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ABSTRACT The proposed sequential recurrent convolution network (SRCN) includes two parts: one
convolution neural network (CNN) and a sequence of long short-term memory (LSTM) models. The CNN
is to achieve the feature vector of face emotion or speech command. Then, a sequence of LSTM models
with the shared weight reflects a sequence of inputs provided by a (pre-trained) CNN with a sequence of
input sub-images or spectrograms corresponding to face emotion and speech command, respectively. Simply
put, one SRCN for dynamic face emotion recognition (SRCN-DFER) and another SRCN for wireless speech
command recognition (SRCN-WSCR) are developed. The proposed approach not only effectively tackles the
recognitions of dynamicmapping of face emotion and speech commandwith average generalized recognition
rate of 98% and 96.7% but also prevents the overfitting problem in a noisy environment. The comparisons
among mono and stereo visions, Deep CNN, and ResNet50 confirm the superiority of the proposed
SRCN-DFER. The comparisons among SRCN-WSCR with noise-free data, SRCN-WSCR with noisy
data, and multiclass support vector machine validate its robustness. Finally, the human-robot collaboration
(HRC) using our developed omnidirectional service robot, including human and face detections, trajectory
tracking by the previously designed adaptive stratified finite-time saturated control, face emotion and speech
command recognitions, andmusic play, validates the effectiveness, feasibility, and robustness of the proposed
method.

INDEX TERMS Human–robot collaboration, CNN, LSTM, human and face detection, dynamic face
emotion recognition, wireless speech command recognition, omnidirectional service robot, visual searching
and tracking, adaptive stratified finite-time saturated control.

I. INTRODUCTION
Recently, different kinds of robots have been developed to
fulfill human-robot collaborations. Some representative and
outstanding works are reviewed as follows. A robot that
can understand and express emotions in voice, gesture, and
gait by a controller trained only on voice is developed such
that the robot can recognize happiness, sadness, and fear
in a completely different modality [1]. A humanoid robot’s
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visual imitation of 3-D motion of a human is developed by a
neural-network-based inverse kinematics [2] or support vec-
tor machine for the classification of 11 low-body postures [3].
In [4], the suggested robot Mortimer including social behav-
iors can increase engagement and social presence; in addition,
the effect of extending weekly collocated musical improvisa-
tion sessions is investigated by making Mortimer an active
member of the participant’s virtual social network. In [5],
specific human following through machine learning of SSD-
FN-KCF is developed. In [6], musical robots are designed
to control those dynamics, articulation, and tempo to give
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the audience an experience as compared with listening to
a professional human musician. Wolfe et al. [7] develop a
singing robot platform that could interact with surround-
ing humans by communicating through song, musical, non-
linguistic utterances to evoke emotional responses in humans.
An auxiliary online diagnosor using the Bayesian decision
theory provides not only a collision identification for human-
collaborative robots but also a confidence index to represent
their reliability [8]. Additionally, many researchers have been
committed to the robots with the ability to detect and identify
human emotions, and then apply this information to guide
their own behaviors, which are called affective intelligent
robots [9], [10], [11], [12], [13]. Since face emotion plays the
most important role, the issue of making affective intelligent
robots with accurate and real-time face emotion recognition
becomes a challenging task. Many related articles examine
the classification of facial expression image into several typ-
ical classes: angry, disgusted, fearful, happy, surprised, and
sad [14].

It is known that the detection of human emotions from
facial emotions is crucial for social interaction. The proposed
sequential recurrent convolution network (SRCN) improves
the corresponding drawbacks and simultaneously enhances
its performance, and then applies to human-robot collabora-
tion (HRC) task. From the outset, the stereo camera on the
omnidirectional service robot (ODSR) is planned to search
and detect the human by Faster R-CNN [15]. If a face can-
didate exists, the detected face using Haar Cascade feature
descriptor is cropped as a suitable size to recognize his/her
face emotions. If not, the strategy to approach the above
pose region is achieved by the stereo vision based localiza-
tion [16], [17] and an stratified finite-time saturated con-
trol [18], [19]. Subsequently, the facial emotion is recognized
by the SRCN-DFER. Stereo camera not only estimates the
3D position up to 20m, but also improves the recognition
rate since the use of left and right cameras increases FOV
to achieve a better recognition [16]. A dynamic recognition
rate for video to indicate the stabilized facial emotion with a
specific time interval is also defined to meet the requirement
of HRC.

