the last layers becomes
sparse as wemove deep into the network, so the last layers are
P-layers, which mostly include FC layers or FC and CONV
layers both. First, all layers are pruned to obtain a sparse
weight distribution for the model. In the next step, quanti-
zation is applied to both types of network layers. NP-layers
undergo Optimized Quantization (OQ) whereas Incremental
Quantization (INQ) is applied on P-layers of the network.
We propose a novel optimized quantization algorithm that
quantizes the weight parameters to lower bit widths up to the
best level obtained from the optimizer. This quantization pro-
cess initially trains the pruned network for NP-layers which
turns the sparse distribution of weights into regular distribu-
tion and then converts parameters in floating-point represen-
tation into the fixed-point format as can be seen in Figure 3.
While on the other side, an Incremental quantization (INQ)
technique is applied on P-layers due to its sparse structure to
convert parameters in floating-point representation into ±2n

format which further reduces the memory requirement. In the
end, we obtain a Compressed CNN Model which is front
regular and back irregular having less number of parameters
and less memory requirement than that of the original model.

Our main goal is to reduce the storage required to run infer-
ence faster on large networks so that they can be deployed on
mobile devices. To achieve this goal, we present a two-stage
pipelined network compressionmethod that aims to compress

the network to an extreme without losing the system’s accu-
racy. The pipelined structure of the proposed method is given
in Figure 4. First, we perform pruning on the original network
by applying the Soft Filter Pruning (SFP) algorithm to reduce
redundant parameters while keeping only the most critical
ones in the network. In the second stage, the pruned network
is divided into P-layers and NP-layers as explained earlier.
Next, quantization is applied to both types of layers. We pro-
pose an Optimized Quantization algorithm for NP-layers.
Quantization is carried out up to optimal N-levels obtained
from the optimizer. We have also proposed a novel structure
of Optimizer which is input to Optimized Quantization. The
optimizer compresses the weights of the NP-layers using
a quantizer and canonical Huffman coding. Next, we feed
the results to a regression algorithm followed by Genetic
Algorithm (GA), to obtain the N-levels needed for optimized
quantization, resulting in NP-net. In parallel, Incremental
Quantization (INQ) is applied on P-layers which results in
P-net. Finally, the union of both P-net and NP-net gives the
required compressed network which is more robust than the
original one.

A. SOFT FILTER PRUNING
In the beginning, we applied Soft Filter Pruning (SFP) [31] on
all layers of the network, which dynamically prunes the filters
of each layer in a soft manner. Unlike the conventional hard
pruning methods, which directly eliminate the filters from the
network and dramatically degrade the system’s performance,
the soft pruning method intends to remove the least important
filters dynamically during training. This approach allows
the pruned filters to be updated during the training process
which helps to maintain system performance, and the model’s
capacity. Further, it accelerates the system by taking off the

VOLUME 11, 2023 1391

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

FIGURE 4. Two-Staged pipelined Network compression scheme. Stage 1: Pruning of original network to obtain sparse network. Stage 2: Different
quantization methods to apply on NP-layers and P-Layers separately to reduce number of bits required to represent parameters. Optimizer being part of
stage-2 obtains optimal levels to quantify parameters of NP-layers in OQ. While INQ is applied to quantify parameters of P-layers into ±2n representation.

Algorithm 1 Soft Filter Pruning
Input: Training data X, pruning ratio (Pi),models weight parameters and
filters of layer L(WL and FL), epochmax, threshold_error
Output: Compact Model with less #filters per layer FL∗ and less weight
parameters W∗ such that FL∗ < F and W∗ <W
Procedure:

1. for epoch = 1; epoch < epochmax; epoch++ do
2. Traning/Reconstruction: Train and update model parameters.

if (error > threshold_error)
3. for i=l; i < L; i++ do
4. Filter Ranking and Selection: Calculate L2-norm for each filler
|| Fij ||2, 1 ≤ j ≥ Ni+1 and rank them based on their importance.

5. Filter Pruning: Set least important Ni+1 Pi filters to 0.
6. end for
7. end for
8. Return Compact Model with less number of filters and weight param-

eters.

burden of fine-tuning after pruning as it has been performed
in conventional methods.

The SFP is an iterative filter pruning method, which per-
forms filter selection, pruning, and retraining iteratively until
the system converges. It avoids greedy layer-by-layer pruning
of filters rather it enables pruning in all layers at the same
time.More specifically, it prunes the filters during the training
process. In each training epoch, it first trains the network,
then the L2-norm of all filters in each layer is computed
and all filters are ranked based on their L2-norm values. The
least important filters are selected for pruning and set to 0,
followed by the next training epoch. The whole process is
repeated until convergence.

Let’s assume a CNN network that is parameterized by
WL(i) representing the matrix of weight connections for the
ith layer where L indicates a total number of layers. The
details of SFP are given in Algorithm 1, which is divided
into the following four steps.

1) FILTERS RANKING AND SELECTION
We first obtain the importance of filters for each layer using
the L2-norm. In general, convolutional results of filters with
small L2-norm are more likely to have lower activation val-
ues, and thus have less impact on the overall prediction of
the model. Therefore, these filters with low L2-norm have
a high priority to be pruned than those with high L2-norm.
Particularly, we use Pi% as the pruning rate which deter-
mines how many least important filters to prune from the
ith layer. In other words, if there are Ni+1 number of filters
in ith-layer, then Pi% removes Ni+1Pi least important filters
from each layer as indicated by blue in Figure 5a. In practice,
the L2-norm is used for weights ranking and selection. It is
represented as given in (1) where Fi,j represents jth filter of
ith layer.

||Fi,j||p =

√√√√ N∑
n=1

K∑
k1=1

K∑
k2=1

|Fi,j(n, k1, k2)|p (1)

2) WEIGHT PRUNING
Once we obtain ranks of filters based on the L2-norm,
we prune Pi% filters from the ith layer by setting Ni+1Pi

1392 VOLUME 11, 2023

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

FIGURE 5. Overview of SFP. At every training epoch, we rank filters based
on L2-norm and select least important filters as indicated by blue ones
in (a). Then we prune the selected filters and set them 0 as indicated
in (b). After pruning, filters undergo reconstruction where pruned filters
are updated to non-zero as indicated in (c).

filters to zero as given in Figure 5b. This can temporarily
remove their contribution to the output of the network. While
in the next training stage, we allow these pruned filters to be
updated to keep the model’s capacity and performance high.
In this step of filter pruning, filters of all weighted layers are
pruned at the same time, which would save computational
costs. Further, we keep our hyper-parameter i.e. pruning rate
same for all layers as Pi = P to maintain a balance between
acceleration and accuracy. This can further avoid inconve-
nient hyper-parameter analysis.

3) RECONSTRUCTION
After pruning, we go to the next training epoch to reconstruct
our pruned filters. This can be easily observed in figure 5c,
where the pruned filter is updated to a non-zero value by
backpropagation at the next epoch, as shown in blue. This
step would allow the system to maintain the model’s capacity,
unlike hard pruning methods. Thus, we integrate the pruning
step with the normal training process, and fine-tuning step is
not necessary for SFP.

