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ABSTRACT Meta-learning aims to learn a model that can handle multiple tasks generated from an unknown
but shared distribution. However, typical meta-learning algorithms have assumed the tasks to be similar such
that a single meta-learner is sufficient to aggregate the variations in all aspects. In addition, there has been
less consideration of uncertainty when limited information is given as context. In this paper, we devise a
novel meta-learning framework, called Meta-learning Amidst Heterogeneity and Ambiguity (MAHA), that
outperforms previousworks in prediction based on its ability to task identification. By extensively conducting
several experiments in regression and classification, we demonstrate the validity of our model, which turns
out to generalize to both task heterogeneity and ambiguity.

INDEX TERMS Disentanglement, knowledge transfer, stochastic process, variational inference.

I. INTRODUCTION
Although deep learning models have shown remarkable per-
formance in various domains, they have consistently been
criticized because of their sensitivity to the amount of
data [1]. Despite all available public data, the data scarcity
problem is still not negligible. In many cases, the actual
data that is worth analyzing is quite limited for many
different reasons, for example, concerns about data pri-
vacy [2] and noisy data with anomalies [3]. Meta-learning
that aims to handle multiple tasks by efficiently organizing
the obtained knowledge has emerged as a way to overcome
this deficiency with its adaptive behavior using a few data
points [4], [5], [6].

Context-based meta-learning, also referred to as Neural
Processes (NPs), has been emphasized since it can prop-
erly predict unseen data inputs without huge computation
costs [6], [7], [8]. Many papers have shown that the context-
based meta-learning algorithms are effective not only for
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synthetic regression, image-inpainting, and few-shot classi-
fication but also for reinforcement learning [9], [10], [11].

The context-based meta-learning utilizes neural networks
to develop an appropriate identifier for a novel task by
applying a context representation incorporating a permutation
invariant set representation. Specifically, most papers have
demonstrated that the predictive performance depends on
how context information is well-constructed [8], [9], [12].
Early studies mainly focused on network architecture for
permutation invariant set encoding; MLP layers followed
by a simple aggregated operator like average or summa-
tion operation [6], [7]. Then, various attention mechanisms
have been introduced to increase the capacity of the con-
text representation [8], [9], [13]. Particularly, those gain bet-
ter performance by constructing the context representation
that considers the relationship between corresponding fea-
tures from all the given context data points. To also acquire
the translation invariance, convolutional neural processes
employed convolutional neural networks and a kernel den-
sity estimation method with equally spaced additional data
points for functional context representation [11], [14], [15].
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FIGURE 1. Motivating example. When confronting a task for discriminating different types of birds or textures, the data constituting the two tasks in
the yellow box is very heterogeneous. Hence, there may be a limit to covering all these variations with just a single meta-learner. In the case of the
green box, tasks are generated in the same way. However, only one image is provided for each class. Hence, rather than judging that the two tasks are
heterogeneous, there is an incentive to misunderstand, for example, distinguishing between high and low colorfulness, which increases ambiguity on
where a feature should be paid attention to.

Moreover, for noise invariance, [12], [16] proposed to apply
bayesian approaches such that the bayesian aggregated func-
tion and bootstrappingmethod are used to improve robustness
against irreducible noises.

Recently, some studies considered a novel situation in
which a single context-based meta-learning serves distinct
tasks simultaneously [17], [18]. These studies reported
that the distinct tasks could be distinguished by explicitly
designed context representation which positively influences
the prediction performance of one another. Nonetheless, one
significant drawback is that they supposed the number of
tasks is known in advance and paid less attention to implicitly
analyzing the tasks by the learned context representation
itself.

In this respect, we hypothesize that a disentanglement in
task representation is advantageous, frequently appearing in
studies to analyze the inherent factors of variation within
the dataset. This is to i) uncover the distinctive properties
as a tool for interpretability and to ii) explicitly separate
the dataset into several clusters, which would have been
detrimental when trained altogether.

To this end, we propose a new meta-learning frame-
work, Meta-learning Amidst Heterogeneity and Ambiguity
(MAHA), that generalizes on the following two hurdles.
Task heterogeneity: there is no clear discrimination between

the tasks sampled from the faraway modes of task distri-
bution [19], [20], [21], [22]. Task ambiguity: too few data
points are given to infer the task identity [23], [24], [25].
(As a more direct example, see Fig. 1.) Specifically, we pro-
pose a novel method to automatically cluster between tasks
and analyze their embedding by incorporating interpretable
task representation with the NPs. We emphasize that the
number of clusters is not predefined, which was given as a
hyperparameter in previous studies to utilize complex graph
structures or task-awareness relational structures.

To summarize, the main contributions of this paper are the
following 3-folds:
• We construct well-clustered and interpretable context
representations within task heterogeneity and ambiguity.

• We devise an optional regularization term based on the
knowledge distillation technique to handle better the
ambiguity for the low-shot regime.

• We validate MAHA through regression and classifica-
tion, by which the experimental results demonstrate its
ability to cope with task heterogeneity and ambiguity.

II. RELATED WORK
A. GRADIENT-BASED META-LEARNING
Meta-learning, also known as learning to learn, is to well
adapt or generalize to potentially unseen tasks that are
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not encountered during training time. Compared to metric-
based [4], [26], [27], [28] and model-based approaches [29],
[30], [31], the model-agnostic nature plays a role as an incen-
tive to use the gradient-based approaches so that a model that
learns through gradient descent can be easily extended [5],
[24], [32].