In contrast, another SRCN for wireless speech command
recognition (SRCN-WSCR) is developed to deal with more
complex HRC task. With this, eight speech commands from
Google Speech Commands Dataset are employed to train
and verify the SRCN-WSCR. At the outset, the sampled
speech command is transferred into the frequency domain
signal by Short-Time Fourier Transform (STFT) with suit-
able window length and hop length. Multiplying the power
spectrum of STFT signal by Mel filter matrix obtains the
logarithm of Mel-Spectrogram [19], which is set as the input
signal of SRCN-WSCR. Since the video sequence for facial
emotion is limited, the large amount of facial emotion images
is applied to train the CNN, which is the first part of SRCN.
After that, these weights in CNN without fully and softmax
layers are assigned as the partial initial weights in the SRCN-
DFER. The other initial weight for a stack of LSTMs is set

as a small random number. In contrast, eight designed speech
commands have many dynamic files, its pre-trained CNN is
not required. In summary, the proposed approaches not only
effectively tackles the recognitions of dynamic mapping of
face emotion and speech command, but also prevents the
overfitting problem in the presence of noises. Finally, the
HRC by omnidirectional service robot, including human and
face detections, trajectory tracking using adaptive stratified
finite-time saturated control, face emotion and speech com-
mand recognitions, and music play, validates the effective-
ness and robustness of our method.

The salient contributions of this article are summa-
rized as follows. (i) Two novel sequential recurrent con-
volution networks (SRCNs): one for the dynamic face
emotion recognition (SRCN-DFER) in Algorithm 1 and
another for the wireless speech command recognition
(SRCN-WSCR) in Algorithm 2, are developed. (ii) The
average recognition rate of SRCN-DFER is 98%. It is
superior to some previous studies (e.g., [11], [12], [13],
[20], [21], [22], [23], [24], [25], [26], [27], [28]). Addi-
tionally, the comparisons among SRCN-DFER, DCNN, and
ResNet50 validate the superiority of the proposed SRCN-
DFER. The comparisons among SRCN-DFER, LRCN [29],
and 3D-CNN [30] further confirm the state-of-the-art perfor-
mance. (iii) After the preprocessing of the speech command,
SRCN-WSCR is similar to SRCN-DFER. Furthermore, the
confusion matrices with background noises and without
background noise confirm its superiority in comparison to
some previous research (e.g., multiclass SVM [19]). (iv) The
implementation of human-robot collaboration confirms the
practicality and feasibility of the proposed method.

II. RELATED WORK
As a pattern recognition task, there are plenty of classifica-
tion methods that can be adopted to classify facial emotions
[11], [12], [13], [20], [21], [22], [23], [24], [25], [26], [27],
[28]. In [11] and [12], three- and two-layer fuzzy support
vector regression-Takagi-Sugeno models are suggested for
the emotion understanding in human-robot-interaction (HRI)
task, e.g., the drink reflecting different emotions, human
following [5]. Their average video-based recognition rates
for different genders, provinces, and ages are ordinary. The
aims of [13] is to make good use of the CNN’s potential
performance in avoiding local optima and speeding up the
convergence by the hybrid genetic algorithmwith optimal ini-
tial population, in such a way that it realizes deep and global
emotion understanding in HRI. Nonetheless, its average
video-based recognition rate is usual. In [20], multi-modal
recurrent attention networks learn spatiotemporal attention
volumes to robustly recognize the facial expression. Besides
the sequent RGB images, the depth and thermal sequences
are also required. In [21], a deep learning framework based
on the hybrid of 3D conditional generative adversarial net-
work and two-level attention bidirectional long short-term
memory network has been proposed for robust driver drowsi-
ness recognition. However, the averaging recognition rate in
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different situations is only acceptable. In [22], a 3D-CNN
is first designed to capture subtle spatiotemporal changes
that may occur on the face, and a Conv-LSTM network
is then designed to learn semantic information by taking
into account longer spatiotemporal dependencies. Although
the recognized result is acceptable, the proposed scheme is
complex. A two-branch disentangled generative adversarial
network disentangles expressional information from other
unrelated facial attributes [23]. Although the average image-
based recognition rate for the datasets of CK+, TFEID, and
RaFd is excellent, its generalized recognition is poor. In [24],
a correlation-based graph convolutional network for auto-
matic emotion recognition (ARE) is developed, which can
comprehensively consider the correlation of the intra-class
and inter-class videos for feature learning and information
fusion. However, the average recognition rate of ARE is
normal and there are large variations for different datasets.
In [25], modeling pose variations in facial images to boost
the performance of face emotion recognition is achieved
by an end-to-end weakly supervised approach. However, its
average recognition rate and generalization are not excellent.
In [26], the Learnable Graph Inception Network, that jointly
learns to recognize emotion and identify the underlying graph
structure in the dynamic data, is developed. It possesses
satisfactory average recognition for RML, eNTERFACE,
and RAVDESS datasets. In [27], event-cameras can capture
motion at millisecond-rates, work under challenging condi-
tions like low illumination and understand human reactions
by only observing facial expressions. Even a combination
of CNN and Bi-LSTM for dealing with face emotion recog-
nition [28] failed to accomplish a satisfactory performance
due to a lack of effective data sets for training. Besides
the above researches, a multimodal fusion framework for
noncontact heart rate (HR) estimation, including the feature
representation maps from facial visible-light and thermal
infrared videos, a temporal information-aware HR feature
extraction network for encoding discriminative spatiotem-
poral information is accomplished [31]. It indicates that
face recognition can be adopted for different applications
[9], [10], [11], [12], [13].