Algorithm 2 Incremental Quantization (INQ)
Input: P-Layers, Weight matrix WL of layer L, grouping ratio r
Output: Quantized Network for P-Layers (P-net)
Procedure:

1. for all layers ∈ P do
2. Compute Mask TL for each WL using Equation
3. end for
4. set grouping ratio r
5. for all layers ∈ P do
6. Divide index of 1s in TL into two groups A1 and A2 Using

grouping ratio r
7. Set TL(i) to 0 (i ∈ A2)
8. Quantify WL(i) (i ∈ A2) using Equation
9. end for
10. Retrain and update weights by Equation.
11. Go to Step 4 and repeat until all weights in P-layers have been

quantified.

12. Return Quantized Network (P-net)

4) OBTAINING COMPACT MODEL
SFP iterates over weight selection, weight pruning, and
reconstruction steps. After the system converges to the opti-
mal solution, iteration stops, and we obtain a compact model

containing many ‘‘zero filters.’’ Each ‘‘zero filter’’ corre-
sponds to the output feature map. The resulting compact
model is a sparse network with less number of parameters
than the original one.

B. INCREMENTAL QUANTIZATION (INQ)
We divide layers of the pruned network into two categories:
P-layers and NP-layers as has been discussed earlier in this
section. Incremental Quantization [2] is applied on P-layers
to further compress the model. This algorithm quantifies
weights into low bit-width dynamically. It takes a compact
network obtained in the previous step of pruning as input.
For layer L, first, we determine a binary array TL of the same
size as WL (weights array of layer L). TL is computed using
equation (2) mentioned below,

TL(i) =

{
0 WL = 0
1 WL 6= 0

(2)

TL is obtained for all P-layers where 0 and 1 correspond
to zero and non-zero weights respectively. At the time of
quantization, 1s in the TL array are randomly divided into
two groups: A1 and A2 using ratio r as has been mentioned
in Algorithm 2. All entries of TL for A2 indexes are set to
0 indicating that corresponding weights will be quantified.
The weight quantization in P-layers is represented by (3):

WL(i) =

{
+2|log2|WL (i)|| WL > 0
−2|log2|WL (i)|| WL ≤ 0

(3)

By using this quantization, weights will be quantified to
lower bit-width of ±2n format which only required sign bit
and exponent to be stored for direction and number of bits
to shift respectively. It replaces the original multiplication
operation in MAC with shift operation. After quantization,
the model has been retrained to compensate for the accu-
racy loss that occurs due to quantization, and weights are
updated as represented by line-10 of the Algorithm 2 using
equation (4).

WL(i)← WL(i)− η
∂E

∂WL(i)
TL(i) (4)

where η is the learning rate, E is the objective function and
TL(i) denotes the mask of weights, which determines whether
theweightmust be updated. Correspondingweight will not be
updated by zero entries of TL indicating that it is already zero
or has been quantified as illustrated in Figure 6. This whole
process continues until all weights in P-layers have been
quantified. This algorithm results in a compressed model
having all weights of P-layers in ±2n format requiring less
amount of memory due to low bit-width and small quantity.
Moreover, the multiplication operation is replaced by to shift
operation which further reduces the resource requirement of
the network. This would be benefiting the model to have high
performance when implemented on hardware.

VOLUME 11, 2023 1393

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

FIGURE 6. Illustration of INQ Results. 1st row shows three operations
occur in first iteration. Left cube of first row corresponds to weight
partitioning into two disjoint groups A1 and A2 using ratio r. Second cube
corresponds to results after applying weight quantization on A2 as shown
in green cells. Third (right) cube shows the results of retraining
non-quantified weights (A1) of second cube as shown by blue cells.
2nd row corresponds to results of next iteration until all weights get
quantified.

C. OPTIMIZED QUANTIZATION
We propose a novel Optimized Quantization method to com-
press weights in NP-layers. Optimizer is considered as the
main component of this algorithm as it determines optimal
levels of quantization N-levels to perform optimized quanti-
zation as illustrated in Figure 4. Optimizer is composed of
data compression, regression, and Genetic Algorithm (GA).
The data compression module is further made up of a quan-
tizer and Huffman encoder. The complete structure of Opti-
mizer is given in Figure 7, which takes trained weights of
NP-Layers as input. The first task is to collect data for three
different types of quantization methods (Q-types) followed
by a Huffman encoder. Data to collect includes new memory
obtained after applying the Huffman encoder, error computed
after implementing threeQ-types, and model parameters. The
obtained data file is given to the regressor to find a relation
between accuracy loss that may occur during quantization,
parameters, and NP-layers of the model. Similarly, the rela-
tionship is found between said parameters with the memory
of encoded weights. The regression equations found at the
end of the regression process are fed into GA in the next
step. GA takes all required parameters as input to determine
N-levels across each Q-type and returns the best N-levels
based on minimum fitness value. Finally, these optimized
N-levels obtained from the Optimizer are given to Optimized
Quantization to carry out basic quantization on the weights
of NP-layers.

1) OPTIMIZER
As has been discussed above, Optimizer works in a pipeline
manner including three main steps: 1) Data Compres-
sion using Quantization and Canonical Huffman Encoding,
2) Regression and 3) Genetic Algorithm as shown in
Figure 7.

FIGURE 7. Inside Structure of the proposed Optimizer. It includes three
steps, i) Data Compression using Quantization and Canonical Huffman
Endcoding, ii) Regression and iii) Genetic Algorithm.

a: DATA COMPRESSION
In our proposed structure of Optimizer, Quantization and
Canonical Huffman Encoding are used to perform data com-
pression on pre-trained weights of NP-layers taken as input.
Firstly, weights of NP-layers are quantified for different lev-
els of quantization (N-levels) using three Q-types including
uniform quantization, non-uniform quantization, and asym-
metric quantization. In the next step of data compression,
Canonical Huffman Coding [32] is applied to previously
quantified weights we have obtained for all three Q-types.
Encoding is done to further compress weights into lower bits
to further reduce memory size. We calculate new memory
for encoded weights to be saved in the data file as it is
illustrated in Figure 4. Furthermore, the compression ratio
and percentage of saved memory for all values of N-levels
have been computed using equations 5 and 6 to be stored in
the data file.

CompressionRatio =
OriginalMemory

CompressedMemory
(5)

Memorysaved =
|memnew − memorig|

memorig
(6)

b: REGRESSION
Once all required data has been stored in the data file, regres-
sion is applied to fit our data perfectly for memory and
accuracy loss as depicted in Figure 4. We apply different
regressions and then propose an algorithm to select the best
regression based on the least mean square error (MSE). This
algorithm takes the data file and list of regressors we want
to apply as input and MSE is computed for all regressors
as given in Algorithm 3. This results in the best regressor
with the one having the least average MSE along with the
regression equations for accuracy loss and memory.

c: GENETIC ALGORITHM
As discussed earlier and illustrated in Figure 7, the final step
in Optimizer is applying Genetic Algorithm [33] to determine

1394 VOLUME 11, 2023

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

Algorithm 3 Selection Best Regression Equation
Input: Datafile, FR (Regressor function array)
Output: out[Ft, MSE]
Procedure:

t←0
Re← Rm← ϕ # Re: regressor error

Rm: regressor memory
train_m, test_m← split(shuffle(Datafile))
train_e, test_e← split(shuffle(Datafile))
While (t == length(FR) −1) do:

Eq1← FRt(train_e) # for error
Eq2← FRt(train_m) # for memory
Ye = Eq1. predict(test_e)
Ym = Eq1. Lpredict(test_m)

E ←
1
n

0∑
n
(Ye,Test_e)2 (7)

M ←
1
n

0∑
n
(Ym,Test_m)2 (8)

Re U E U FRt, Rm U M U FRt, Rm U M U FRt
End
FR error←Min(Re, E)
FR mem←Min(Rm, M)

Return FR error, FR me

optimal quantization levels (N-levels) to be used in Optimized
Quantization. It takes user inputs along with the regression
equations obtained in the previous step, model parameters,
and layers while returning best N-levels for quantization. The
inputs required by GA are; Population size required to initial-
ize population (size), user acceptable error (er), percentage
of memory to be saved (mr), number of generations (gen),
threshold (threh), preferable parameters (α, β), regression
equations for error and memory (reg_e,reg_m), CNN param-
eters and layers (par , lay). However, the outputs returned by
the GA are; the fitness of final populations(mse), the fitness
of each individual in the final population (Find), and the final
population (Po).

The complete workflow of GA is given in Algorithm 4.
In the first iteration, the population is initialized using the
population initialization function which is then passed to the
fitness function. Next, said population is modified according
to individual fitness values in the population modification
stage. To terminate the GA, one of two conditions must be
satisfied i.e. either the MSE value of the current population
is less than the user-defined threshold or the number of gen-
erations is completed. GA keeps on iterating if any of these
conditions are not fulfilled. GA is divided into three steps as
discussed below.

i) POPULATION INITIALIZATION
This is used just once to randomly initialize the population
of individuals to enable the processing of GA. The size of
the population defines the number of individuals in the pop-
ulation and is defined by the user depending upon the given
problem. For the given system, our population is composed of
different quantization levels each representing an integer and

Algorithm 4 Genetic Algorithm
Input :size, er, mr, gen, thresh, a, 0, reg_e, reg_r, par, lay
Output :F ind, Mse, Po Procedure:

t←0
Po← initialize(size)
While(t < gen) do:
F indt,Mset← Fitness(Po, er, mr, α, β, reg e, reg r, par, lay,)
if (M set <= thresh)do:

break
Pot←Modification(F_ind, Pot)
End

Return F_ind, Mse, Po

we need to determine the best quantization levels (N-levels).
We have defined N-levels as the initial population of GA, its
format is given below,

Po = array([c1], [c2],[cM]) (9)

ii) FITNESS EVALUATION
A fitness function is an objective function that determines
how close a particular population is to the user requirements
using a single fitness value. To achieve the said goal, previ-
ously obtained regression equations are used. Fitness values
for each individual in the population and fitness for the entire
population are calculated. Based on these computed fitness
values, the population is modified to generate a new popu-
lation. This keeps on computing fitness for all generations
until GA is terminated. Algorithm 5 is designed to calculate
fitness.

The proposed fitness function returns a single fitness value
for the entire population and individual fitness values for all
members of a population. It takes population (Po), regres-
sion equations, user acceptable error (er), user-defined saved
memory(mr) and preferable variables (α and β) as input. The
role of preferable variables is to signify which user-defined
parameter is critical. In the givenmethod, α refers to accuracy
loss while β refers to the percentage of memory to be saved.
To understand the role of these parameters, let’s assume an
example, for instance, if accuracy loss is more critical than
memory saved, then weights assigned α are greater than β
ones, whereas the sum of both α and β is always 1. However,
if both parameters are equally critical then both α and β will
be assigned a value of 0.5.

Once the inputs to the algorithm are known, let’s move into
the working of the Fitness Evaluation algorithm as stated in
Algorithm 5. Firstly, accuracy loss and memory to be saved
are determined using regression equations obtained in the
previous step. Next, MSEs is computed for accuracy loss (E)
and memory to be saved (M) with user-defined parameters
(er andmr). The final fitness value (FP) of populations is the
sum of both MSEs (E and M).

Further, to estimate individual fitness for all individuals in
a population, absolute error (AE) is used, which is defined in
equations (10) and (11) of the algorithm. These equations are
also used to find predicted accuracy loss and saved memory
for each individual and saved in (F_ind) array with respect to

VOLUME 11, 2023 1395

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

Algorithm 5 Fitness Evaluation
Input: Po, er, mr, Svmrbf, Im, a and p
Output: FP, F_ind
Procedure:

t←0
F_ind← ϕ

Ye = Im.predict(Po)
Ym = SVMrbf.predict(Po)

E ←
1
n

∑
(Ye, er)2 × α #MSE (10)

M ←
1
n

∑0

n
(Ym,mr)2 × β #MSE (11)

FP = E +M
While (t< length (Po)) do:

Absolute error of each individual
Er← abs(Yet − Ep) × α
(14b)
Mr← abs(Ymt −Mp) × β
(15 b)
F_ind U (Er +Mr)
t← t + l

End
Return FR error, FR me

their indexes in population. This individual fitness (F_ind) is
used in the population modification process for updating the
current population.

iii) POPULATION MODIFICATION
It is the process of selecting two or more individuals from
the current population to generate new offspring and updating
them into the current population using the following three
methods.

1. Parent Selection: In this process, individuals with the
least fitness values i.e. largest (AE) are selected and passed
over to the next process. Firstly, individual population fitness
(F_ind) is copied to another array (F_n) to avoid loss of
data. In the second step, individuals with the highest (AE) are
determined and their index position is saved to the selected
parent list (Ps). In the next step, the individual fitness of the
selected individual in the array (F_n) is set to the maximum
integer value. The whole process keeps on repeating until the
next parent is found.

2. Crossover: In the crossover, selected parents are used
to generate one or more off-springs. To achieve this purpose,
selected parents are binarized with the same bit length. In this
work, one-point crossover is performed for generating new
offspring. A random index within the bit length of binarized
parents is produced. For generating the first offspring the first
part of parent 1 in (Ps) is joined to the second part of parent 2
after that random index. The same procedure is repeated for
generating the second offspring but with parent 2 as the first
part and parent 1 as the second part. These newly generated
offspring should be different from all individuals present

Algorithm 6 Optimized Quantization (OQ)
Input:Q-levek(bestpopulation), α, β, Q-types, P-net

(P-Laycrs), NP-Layers
Output:Compressed Model, NP-net, best Quantizer, best

level, errorf(E’), memory(M’), FV’
Procedure:

1. Apply each Q-type separately using required inputs
Ei, Mi = Q-type(model, Q-levels) (i ∈ Uni-Q
or NonUm-Q or Aysm-Q)

2. Compute fitness function across each quantizer
Eri← abs(E) × α
Mri→ abs(M) × β
FVi = Eri +Mri

3. Determine best level and best quantizer by taking minimum of all
fitness values FV’ = min(FVi)

4. Quantify weights of NP-layers to best level using best quantizer for
different value of α and β Take the best out of it.