Recently, the dynamic mapping for machine learning, e.g.,
the combination of CNN with LSTM [20], [22], [28], [29],
[31], [32], [33], [34], [35], [36], is effective for the task
with sequential relationship: face emotion recognition [20],
[22], [28], visual recognition and description [29], human
activity recognition [32], emotion expression with fact trans-
fer for video description [33], real-time health monitoring
for machine [34], solar irradiance forecasting [35], weld-
ing defect areas localization [36]. Besides video captioning
with emotion expression [33], a cognitive load estimation
from speech commands focused on human-robot interaction
to simulated aircraft is considered by Vukovic et al. [37].
By using voice assistants, users are able to control smart
homes via speech commands [38]. To boot robust recognition
of speech command, the noisy training data [25] is employed
to train and validate the SRCN-WSCR.

FIGURE 1. The proposed ODSR.

III. EXPERIMENTAL SETUP AND PROBLEM DESCRIPTION
A. EXPERIMENTAL SETUP
The experimental setup of the omnidirectional service robot
(ODSR) in Fig. 1(a) consists of the following five parts [19]:
(i) three dc servomotors, (ii) one motion control mod-
ule, (iii) a laptop for image processing, (iv) a stereo cam-
era system, and (v) a Bluetooth earphone. The adaptive
stratified finite-time saturated control (ASFTSC) ui, i =
1, 2, 3 [18], [19] is computed in the Intel R© Atom N2600.
Afterwards, the signal is transformed into the pulse width
modulation (PWM) using Field Programming Gate Array
(FPGA) to drive the servomotors. Then the motor velocity
ωi, i = 1, 2, 3 is achieved by the encoder using FPGA
(cf. Fig. 1(b)). Furthermore, the specifications of Intel Zed
stereo camera system are as follows: (i) resolution and sam-
pling rate: WVGA(1334 × 376), 720p(2560 × 720),1080p
(3840×1080),2.2k(4416×1242) :100, 60, 30, 15fps; (ii) field
of view in H-V-D planes: 90◦, 60◦, and 110◦; (iii) depth:
0.5∼20m; (iv) power via USB: 5V /380mA; (v) size: 175 ×
30× 33mm;(vi) weight: 159g. The laptop for image process-
ing is the MSI-GF63 computer: (i) Intel Core i7-10750H,
2.6G, (ii) GPU with NVIDIA GTX 1650 Ti, 2GB. On the
other hand, the important specification of SONY WI-C300
Bluetooth earphone is given as follows: (i) Bluetooth version:
4.2, (ii) range: 10m, (iii) sampling rate: 16 bits, 16000 Hz,
(iv) battery life: 8hrs. Finally, the block diagram of the ODSR
system is depicted in Fig. 1(b).

B. PROBLEM DESCRIPTION
At first, the ODSR searches and detects the human through
Faster R-CNN [15]. If the face is in the orientation of−45◦ ∼
45◦ with respect to the optical axis and the position is less
than 3.5m, the Haar Cascade feature descriptor is employed to
crop a suitable face for recognizing his/her face emotion (e.g.,
angry, disgusted, fearful, happy, surprised, and sad). If not,
the strategy to approach the above pose region is achieved by
the stereo vision based localization and an adaptive stratified
finite-time saturated control (ASFTSC) [19]. Subsequently,
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FIGURE 2. Searching strategy for the face of human candidate.

the face emotion is recognized by the proposed SRCN-DFER.
Based on the FOV, face candidate in the R1, R2, R3, or R4
depicted in Fig. 2 is searched by the ODSR. It indicates that
the initial optical axis of the FOV in region R1 is 0◦. If a
human is not detected through the Faster R-CNN, then the
optical axis of FOV rotates θR2 = −90◦ to detect the human
candidate in region R2. If a human is still not detected, the
optical axis rotates θR3 = −90◦ to detect the human candidate
in region R3. Likewise, if human is not detected, the optical
axis rotates θR4 = −90◦ to detect the human candidate in
region R4. If the ODSR can’t find the human from the above
searching strategy, it moves forward a specific distance (e.g.,
5m) to execute the same procedure. If a human is detected,
the center point of the bounding box for detected human is
estimated by stereo vision system to achieve the 2D pose
between the detected human and ODSR. The overall flow-
chart of HRC using the proposed SRCN-DFER and SRCN-
WSCR is also depicted in Fig. 3.

The eight speech commands, i.e., ‘‘Forward’’, ‘‘Back-
ward’’, ‘‘Left’’, ‘‘Right’’, ‘‘Stop’’, ‘‘Follow’’, ‘‘Yes’’, and
‘‘No’’, are designed for the collaboration of human and
ODSR. Likewise, SRCN-WSCR is trained by the speech data
files fromGoogle Speech Commands Dataset v0.02 such that
8 human’s speech commands through Bluetooth are recog-
nized. Two background noises, i.e., crashing noise by metal
and chopstick, and hand clapping noise, are considered to val-
idate its robustness. Finally, the human-robot collaborations,
including human and face detections, trajectory tracking con-
trol [39], face emotion and speech command recognitions,
and music play, are presented.

IV. SRCN-DFER AND SRCN-WSCR
A. SRCN-DFER
The proposed architecture of SRCN-DFER is depicted in
Fig. 4, which has the upper part for the architecture (e.g.,
Convolution, Max-pooling) and the lower part for the output.
The designed concepts of SRCN-DFER are described as
follows: (i) Five pairs of the conv-pooling with appropri-
ate size are made up of the main part of CNN [40] such
that the classification of face emotion is improved. (ii) The
max-pooling is often applied to reduce the unnecessary

FIGURE 3. Overall flowchart of human-robot collaboration.

calculation. Nevertheless, the size of max-pooling should be
not too large to avoid information loss. The size of 2 × 2 is
suitable. Multiscale of convolution kernel (i.e., 7 × 7, 5 ×
5, 3 × 3) for face emotion recognition are suitable [16].
(iii) The zero padding of feature maps can better utilize their
border information, which is beneficial for the final perfor-
mance. (iv) From Table 1, the weight of the fully connected
layer and LSTM layer possesses the main number of total
weight. Nevertheless, the total number is still smaller than
that of DCNN [16] (cf. Table 5) or the ResNet50 in [25].
(v) The symbol 9 > 1 denotes the number of LSTMs to
tackle the dynamic mapping problem since the each LSTM
contains feedback loop [20], [22], [28], [35], [41]. Moreover,
these 9 LSTMs have common weight. (vi) With the online
preprocessing mechanism, i.e., Faster R-CNN combined with
Haar Cascade feature descriptor, the proposedmethod ismore
practical in comparison to some studies [23], [25], which
must have the suitable faces cropped in advance.

The details of four datasets are given as follows: (i) The
numbers of humans for the NTUST-IRL, KDEF, JAFFE, and
CK+ datasets are respectively 20, 97, 10, and 70, i.e., the total
number of humans is 197. (ii) The NTUST-IRL and KDEF
are RGB images; in contrast, CK+ and JAFFE are grayscale
images. (iii) Gender: man/women. (iv) The resolutions of
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FIGURE 4. The architecture of STCN-DFER.

TABLE 1. Architecture of the proposed SRCN-DFER.

NTUST-IRL, KDEF, JAFFE, and CK+ are 100×100, 562×
762, 256 × 256, and 640 × 480, respectively. (v) The train-
ing/testing numbers of six face emotions in NTUST-IRL,
KDEF, JAFFE, and CK+ are 640× 6.160×6, 80× 6.40×6,
20× 6.10×6, and 80× 6.40×6, respectively.
The training procedure of SRCN-DFER is described as

follows: (i) The CNN with fully connection and softmax
layers is first trained by static images of 3 datasets: NTUST-
IRL, KDEF, and JAFFE. (ii) After that, a pre-trained weight
of CNN but without the fully connection (FC) and softmax
(SM) layers is a part of initial weights. Together with the other
small random initial weights are employed to train SRCN-
DFER. (iii) Subsequently, the overall weight of SRCN-DFER
is trained by 280 batches of the sequence images in CK+
dataset.

The loss function of categorical-cross entropy is used for
the learning of SRCN-DFER [42]:

L(P) = −
∑M

m=1
tm`og(pm) (1)

where tm is the target signal of them− th facial emotion,M is
the total number of facial emotions, P = (p1, p2, · · · , pM ) is
the probability vector of classified output. Based on (1), the
stochastic gradient descent (SGD) of ‘‘Adam’’ (2) is applied
to learn the corresponding weights in the CNN except a stack
of LSTMs or SRCN:

ŵi(k) = ŵi(k − 1)− ηi(k)m̂i(k)
/√

v̂max
i (k)+ ε (2)

where ηi(k) is the initial rate 0.01 with the decay rate
10−5, g(k) is the gradient vector, ε = 10−5 avoids a zero
division. Moreover, we have

m̂i(k) = mi(k)
/
(1− αk1 ),

mi(k) = α1mi(k − 1)+ (1− α1)gi(k)

v̂i(k) = vi(k)
/
(1− αk2 ),

vi(k) = α2vi(k − 1)+ (1− α2)g2i (k)

v̂max
i (k) = max

{
v̂max
i (k − 1), v̂i(k)