5. Return quantified model (NP-net)

6. Return compressed model (NP-net)If (P-nel)

in the current population. If any of the offspring overlaps
with the current population then that offspring is passed to
the mutation process to generate new offspring. Once these
offspring are finalized, they are converted to the decimal
point and replacedwith selected parents (Ps) using their index
values (indx).
3. Mutation: The mutation is a process of creating genetic

diversity in newly generated offspring. Mutation can only be
performed when there are newly generated offspring existing
in the current population. The mutation is carried out by ran-
domly selecting and flipping one or more bits. For example,
if the randomly selected bit is 0 then it is flipped to 1 and vice
versa.

Once unique offspring are generated, they are replaced
with the selected parents using the index values in the array
(indx). The updated population is again processed with GA
until it terminates on one of two conditions i.e. fitness value
reaches the threshold or number of generations are com-
pleted. Once the algorithm terminates, the current updated
population is returned as output along with the fitness values
of the entire population and the fitness value of each individ-
ual in the population. At the end of the optimizer, we select
the best population (N-levels) with the one having minimum
fitness value (MSE) across each Q-type which is then fed
into the next step of the Optimized Quantizer for quantization
process.

2) OPTIMIZED QUANTIZER
Best population obtained in previous step is given to three
quantizers i.e. uniform quantization, non-uniform quantiza-
tion and asymmetric quantization with all required inputs.
Error and memory are computed for each quantizer based
upon the preference parameters α and β which basically
measures the importance of two critical factors error and
memory. α is associated with error while β is for memory.
Fitness value is computed across each Q-type based on error

1396 VOLUME 11, 2023

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

TABLE 1. Structure of CNN Networks used. It demonstrates the total layers included in each network with their respective parameters.

TABLE 2. Datasets Statistics including size of each image, total number of images with the total training and test images. Also number of classes in each
network.

TABLE 3. Hyperparameters used while model training.

and memory using said preference parameters as been given
in Algorithm 6. The best level and best Q-type with mini-
mum fitness value is determined and corresponding model is
selected as the final compressed model.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we evaluate the effectiveness of our pro-
posed system under comprehensive experimentation. We test
our proposed framework for image-level object classification
problem on Google Colab Pro. Our system is deployed on
three widely used networks i.e. LeNet-5, CIFAR-Quick, and
VGG-16 using MNIST, CIFAR-10, and ImageNet ILSVRC
2012 datasets respectively. We discuss an extensive per-
formance analysis for Soft Filter Pruning (SFP) and two
Quantization algorithms presented in the proposed network
compression framework along with the results of Optimizer
in this section. In addition, we also perform a comparative
analysis of the proposed system with state-of-the-art network
compression methods existing in the literature.

A. NETWORKS AND DATASETS
1) NETWORKS
LeNet-5 [34] is one of the simplest CNN models which is
composed of 5 trainable layers including 3 convolutional
layers and 2 fully connected (FC) layers. CIFAR-quick [35]
is a fast-learning CNN model which also consists of 5 train-
able layers having 3 convolutional layers and 2 FC layers.
However, VGG-16 [36] is a deeper network having 13 convo-
lutional layers and 2 FC layers making it total of 15 trainable
layers. These networks are representative and the detailed
structure of each model is illustrated in Table 1.

2) DATASETS
We conduct different experiments to test the validity of our
proposed framework on MNIST [37], CIFAR-10 [38] and

ImageNet ILSVRC2012 [39] datasets. We first evaluate the
generalization performance of the system on small-sized
samples using MNIST and CIFAR-10 datasets. MNIST is a
collection of labeled data of handwritten 70,000 grayscale
images with each image of size 28 × 28 having 10 classes.
CIFAR-10 is having 60,000 colored images with 10 classes
where each image size is 32 × 32×3. However, ImageNet
ILSVRC2012 is a large dataset that contains around 14 mil-
lion images, each of size 224 × 224×3 with 1000 classes.
We have used a subset of this dataset, more details about each
dataset used are demonstrated in Table 2.

B. EXPERIMENTAL SETUP
1) IMPLEMENTATION DETAILS
We conduct all experiments on Google Colab pro with GPU
Tesla P100-PCIE-16GB in Python 3.5. In our experiments,
training is performed under the specifications mentioned in
Table 3. In addition, values of all hyperparameters have been
kept the same for all models whereas Adam optimizer is used
for LeNet-5 and CIFAR-quick while RMSprop is used for
VGG-16 in our experiments.

2) EVALUATION PROTOCOLS
We assess resource-efficiency of the proposed system in
terms of multiple evaluation protocols including top-1 and
top-5 classification accuracy, accuracy drop and memory
consumption in terms of number of parameters. In addition,
we have also determined the amount of compression we have
achieved in terms of compression ratio and the amount of
memory saved after applying compression using the formu-
las given in equations 5 and 6. We take the original non-
compressed trained model as baseline model and its accuracy
is used as ground truth to carry out a comparative analysis.

C. EVALUATION OF SOFT FILTER PRUNING
(SFP) ALGORITHM
We adopt training settings given in Table 3 and train our
original models for 100 epochs. We compute classification
accuracy, number of parameters, and memory required to
store these parameters for the baselinemodel. This whole pro-
cess is carried out before applying any compression method.

VOLUME 11, 2023 1397

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

FIGURE 8. Selection of Best Pruning Ratio based on highest accuracy and minimum error. Learning Curves at different pruning ratios are given.
(a) LeNet-5 performs best at P=40%, (b) CIFAR-quick performs best at P=35% and (c) VGG-16 performs best at P=50%.

TABLE 4. Memory Optimization based Comparison of Pruned Model with Baseline Model for LeNet-5, CIFAR-quick and VGG-16. Results of pruned model
outperforms baseline model and saved significant amount of memory by downsizing each network using SFP.

With the proposed network compression scheme, we first
compress network using Soft Filter Pruning (SFP) and evalu-
ate system for different values of pruning ratios (P%) includ-
ing 10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95.
The model’s accuracy and error have been determined across
each pruning ratio and their learning curves are shown in
Figure 8. LeNet-5 has performed best at pruning ratio= 40%.
Similarly, CIFAR-quick and VGG-16 have performed best at
pruning ratios of 35% and 50% respectively. Hence, we carry
out the rest of the experimentation for these selected pruning
ratios for all networks.

Table 4 shows the performance comparison of the pruned
model with the baseline model and it is found that up to
33% (20383 out of 61706) number of parameters have been
dropped with a slight increase in accuracy from 99.92% to
99.88% for LeNet-5. This saves up to 33% of the model’s
memory. Similarly, 13.67% of memory is saved with a slight
decrease in accuracy for the CIFAR-quick model. However,
SFP performs best for the VGG-16 model and achieved
a significant increase in accuracy from 84.10% to 92.53%
by saving almost half of the model’s memory which is
around 49.5%.

D. EVALUATION OF INCREMENTAL QUANTIZATION
With the proposed compression scheme, next, we divide
network layers into NP-Layers and P-Layers categories.
We empirically choose the 60:40 ratio for layers division.
In LeNet-5, we have a total of 5 trainable layers (CONV and
FC), out of which all 3 CONV layer comes in the NP-layers
category while 2 FC layers are P-layers. Similarly, in
CIFAR-quick using the said ratio, 3 CONV layers are

grouped into NP-layers while the rest of the network layers
(i.e. 2 FC layers) come under P-layers. However, this division
becomes more interesting in larger networks as in VGG-16,
where the first 9 CONV layers are grouped into the NP-layers
category while the remaining 6 layers including both CONV
and FC layers are grouped into P-layers.