}
(3)

where gi(k) = ∂L
/
∂ŵi, α1 = 0.9, α2 = 0.99. Based on (2)

and (3), the pre-training curve of CNN for 3 datasets with
the number of static images 4354 and 1088 for training and
testing is given in Fig. 5, which possesses the final training
loss 0.0057 and testing loss 0.0083 after 1063 steps. The
result is satisfactory due to the consistence between training
loss and testing loss. Further validations will be given in
section V. Since the sequence images for six face emotions
are only 280 batches, the overall training curve for SRCN-
DFERwith9 = 10 is shown in Fig. 6, which has the training
loss of 3.2 × 10−5 after 1043 steps. Since the number of
face emotion sequences is much smaller than that of learning
weight, we neglect the response of testing loss. Finally, the
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FIGURE 5. Pre-training response of CNN.

FIGURE 6. Training response of SRCN-DFER.

FIGURE 7. The compared FOV and performance between mono and
stereo cameras.

proposed SRCN-DFER is described in Algorithm 1, possess-
ing the similar concept of few-shot object detection [43].

The advantages of stereo camera are elaborated in the
following. When the human is in the front of stereo camera,
their total FOVs is much larger than 90◦ of mono camera
(cf. Fig. 7). Because the facial emotion recognition is sen-
sitive to the view angle of camera, the better recognition
rate from them is the representative one. It is definitely
better than that of mono camera at the expense of more
processing time. Nevertheless, the increasing processing time
is acceptable. The experimental video for the comparison
between single and stereo cameras can refer to the URL:
https://youtu.be/qgR7vyokSPo. It indicates that if the ori-
entation of human face is larger than 15◦ with respect to
the optical axis, the recognition for mono camera always

TABLE 2. Architecture of the proposed SRCN-WSCR.

fails. In contrast, stereo camera still successes. Since the
face emotion recognition using stereo vision system is com-
plex and seems unnecessary, the simultaneous comparison
between left and right cameras with sharing the same learned
weights and increasing viewing angle can improve the recog-
nition rate. This advantage was rarely addressed in previous
research.

Algorithm 1 SRCN-DFER algorithm
Input: Subimage 100 × 100 from preprocessing; Out-
put: Classification of 6 dynamic face emotions DFEi,=
1, 2, · · · , 6.

1: Using a set of static images trains and tests the weight of
CNN in Table 1 by ‘‘Adam’’ SGD optimizer (2) and (3),
and small random initial weight.

2: Using the pre-trained weight of CNN and small random
initial weight for LSTM model, FC and SM layers trains
the SRCN-DFER in Table 1 with suitable 9 by ‘‘Adam’’
SGD optimizer (2) and (3), and a sequence of dynamic face
emotion images.

3: If the classified result is not satisfied, then it
is back to step 2.

4: Output one of DFEi,= 1, 2, · · · , 6.

B. SRCN-WSCR
The eight speech commands, i.e., ‘‘Forward’’, ‘‘Backward’’,
‘‘Left’’, ‘‘Right’’, ‘‘Stop’’, ‘‘Follow’’, ‘‘Yes’’, and ‘‘No’’, are
designed for the tasks of HRC. The commands of ‘‘Forward’’,
‘‘Backward’’, ‘‘Left’’, ‘‘Right’’, and ‘‘Stop’’ are employed
to give the command of ODSR with respect to human.
For example, ‘‘Left’’ and ‘‘Right’’ respectively command
the ODSR at the left- and right-hand side of human with
2.5m between them. Likewise, ‘‘Forward’’ and ‘‘Backward’’
respectively command the ODSR in the front and rear side of
humanwith 2.5m between them. Certainly, ‘‘Stop’’ command
immediately stops the ODSR. The preprocessing of speech
command is described in Fig. 8 or Algorithm 2. The architec-
ture of the proposed SRCN-WSCR is described in Table 2,
which is simpler than the SCRN-DFER in Table 1.
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FIGURE 8. Processing of speech command.

Before the online application of speech command recog-
nition, the training data from Google Speech Commands
Dataset v0.02 is employed to train and test SRCN-WSCR
algorithm. It includes (i) over 100,000 speech files with the
time length of 1s for 35 classes, (ii) speech files with 6 dif-
ferent background noises. Based on ‘‘Adam’’ SGD optimizer,
the training and testing losses of the SRCN-WSCR with9 =
101 are respectively 0.013 and 0.071 after 752 iterative steps
by the number of training and testing voice files of 10372 and
2324. Since the dynamic feature of speech command is dom-
inant, the number of LSTMs is increased in comparison to
that in the SRCN-DFER. Since these voice files are suffi-
ciently large and dynamic, no pre-trained response is given.
Finally, Algorithm 2 is online applied to the wireless speech
command recognition [19]. In its Step 3, is a formulation of
common use to convert linear frequency to the Mel-scale fre-
quency such that human speech is more easily distinguished.

Algorithm 2 SRCN-WSCR algorithm.
Input: Wireless speech command x(t);Output: Classifica-
tion of 8 speech commandsWSCj, j = 1, 2, · · · , 8.
1:x(t)x(n).
2: STFT: X (m, ω) =

∑N−1
n=0 x(n)H (n− m)e−jωn, where N =

512,
m = 160, H (n− m) =

[
1− cos(2(n− m)π

/
(N − 1))

]/
2.

3: Mel-Spectrogram: MS(f ) = Mmf (f )S(m, ω), where
S(m, ω) = |X (m, ω)|2 ,Mmf (f ) = 2595 log10

(
1+ f

/
700

)
.

4:Logarithm Mel-Spectrogram: MSl =

10 log10
(
MS

/
MSM

)
, where MSM = max

0≤f≤fs
{MS(f )} ,

fs is a specific frequency.
5: Input MSl to Table 2 with suitable 9 and ‘‘Adam’’ SGD
optimizer (2) and (3).
6: Output one ofWSCj, j = 1, 2, · · · , 8.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. VIDEO-BASED FACE EMOTION RECOGNITION
Most of video-based recognition rates of previous research
(e.g., [11], [12], [13], [20], [28]) are only acceptable.

TABLE 3. Comparison of SRCN-DFER between mono and stereo cameras
at 3m with three view angles.

TABLE 4. Recognition rate for SRCN-DFER at different distances.

Before the implementation of HRC, the video-based recog-
nition rate between mono and stereo cameras with three
view angles −15◦, 0◦, and 15◦ at 3m are compared in
Table 3.

The important observations of Table 3 are addressed as
follows: (i) The average recognition rate of stereo cam-
era is 98.4% (URL: https://youtu.be/qgR7vyokSPo), which
is 4.9% better than that of mono camera. Moreover, it is
better than that of previous research, e.g., [11], [12], [13],
[20], [21], [22], [23], [24], [25], [26], [27], and [28]. (ii) As
view angle is zero, i.e., the face in the right ahead of camera,
the recognition rate of stereo camera is 0.6% slightly better
than that of mono camera. Nevertheless, the recognition rate
at view angle −15◦ for stereo camera is 8.6% better than
that of mono camera. (iii) The face emotions in Table 3 have
not only right-left view angle changes but also up-down pose
variations. (iv) In summary, the stereo camera detects face
emotions separately, and the higher confidence is the final
output result. Using the advantages of stereo camera for the
recognition of the face emotions with different view angles,
including left-right and up-down pose changes, yields a better
result for the distance between 0.8 and 3.5m. (v) Although
the previous study [28] has a satisfactory average recog-
nition rate of 84.32%, its ‘‘fearful’’ emotion is the lowest
(59.09%). On the contrary, the ‘‘fearful’’ in Table 3 at least
has 82%.

The recognition rates for the SRCN-DFER at dif-
ferent distances are shown in Table 4, which is still
excellent.

Furthermore, the comparisons among DCNN [16], the
proposed SRCN-DFER, and ResNet50 [25] are presented
in Table 5. The architecture of ResNet50 includes 49 conv-
pooling layers and the last fully connected layer for the
classification. The important observations of Table 5 are
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TABLE 5. Comparsion among DCNN, the proposed SRCN-DFER, and
ResNet 50 with stereo camera.

TABLE 6. Comparison among 3D-CNN, LRCN, and SRCN-DFER.

discussed as follows. (i) The proposed SRCN-DFER is
5.7% and 6% better than DCNN and ResNet50, respectively.
(ii) The experimental video for ResNet50 is at the URL:
https://youtu.be/tWigt50F_7M, which is acceptable. (iii) The
computation time of SRCN-DFER is 0.015s averagely larger
than that in DCNN but 0.02s smaller than that in ResNet50.
The main reason is that 10 LSTMs with the same weight
are required for the proposed approach. (iv) The recog-
nized results of ‘‘Disgusted’’ and ‘‘Fearful’’ are improved
by 19% [16] and 19.5% [25], respectively. (v) Two different
persons, which have pose variations and are not in the training
dataset, and slightly different backgrounds, are employed
to further confirm the effectiveness of the proposed SRCN-
DFER. The average recognition rate 97.6% is still excellent,
cf. URL: https://youtu.be/Kz3fC0tjLLE. (vi) The learning
weight in SRCN-DFER is only 4% and 11.3% in comparison
to DCNN and ResNet50 such that overfitting problem can be
reduced.