To further compress the model after pruning, we apply
the INQ algorithm on P-layers of the network. As it is
mentioned in Figure 6, INQ includes weight partitioning,
group-wise weights quantization and re-training. For weight
partitioning, we set partitioning ratio r as 70:30 to divide
weights into two disjoint groups A1 and A2. Using the said
ratio, weights are quantified in the accumulated portion of
30%−> 51%−>66%−>76%−>83%−>88%−>92%−>
94%−>96%−>97%−>98%−>99%−>100%.

We analyze the effectiveness of INQ by performing many
experiments. In Table 5, we perform a memory optimization-
based comparison of the compressed model with the baseline
model. We perform two different experiments, wherein the
first case INQ is applied on P-Layers of the original model
while in the second case, INQ is applied on P-Layers of
Pruned Model that we have obtained in the previous section.
It is clearly shown in Table 5 that the results of the compressed
model (P+INQ) outperform the baseline model and com-
pressed model (using INQ only). Moreover, it has reduced
the bit-width of weight parameters from 32-bits to lower bit-
width representation. The notation of [6,5] in LeNet-5 refers
to two P-layers with the first layer having weights quantified
to 6-bits while weights of the second P-layer are quantified
into 5-bits. Similarly, in CIFAR-quick we have quantified two
P-layers into 6 and 5 bits respectively. However, in case-1

1398 VOLUME 11, 2023

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

TABLE 5. Memory optimization based comparison of compressed model with baseline model for LeNet-5, CIFAR-quick and VGG-16. Case 1: compressed
model (INQ only) and Case 2: compressed model (P+INQ) with original model as baseline model in both cases. Bit-width represents number of bits used
to represent weight parameters. Column 1 of bit-width refers to bits for baseline model, its Column 2 refers to bits for NP-Layers of compressed model
and Column 3 refers to bits for P-Layers of compressed model.

of VGG-16 with six P-Layers, out of which the first three
layers are quantified into 6-bits and the next three layers are
quantified into 7-bits, 6-bits, and 5-bits respectively. While
in case-2 of VGG-16, all layers are quantified into 6-bits
except the last layer which is quantified into 5-bits. Results
have shown that the compressed model (P+INQ) has saved
up to the highest memory of 79% in VGG-16, while 64.5%
and 47.5% in CIFAR-quick and LeNet-5 respectively and
has achieved higher compression ratio than other compressed
models (using INQ only).

E. EVALUATION OF OPTIMIZED QUANTIZATION
In this section, we analyze the results of Optimizer and
Optimized Quantizer for NP-layers and study the impact of
Optimized Quantization on the overall performance of the
system. With the proposed network compression scheme, the
next step is to perform Optimized Quantization using optimal
N-levels obtained from Optimizer. In the process of obtaining
N-levels, we first get datafiles by applying data compression
on weight files of NP-layers. In data compression, we apply
three quantizers i.e. uniform, non-uniform and asymmetric
up to empirically selected 210=1024 quantization levels.
Accuracy loss and original memory are determined through
the quantization process across each quantizer. However,
new memory is obtained by applying a canonical Huffman
encoder on quantified weights to further reduce the memory.
All these parameters obtained from both quantization and
Huffman encoder are saved into data files. We have got a
total of 3 data files for all three quantizers and perform this
process for LeNet-5, CIFAR-quick, and VGG-16 networks.
This results in a total of 9 datafiles, sample datafile is given
in Figure 9.
Using the datafiles we have obtained previously,

we applied many regressors to find regression equations for
accuracy loss and savedmemory. To achieve this goal, we test
some different regressors including Linear Regression, Lasso
Regression, Bayesian Ridge Regression, TheilSen Regres-
sion, SVM Linear, SVM Polynomial, SVM RBF, Sigmoid

FIGURE 9. Snippet of Sample datafile(.csv) obtained from data
compression for LeNet-5 using uniform quantization. Col-1 indicates
quantization levels (up to 1024), Col-2 is original accuracy, Col-3 & Col-4
represent accuracy after quantization and accuracy difference
respectively. Col-5 is original memory required to store original
parameters given in Col-8 while Col-6 is updated memory obtained after
data compression. Col-9 shows percent of memory saved by applying
data compression. Last column represents total number of NP-layers
used to carry out the whole process.

Regression, Huber Regression, and RANSAC Regression for
accuracy loss and memory separately using Algorithm 5.
To determine the best regressor, MSEs obtained for regres-

sors are averaged and a regressor with a minimum averaged
MSE is selected. Bar graphs obtained for both accuracy loss
and saved memory are given in Figure 10. It is found that the
least average MSE is obtained for linear regression and it is
selected for both accuracy loss and memory saved as shown
with the yellow bar in Figure 10. In the next step, we input the
regression equations for memory and accuracy loss obtained
in the previous step from the best regressor to GA to get
optimal quantization levels (N-levels). We test the perfor-
mance of the GA algorithm for three different cases as given
in Table 6 for all three quantizers (Q-types). In each case,
a population array including different quantization levels of
length 10 along with its fitness value (MSE) is determined
across each quantizer. It is observed that for each quantizer,
the population array from the best case is selected based on
the least fitness value. For LeNet-5(NP-layers), the best case
found is Case 1 for all quantizers, similarly for CIFAR-quick

VOLUME 11, 2023 1399

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

FIGURE 10. Results of Regression Selection. (a) Average MSE of accuracy loss for all regressors. (b) Average MSE of saved memory for all regressors.
Yellow bar in each graph indicates the best regressor with least average MSE.

TABLE 6. Parameters setting of three different cases for applying Genetic
Algorithm.

(NP-layers), the minimum fitness value is obtained
for case-1 across all quantizers. However, for VGG-16
(NP-layers) the best case selected is case 2 with minimum
fitness value. Best cases with respective populations and
fitness values are highlighted in Table 7, 8 and 9.

Using the parameters setting of the best cases we have
obtained previously, we analyze the impact of Optimized
Quantization on the overall performance of the system. First,
we use best population which contains (N-levels) and apply
all Q-types to determine best quantization level (Q-level) for
NP-layers of the network. To achieve this goal, we have
chosen three randomly selected values for preference vari-
ables (α) and (β) where α measures the importance of accu-
racy loss and β is for saved memory. Depending upon user
requirements, we set different values for said variables to
determine the best level out of the 10 N-levels resulting from
the Optimizer. We have used (α,β) = (0.5,0.5),(0,1),(1,0)
and compute fitness value (MSE) for each quantization level
against all Q-type using the given expression in 12.

fitnessvalue = α × accuracyloss + β × memorysaved (12)

We have obtained 10 fitness values referring to 10 quan-
tization levels for each population and the best Q-level and
the best Q-type are selected based on the least fitness value.
We repeat this for all values of α and β. Table 10 shows the
results of the best level and best quantizer we have found
for different values of α and β. Further, results have shown,

that for LeNet-5, when we consider accuracy loss and saved
memory equally critical (α=β=0.5) then it saves up to 94%
memory with negligible accuracy drop. Further, when we
consider memory more critical than accuracy loss (α=0,
β=1), then memory saved is even more but the accuracy drop
is beyond acceptance. And finally, when we consider accu-
racy loss more critical than saved memory (α=1, β=0) then
accuracy remains the same while amount of saved memory
drops significantly as given in Table 10. Similarly, the impact
of different values of α and β on overall accuracy drop and
saved memory is also given in Table 10 for CIFAR-quick and
VGG-16 respectively. It is found that in the case of VGG-16,
accuracy drops drastically to a non-acceptable level for α=0,
β=1 with a significant drop in memory while for the other
two cases of α and β values, a good amount of memory is
saved with negligible accuracy drop. Further, the best Q-type
and best Q-level are also shown for each case with minimum
fitness value.