In Table 6, LRCN [29] and 3D-CNN [30] directly usemany
static sequential image for training; in contrast, SRCN-DFER
has been pre-trained by static images of 3 datasets: NTUST-
IRL, KDEF, and JAFFE. Then, the pre-trained weights of
CNN and the small random weights for a stack of LSTMs,
fully connection and softmax layers are set as the initial
weight to train the SRCN-DFER by a sequence of dynamic
images from CK+ dataset. From Table 6, it reveals that
the SRCN-DFER through ‘‘Transfer Learning’’ can obtain a
better performance due to extracting useful information from
data in a related domain and transferring them used in target
tasks [44].

TABLE 7. Confusion matrix of the SRCN-WSCR without noisy training data
by the test data from google speech commands dataset v0.02.

TABLE 8. Confusion matrix of the SRCN-WSCR without noisy training data
by the test data from google speech commands dataset v0.02 combined
with mental chopsticks crashing noise.

B. WIRELESS-BASED SPEECH COMMAND RECOGNITION
At the outset, the confusion matrix of SRCN-WSCR without
noisy training data by the test data fromGoogle Speech Com-
mands Dataset v0.02 is shown in Table 7, which is excellent.
To verify its robustness, its confusion matrices using the
original test data combinedwithmetal and chopstick crashing
noise and hand clapping noise are respectively presented in
Table 8 and Table 9, which are satisfactory. To boot robust
recognition of speech command, six noisy data from Google
Speech Command Dataset are added to train SRCN-WSRC.
Then, the confusion matrices of the SRCN-WSCRwith noisy
training data [25] for Table 8 and Table 9 cases are respec-
tively presented in Table 10 and Table 11, which are much
improved. It confirms the superiority of the proposed SRCN-
WSCR.

C. HUMAN-ROBOT COLLABORATION
The resolution and sampling rate for this study are (3840 ×
1080) and 30 FPS, respectively. In addition, the human-
robot collaborations in Table 12 are exemplified in the fol-
lowing 6 scenarios. (i) In the beginning, ODSR and human
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TABLE 9. Confusion matrix of the SRCN-WSCR without noisy training data
by the test data from google speech commands dataset v0.02 combined
with hand clapping noise.

TABLE 10. Confusion matrix of the SRCN-WSCR with noisy training data
by the test data from google speech commands dataset v0.02 combined
with mental chopsticks crash noise.

are at (x1, y1, 180◦) and (x2, y2, 0◦), respectively, where the
position is meter. Since the ODSR in Region 1 does not
detect a human over 10s, based on the searching strategy in
Fig. 2 ODSR rotates 90◦ in the clockwise (CW) orientation
by the ASFTSC in [19]. (ii) In Region 2, a human is detected,
and then ODSR is controlled to (x2, y2 − 2.5, 90◦). (iii) No
face over 10s is detected by Faster R-CNN on ODSR. Then
ODSR will broadcast ‘‘Where is your face orientation?’’ (iv)
The human answers ‘‘Right’’, which indicates the orientation
of human face in the right hand side of ODSR. After it is
recognized by SRCN-WSCR, ODSR is controlled to (x2 +
2.5, y2, 180◦) in the alignment with the human face. (v) Like-
wise, the speech command ‘‘Left’’ is recognized by SRCN-
WSCR, and ODSR is then controlled to (x2 − 2.5, y2, 0◦) in
the alignment with the human face. (vi) If the speech com-
mand ‘‘Forward’’ is recognized by SRCN-WSCR, ODSR is
passing through the waypoint (x2 + 2.5, y2, 90◦), and then is
controlled to (x2, y2 − 2.5,−90◦) in the alignment with the
human face.

TABLE 11. Confusion matrix of the SRCN-WSCR with noisy training data
by the test data from google speech commands dataset v0.02 combined
with hand clapping noise.

TABLE 12. Scenarios of human-robot collaboration.

The operations in Table 12 do not discuss the ‘‘Backward’’
command since ODSR can detect a face at this status and
the distance between is about 2.5m. The assigned distance
of 2.5m is due to the environment constraint. Furthermore,
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FIGURE 9. Training response of SRCN-WSCR.

the speech command ‘‘Stop’’ will stop the motion of ODSR
in any circumstance. After facial emotion is recognized by
SRCN-DFER, ODSR will broadcast ‘‘Are you (recognized
emotion)?’’ Finally, the ‘‘Yes’’ or ‘‘No’’ speech command
from human will be answered via wireless transmission.
If ‘‘Yes’’, the corresponding music will be playing. Other-
wise, the continuous recognition by SRCN-DFER is imple-
mented. The proposed approach is different from the relative
pose estimation between two robots using an optimal Kalman
filter [45] since it must have an operation with limited FOV.

The operations in Table 12 do not discuss the ‘‘Backward’’
command since ODSR can detect a face at this status since
ODSR is just in the front of human with the distance of
2.5m. The assigned distance of 2.5m is due to the environment
constraint. Furthermore, the speech command ‘‘Stop’’ will
stop the motion of ODSR in any circumstance. After facial
emotion is recognized by SRCN-DFER, ODSR will broad-
cast ‘‘Are you (recognized emotion)?’’ Finally, the ‘‘Yes’’
or ‘‘No’’ from human will be answered via wireless trans-
mission. If ‘‘Yes’’, the corresponding music will be playing.
Otherwise, the continuous recognition by SRCN-DFER is
implemented.

The experimental video for human-robot collaboration is at
the https://www.youtube.com/watch?v=J3DF30TdlzE. One
representative human-robot collaboration with the ‘‘Happy’’
face emotion and its motion control response are presented
in Table 13 and Fig. 10, respectively. They are explained
in the following 13 portions. (i) To begin with, the wireless
speech command ‘‘Follow’’ is received by ODSR. (ii) Based
on SRCN-WSCR, the planned human-robot collaboration
executes. Since the FOV of ODSR is in Region 1, no human
is detected. (iii) Based on the searching strategy in Fig. 2,
ODSR turns 90◦ in the clockwise (CW) orientation to Region
2 for the continuous face detection (see the 3rd subplot of
Fig. 10(a)). (iv) A human in Region 2 is detected by Faster
R-CNN on ODSR. (v) ODSR is controlled to 2.5m between
them (see the 1st and 2nd subplots of Fig. 10(a) at t = 57s or
Fig. 10(b)). (vi) Simultaneously, face detection (FD) using

TABLE 13. Important snapshots for human-robot collaboration with the
‘‘Happy’’ face emotion.
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TABLE 13. (Continued.) Important snapshots for human-robot
collaboration with the ‘‘Happy’’ face emotion.

TABLE 13. (Continued.) Important snapshots for human-robot
collaboration with the ‘‘Happy’’ face emotion.
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FIGURE 10. Response of HRC in Table 13 by the ASFTSC in [19].

Haar Cascade descriptor is implemented. Since no face is
detected, ODSR will ask ‘‘Where is your face orientation?’’
(vii) Human answers ‘‘Left’’ to ODSR. (viii) After the use of

SRCN-WSCR, ODSR moves to left side of human and turns
90◦ in the CW orientation to detect a face (see the 3rd subplot
of Fig. 10(a)). (ix) After a face is detected by Haar Cascade
feature descriptor, ODSR applies SRCN-DFER to recognize
the human’s face emotion. (x) ODSR will broadcasts ‘‘Are
you happy?’’ (xi) Human answers ‘‘Yes’’ to ODSR. (xii) The
corresponding music reflecting ‘‘Happy’’ emotion is playing.
(xiii) In this experiment, the camera axis is the same as
the motion axis of ODSR, i.e., Y-axis. The control response
achieved by the adaptive stratified finite-time saturation con-
trol [19] is shown in Fig. 10(c). The simultaneous translation
and rotation of ODSR is better than that of differential mobile
robot [39], or car-like mobile robot [46].

VI. CONCLUSION
A creative design of SRCN for dynamic mapping of many
machine learning problems, e.g., dynamic face emotion
recognition, wireless speech command recognition, is estab-
lished. From the outset, the CNN with fully connection and
softmax layers is trained by static images to achieve the
corresponding feature vector of facial emotion. Subsequently,
SRCN-DFER with a stack of 10 LSTMs using the shared
weight is trained by 280 batches of dynamic face emotion
images. It is similar to the few-shot concept and achieves
an average 98% recognition rate for different persons with
pose variation and slightly different backgrounds. The perfor-
mance is superior to many previous studies for dynamic face
emotion recognition [11], [12], [13], [20], [21], [22], [23],
[24], [25], [26], [27], [28]. Furthermore, the comparisons
among DCNN [16], ResNet50 [25], and LRCN [29], and 3D-
CNN [30] confirm the state-of-the-art performance. Since the
files of speech command are sufficiently large and dynamic,
a pre-trained CNN for SRCN-WSCR is not required. In con-
trast, its 101 LSTMs are larger than 10 LSTMs in the
SRCN-DFER due to the strong dynamics of speech com-
mand. The proposed approaches not only effectively tackles
the recognitions of dynamic mapping of facial emotion and
speech command, but also prevents the overfitting problem in
the noisy environment. Finally, the implementation of HRC,
e.g., Table 13 and Fig. 10, is accomplished by the integration
of trajectory tracking control of ODSR, searching and detec-
tion of human and face, preprocessing of speech command,
dynamic face emotion and wireless speech command recog-
nitions, andmusic playing. In the future, multiple ODSRs and
humans, distributive UWB network for wireless navigation
will be addressed.
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