We further analyze the memory optimization achieved by
applying the proposed system and compare the system’s
resource efficiency with the baseline model. Using the results
from previous tables, we also determine the performance
measures for the overall proposed system using all techniques
as been proposed including pruning, INQ for P-layers, and
OQ for NP-layers at different values of α and β. We analyze
the memory optimization achieved by applying the proposed
system and a comparison is made with the baseline model
based on the parameter’s bit-width, memory, and compres-
sion ratio. Remarkable improvement in results is shown using
a proposed system that has reduced bit-width of weight
parameters from 32-bits to low bits for both NP-layers and
P-layers as given in Table 11. Considering the accuracy loss
and memory equally critical i.e. α=0.5 and β=0.5, it is found
that a significant amount of memory has been saved after
applying the proposed compression method, which is 91%
with a compression ratio of 10.6x for LeNet-5. Similarly, 6%
compression has been achieved by saving memory up to 83%
for CIFAR-quick, and compression of 5x has been achieved
for VGG-16 with memory saved up to 80%.

1400 VOLUME 11, 2023

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

TABLE 7. End Results of Optimizer for LeNet-5 indicating final populations obtained across each case by applying Genetic Algorithm for all quantizers.
Each population contains 10 individuals representing 10 different quantization levels. Best population(N-levels) is highlighted across each quantizer
based on least fitness value (MSE).

TABLE 8. End Results of Optimizer for CIFAR-quick indicating final populations obtained across each case by applying Genetic Algorithm for all
quantizers. Each population contains 10 individuals representing 10 different quantization levels. Best population(N-levels) is highlighted across each
quantizer based on least fitness value (MSE).

Also, we have performed a comparative analysis of all
compression models used in the proposed system based on
top-1 accuracy, top-5 accuracy, and compression ratio in
Table 12. This is done to investigate the contribution of each
model to the overall performance of the proposed system.
It is evident from results that the highest compression of
11x, 6x, and 5x are achieved for LeNet-5, CIFAR-quick,
and VGG-16 respectively by using (P+INQ+OQ), which is
larger than using any of the compression methods separately.
It is also found that a negligible accuracy drop has occurred
for LeNet-5 whereas a little rise in accuracy is observed
for VGG-16 while the accuracy drop for CIFAR-quick is
slightly higher than the other two models but it is in an
acceptable range. Figure 11 also demonstrates these results

in the form of bar graphs, where Figure 11a is comparison of
Top-1 accuracy for all compressionmodels, Figure 11b shows
comparison of Top-5 accuracy for all compression models
while Figure 11c refers to comparison of compression ratios
achieved for all compression models. These results also vali-
date the fact that highest compression ratio has achieved with
a compression model (P+INQ+OQ) without losing system’s
accuracy. This has proved the effectiveness of the proposed
system in downsizing the resource requirement of the system
for resource-restricted embedded systems with a negligible
drop in accuracy.

At the end, we compare our proposed system with
state-of-the-art network compression methods, illustrated in
Table 13. In order to carry out the extensive comparison,

VOLUME 11, 2023 1401

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

TABLE 9. End Results of Optimizer for VGG-16 indicating final populations obtained across each case by applying Genetic Algorithm for all quantizers.
Each population contains 10 individuals representing 10 different quantization levels. Best population(N-levels) is highlighted across each quantizer
based on least fitness value (MSE).

TABLE 10. Results of Optimized Quantization (OQ), demonstrating best Q-level and best Q-type for LeNet-5, CIFAR-quick and VGG-16 networks at three
different values of α and β. Fitness value is the MSE computed using α and β, whereas Q-level and Q-type specify the best quantizer and best
quantization level selected based on least fitness value. Original accuracy is the accuracy obtained by training original model while new accuracy refers
to accuracy after applying OQ. Similarly, original memory is the memory required to store parameters of NP-layers in original model whereas new
memory is the memory required by NP-layers parameters after applying OQ.

TABLE 11. Demonstration of memory optimization achieved by applying proposed system (P+INQ+OQ) for LeNet-5, CIFAR-quick and VGG-16 networks.
Parameters bit-width, memory and compression ratio(CR) are represented at different values of α and β. Mbase refers to baseline (original) model while
Mcomp represents proposed compressed model.

along with LeNet-5 and VGG-16 CNN models, we have also
tested the performance of our system for AlexNet [9] and
ResNet-50 [2] models using ImageNet ILSVRC2012 dataset.

Along with the subset of ImageNet mentioned in Table 2,
we have also analyzed system’s performance for another
subset of ImageNet ILSVRC2012 consisting of 1lac images

1402 VOLUME 11, 2023

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

TABLE 12. Performance comparison of all compression models presented in paper based on Top-1 Accuracy, Top-5 Accuracy and Compression Ratio.

TABLE 13. Comparison of Proposed System with state-of-the-art Network Compression Methods. Increase in Top-1 and Top-5 accuracy with significant
decrease in bit-width of weight parameters as compared to existing methods. In [12/6,5] notation of bit-width for our method, 12 refers to reduced
bit-width for NP-layers of the network while [6,5] refers to 6-bits and 5-bits representation of weight parameters of different layers in P-layers.

(such that 60,000 images for training and 40,000 images
for testing) on VGG-16, AlexNet and ResNet-50 models.
Therefore, two results of the proposed method are mentioned

in Table 13 for these models, the former one is for ImageNet
subset mentioned in Table 2, while the latter results are
for the subset of ImageNet having 1lac images. It is found

VOLUME 11, 2023 1403

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

FIGURE 11. Performance Comparison of all Compressed Models used in this paper with the Baseline Model on the basis of (a) Top-1 Accuracyl (b) Top-5
Accuracy and (c) Compression Ratio for LeNet-5, CIFAR-quick and VGG-16 networks.

that consistent results have been achieved for both subsets.
Also, it is noted that authors have used different types of
methods to perform network compression, some have used
pruning to downsize the network in terms of parameter count,
others have applied quantization-based methods to reduce the
bit-width of parameters while few authors have proposed
methods based on both pruning and quantization to carry out
network compression to reduce the overall memory require-
ment of the system by decreasing parameters count and
bit-width both. We consider all types of methods in our
comparison to determine the impact of compression on the
performance of the system in terms of Top-1 accuracy, Top-5
accuracy and compression ratio. Table 13 shows the superior
performance of our method in terms of resource efficiency
with a significant reduction in bit-width of parameters by
achieving a good compression rate and having top-1 accuracy
and top-5 accuracy higher than other methods. Since the pro-
posed method is a combination of pruning and quantization
both, therefore, it is capable of achieving high compression
while preserving the system’s accuracy. This leads to an
increase in the applicability of CNN for resource-restricted
edge devices.

V. CONCLUSION
In this paper, we have proposed a memory-efficient based
network compression framework for resource-restricted edge
devices. This approach attempts to compress the network for
reducing the overall memory requirement of the model while
not losing the system’s high performance. The proposed
framework is a combination of both pruning and quantization,
which works collaboratively. It first performs filter pruning to
decrease the parameter count by setting the least significant
parameter to zero. In the next step, the layers of the networks
are divided into two categories as NP-layers (front layers)
and P-layers (latter layers). Further, Incremental Network
Quantization is applied to P-layers of the network due to
sparse distribution of weights while Optimized Quantiza-
tion is proposed for NP-layers of the network. In addition,
a novel structure of an optimizer is presented which involves
basic quantization, canonical Huffman coding, regression,
and genetic algorithm to determine optimal quantization lev-
els required to carry out quantization in OQ. We have carried

out extensive experimentation to assess our system’s effec-
tiveness for image-level object classification on LeNet-5,
CIFAR-quick, and VGG-16 using MNIST, CIFAR-10, and
ImageNet datasets respectively. Results have shown that
proposed network compression (P+INQ+OQ) has achieved
a high compression rate of 11x for LeNet-5(MNIST) by
saving up to 91% of model memory. It has reduced param-
eters bit-width to lower bits and parameters count to almost
half with negligible accuracy drop. This effectively reduces
the memory requirement of the system and enables CNN
deployment in resource-restricted environments by offering
good memory-accuracy trade-offs.

REFERENCES

[1] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, ‘‘A survey of the recent
architectures of deep convolutional neural networks,’’ Artif. Intell. Rev.,
vol. 53, no. 8, pp. 5455–5516, 2019.

[2] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, ‘‘Incremental network
quantization: Towards lossless CNNs with low-precision weights,’’ 2017,
arXiv:1702.03044.

[3] J. Rong, X. Yu,M. Zhang, and L. Ou, ‘‘Soft Taylor pruning for accelerating
deep convolutional neural networks,’’ in Proc. 46th Annu. Conf. IEEE Ind.
Electron. Soc., Oct. 2020, pp. 5343–5349.

[4] Y. Guo, A. Yao, and Y. Chen, ‘‘Dynamic network surgery for efficient
DNNs,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016, pp. 1–15.

[5] J. Liu, S. Tripathi, U. Kurup, andM. Shah, ‘‘Pruning algorithms to acceler-
ate convolutional neural networks for edge applications: A survey,’’ 2020,
arXiv:2005.04275.

[6] W. B. Zhao, Y. Li, and L. Shang, ‘‘Fuzzy pruning for compression of
convolutional neural networks,’’ in Proc. IEEE Int. Conf. Fuzzy Syst.
(FUZZ-IEEE), Jun. 2019, pp. 1–5.

[7] Y. Wen and D. Gregg, ‘‘Exploiting weight redundancy in CNNs: Beyond
pruning and quantization,’’ 2020, arXiv:2006.11967.

[8] X. Han, L. Xue, Y. Xu, and K. Huang, ‘‘A parasitic mechanism-based
filter pruning method for deep convolutional neural networks,’’ in Proc.
IEEE Int. Conf. Inf. Technol., Big Data Artif. Intell. (ICIBA), Nov. 2020,
pp. 45–48.

[9] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
2015, arXiv:1510.00149.

[10] R. Pilipovic, P. Bulic, and V. Risojevic, ‘‘Compression of convolutional
neural networks: A short survey,’’ in Proc. 17th Int. Symp. INFOTEH-
JAHORINA (INFOTEH), Mar. 2018, pp. 1–6.

[11] B. Hassibi, D. Stork, and G. Wolff, ‘‘Optimal brain surgeon: Extensions
and performance comparisons,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 6, 1993, pp. 1–13.

[12] S. Sarkar, M. Agarwalla, S. Agarwal, and M. P. Sarma, ‘‘An incremental
pruning strategy for fast training of CNN models,’’ in Proc. Int. Conf.
Comput. Perform. Eval. (ComPE), Jul. 2020, pp. 371–375.

1404 VOLUME 11, 2023

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

[13] T.-H. Chen, C.-H. Huang, Y.-S. Chu, and B.-C. Cheng, ‘‘Towards effi-
cient neural network on edge devices via statistical weight pruning,’’ in
Proc. IEEE 9th Global Conf. Consum. Electron. (GCCE), Oct. 2020,
pp. 192–193.

[14] S. Moon, Y. Byun, J. Park, S. Lee, and Y. Lee, ‘‘Memory-reduced network
stacking for edge-level CNN architecture with structured weight pruning,’’
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 4, pp. 735–746,
Dec. 2019.

[15] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, ‘‘Accelerating
convolutional networks via global & dynamic filter pruning,’’ in Proc. 27th
Int. Joint Conf. Artif. Intell., Jul. 2018, p. 8.

[16] M.Mousa-Pasandi, M. Hajabdollahi, N. Karimi, S. Samavi, and S. Shirani,
‘‘Convolutional neural network pruning using filter attenuation,’’ in Proc.
IEEE Int. Conf. Image Process. (ICIP), Oct. 2020, pp. 2905–2909.

[17] N. J. Kim and H. Kim, ‘‘Mask-soft filter pruning for lightweight
CNN inference,’’ in Proc. Int. SoC Design Conf. (ISOCC), Oct. 2020,
pp. 316–317.

[18] R. Liu, J. Cao, P. Li, W. Sun, Y. Zhang, and Y. Wang, ‘‘NFP: A no
fine-tuning pruning approach for convolutional neural network compres-
sion,’’ in Proc. 3rd Int. Conf. Artif. Intell. Big Data (ICAIBD), May 2020,
pp. 74–77.

[19] M. K. Lee, S. Lee, S. H. Lee, and B. C. Song, ‘‘Channel pruning via
gradient of mutual information for light-weight convolutional neural net-
works,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2020,
pp. 1751–1755.

[20] F. Nikolaos, I. Theodorakopoulos, V. Pothos, and E. Vassalos, ‘‘Dynamic
pruning of CNN networks,’’ in Proc. 10th Int. Conf. Inf., Intell., Syst. Appl.
(IISA), Jul. 2019, pp. 1–5.

[21] Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for accelerating very deep
neural networks,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 1389–1397.

[22] A. Jordao, M. Lie, and W. R. Schwartz, ‘‘Discriminative layer pruning
for convolutional neural networks,’’ IEEE J. Sel. Topics Signal Process.,
vol. 14, no. 4, pp. 828–837, May 2020.

[23] E. Kalali and R. van Leuken, ‘‘A power-efficient parameter quantization
technique for CNN accelerators,’’ in Proc. 24th Euromicro Conf. Digit.
Syst. Design (DSD), Sep. 2021, pp. 18–23.

[24] S. Seo and J. Kim, ‘‘Hybrid approach for efficient quantization of weights
in convolutional neural networks,’’ inProc. IEEE Int. Conf. Big Data Smart
Comput. (BigComp), Jan. 2018, pp. 638–641.

[25] S. Kim and H. Kim, ‘‘Mixture of deterministic and stochastic quantization
schemes for lightweight CNN,’’ in Proc. Int. SoC Design Conf. (ISOCC),
Oct. 2020, pp. 314–315.

[26] S. Gheorghe and M. Ivanovici, ‘‘Model-based weight quantization for
convolutional neural network compression,’’ in Proc. 16th Int. Conf. Eng.
Modern Electr. Syst. (EMES), Jun. 2021, pp. 1–4.

[27] Z. Bao, K. Zhan, W. Zhang, and J. Guo, ‘‘LSFQ: A low precision full
integer quantization for high-performance FPGA-based CNN accelera-
tion,’’ inProc. IEEE Symp. Low-Power High-Speed Chips (COOLCHIPS),
Apr. 2021, pp. 1–6.

[28] K. Nakata, D. Miyashita, J. Deguchi, and R. Fujimoto, ‘‘Adaptive quan-
tization method for CNN with computational-complexity-aware regular-
ization,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2021,
pp. 1–5.

[29] S. Cho and S. Yoo, ‘‘Per-channel quantization level allocation for quan-
tizing convolutional neural networks,’’ in Proc. IEEE Int. Conf. Consum.
Electron.-Asia (ICCE-Asia), Nov. 2020, pp. 1–3.

[30] C. Liu and H. Lu, ‘‘A highly efficient training-aware convolutional neural
network compression paradigm,’’ in Proc. IEEE Int. Conf. Multimedia
Expo Workshops (ICMEW), Jul. 2020, pp. 1–6.

[31] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, ‘‘Soft filter pruning for accel-
erating deep convolutional neural networks,’’ 2018, arXiv:1808.06866.

[32] R. Patel, V. Kumar, V. Tyagi, and V. Asthana, ‘‘A fast and improved
image compression technique using Huffman coding,’’ in Proc. Int.
Conf. Wireless Commun., Signal Process. Netw. (WiSPNET), Mar. 2016,
pp. 2283–2286.

[33] J. H. Holland, ‘‘Genetic algorithms,’’ Sci. Amer., vol. 267, no. 1, pp. 66–73,
1992.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[35] Y. Zhou, S. Song, and N.-M. Cheung, ‘‘On classification of dis-
torted images with deep convolutional neural networks,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017,
pp. 1213–1217.

[36] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[37] L. Deng, ‘‘The MNIST database of handwritten digit images for machine
learning research [best of the web],’’ IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Nov. 2012.

[38] A. Krizhevsky and G. Hinton, ‘‘Convolutional deep belief networks
on CIFAR-10,’’ Unpublished Manuscript, vol. 40, no. 7, pp. 1–9,
2010.

[39] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and M. Shafique,
‘‘ALWANN: Automatic layer-wise approximation of deep neural network
accelerators without retraining,’’ in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), Nov. 2019, pp. 1–8.

[40] J. Lee and S. Lee, ‘‘Robust CNN compression framework for security-
sensitive embedded systems,’’ Appl. Sci., vol. 11, no. 3, p. 1093,
Jan. 2021.

[41] J. Wang, J. Lin, and Z. Wang, ‘‘Efficient hardware architectures for deep
convolutional neural network,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 65, no. 6, pp. 1941–1953, Nov. 2017.

[42] J. Du, X. Zhu, M. Shen, Y. Du, Y. Lu, N. Xiao, and X. Liao, ‘‘Model par-
allelism optimization for distributed inference via decoupled CNN struc-
ture,’’ IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1665–1676,
Jul. 2021.

[43] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and con-
nections for efficient neural network,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 28, 2015, pp. 1–12.

[44] S. I. Young, W. Zhe, D. Taubman, and B. Girod, ‘‘Transform quantization
for CNN compression,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 9, pp. 5700–5714, Sep. 2022.

[45] X. Ruan, Y. Liu, C. Yuan, B. Li, W. Hu, Y. Li, and S. Maybank, ‘‘EDP:
An efficient decomposition and pruning scheme for convolutional neural
network compression,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 32,
no. 10, pp. 4499–4513, Oct. 2021.

[46] A. Alqahtani, X. Xie, M. W. Jones, and E. Essa, ‘‘Pruning CNN filters via
quantifying the importance of deep visual representations,’’ Comput. Vis.
Image Understand., vols. 208–209, Jul. 2021, Art. no. 103220.

ZAHRA WAHEED received the B.S. degree in
computer engineering from Bahria University,
Islamabad, Pakistan, in 2013, and the M.S. degree
in computer engineering from the College of
Electrical and Mechanical Engineering, NUST,
Rawalpindi, Pakistan, in 2015. She is currently a
Ph.D. Scholar with the Department of Computer
Engineering, Bahria University. She has published
more than eight research papers, including both
journals and conferences. Her research interests

include image processing and pattern recognition, signal processing, digital
system design, machine learning, and deep learning algorithms.

VOLUME 11, 2023 1405

Z. Waheed et al.: Resource-Restricted Environments Based Memory-Efficient Compressed CNN Model

SHEHZAD KHALID received the B.S. degree
in computer system engineering from the GIKI,
Pakistan, in 2000, the M.S. degree in software
engineering from the NUST, Islamabad, Pakistan,
in 2003, and the Ph.D. degree in computer vision
and machine learning from The University of
Manchester, U.K., in 2009. He is currently a Pro-
fessor with the Department of Computer Engineer-
ing, Bahria University, Islamabad. He worked on
various projects as a PI/Co-PI amounting to more

than Rs. 60 Million. He has published more than 85 impact factor jour-
nal publications along with many other HEC recognized and international
conference publications. His research interests include computer vision,
machine learning, medical multimedia analytics, natural language process-
ing, and signal processing. He got many distinctions during his research and
academic career. He has been awarded the Best University Teacher Award by
HEC, in 2014, and have been awarded the Best Researcher Award by Bahria
University for five consecutive years. He has also been a reviewer of number
of impact factor journals.

SYED MURSLEEN RIAZ received the B.S. degree
in computer engineering from the University
of Engineering and Technology (UET), Taxila,
Pakistan, in 2020. He is currently pursuing the
M.S. degree in computer engineering with the
College of Electrical andMechanical Engineering,
NUST, Rawalpindi, Pakistan. His research inter-
ests include machine learning-based application
design, deep learning models for reconfigurable
architectures, compression of neural networks, and
approximate computing.

SAJID GUL KHAWAJA received the B.S., M.S.,
and Ph.D. degrees in computer engineering from
the College of Electrical and Mechanical Engi-
neering (CE&ME), National University of Sci-
ences and Technology (NUST), Islamabad. He is
currently an Associate Professor with the Depart-
ment of Computer and Software Engineering,
CE&ME, NUST. His research interests include
signal processing, embedded systems, digital sys-
tem design, and machine learning algorithms.

RIMSHA TARIQ received the B.S. degree in
computer engineering from COMSATS Univer-
sity Islamabad, Lahore, Pakistan, in 2019, and the
M.S. degree in computer engineering from the
College of Electrical andMechanical Engineering,
NUST, in 2022. She is currently working as a
Research Associate with the VISPRO Laboratory,
Information Technology University. Her research
interests include image processing, approximate
computing, machine learning systems, and 3D
scene reconstruction.

1406 VOLUME 11, 2023