Many variants have emerged to balance generalization
and customization in a task-adaptive manner. To begin with
a generalization perspective, bayesian inspired approaches
have been suggested for probabilistic extensions of meta-
learning [33], [34]. In other aspects, several studies have
revealed that meta-learning suffers from memorization due
to a lack of training data points and suggested diverse regu-
larization techniques [35]. From a customization perspective,
either the number of parameters to adapt is reduced [36] or the
auxiliary networks additionally modulate the initial parame-
ter before the inner-loop [20], [21]. However, the deeper the
network becomes, the wider the parameter space becomes,
making the gradient-based meta-learning more challenging
to ensure the performance of task adaptation as intended.

B. CONTEXT-BASED META-LEARNING
The family of NPs, a newly emerging framework, enables
fast task adaptation as it is known to infer the contextual
information of tasks well. Although it was originally devised
to imitate the flexibility of the Gaussian Process (GP) [37]
while resolving the scalability issue, it frequently appears
as a baseline to meta-regression problem due to its adapt-
ability [14]. Such adaptability comes from the implicit kernel
learning for Bayesian inference, which is different from the
typical deep kernel learning methods [38], [39], [40].

Nonetheless, many problems remain unsolved. First, the
NPs rely on a complex feature extractor to enable task-
specific modulation, which requires various regularization
techniques with additional hyperparameters [41]. Further-
more, whereas the NPs can obtain an explicit task representa-
tion, the existing approaches have paid less attention to task
representation concerning interpretability. Lastly, the perfor-
mance analysis has been mainly focused on regression [8],
[9], [17], [42], and some are not even directly applicable for
classification [16]. We demonstrate that MAHA is free from
these problems by incorporating representation learning.

C. REPRESENTATION LEARNING
Representation learning allows a deep neural network to
analyze the inherent factors of variation within the dataset.
Variational inference techniques are mainly utilized, where
an induced regularization penalty enforces the intermedi-
ate activation to construct a semantically meaningful latent
space. Here, Variational Auto-encoder (VAE) [43] is a com-
mon baseline, and follow-up studies investigated latent vari-
ables that are modeled by a multi-modal distribution, such
as a mixture of the Gaussians or the Dirichlet distribution,
and thus each mode indicates a distinct property [44], [45].
However, these are only applicable when the number of
modes is known in advance. While [46] and [47] freed

FIGURE 2. Graphical model of NP(left) and ANP(right). Circles denote
random variables, whereas diamonds denote deterministic variables.
Shaded variables are observed during the test phase. Every in-between
edge is implemented as a neural network whose output is a
parameterization of a distribution in the case of a random variable.

to know such information by modeling the latent variables
with Dirichlet Process, the training gets difficult, leading
to collapsing behavior. Recently, [48] and [49] also con-
sider integrating meta-learning and representation learning,
but contextual representations are either based on additional
information or non-parametric. In contrast, MAHA provides
qualitatively and quantitatively interpretable parametric rep-
resentation without any external knowledge.

III. PROBLEM SETTING
Let C = {Cx ,Cy} be the context input-output pair (in short,
context set), and let T = {Tx ,Ty} be the target input-output
pair (in short, target set). Both C and T are sampled from
the same task T from an unknown task distribution p(T ),
and C is a subset of T . A common goal in meta-learning
is to devise an algorithm for the model f (·, θ) that appro-
priately uses the context set C and the model parameter θ
to obtain the task-specific parameter φ such that when Tx
is given, Ty can be accurately estimated by f (Tx;φ) with
high confidence. For example, in MAML [5], a task-specific
parameter can be computed by using a gradient step φ =
θ − α · ∇θL(f (Cx; θ ),Cy). On the other hand, in CNP [6],
θ and φ no longer share the same parameter space. Here, the
model parameter is divided into an encoder and a decoder
part θ = {θenc, θdec}, and the task-specific parameter can be
computed by the encoder output φ = fenc(C; θenc). From now
on, we omit θ for brevity.
For model training, θ is iteratively updated to more readily

adapt to φ using batchs where each batch consists of multiple
tasks (possibly from different clusters) that are characterized
by way and shot. If we are to estimate the corresponding
output of an input given K reference input-output pairs, it is
called a (1-way) K-shot regression problem. On the other
hand, if we are to estimate the class label of an image
among N classes given K example images of each class,
it is called an N-way K-shot classification problem. Note
that the class labels are shuffled whenever a task instance
is created, encouraging a meta-learning algorithm to learn
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how to classify images evenwhen the configuration of unseen
classes occurs.

IV. BACKGROUND
A. (ATTENTIVE) NEURAL PROCESS
The NPs are devised to imitate the flexibility of GP [37] while
resolving the scalability issue during the inference. In Fig. 2,
we summarize how a basic family of NPs has evolved in
terms of the graphical model. The encoder comprises a deter-
ministic path and stochastic path computing the task-specific
parameterφ = {r, z}. Theφ is the parameter of the variational
distributions, which we denote by 1

q(r|{X ,Y }) = N (r, 0)

q(z|{X ,Y }) = N (µz, 0.1+ 0.9 · sigmoid(ωz))

where {X ,Y } indicates a set of input-output pairs like C
or T . Note that a reparameterization trick is applied at the
end of the stochastic path for differentiable non-centered
parameterization.

For both paths, NP [7] is constructed by:

r = MeanPoolshot (rFF({X ,Y }))

[µz, ωz] = MeanPoolshot (rFF({X ,Y }))

where MeanPool(·) is a mean-pooling operation along the
subscripted dimension, rFF(·) can be any row-wise feedfor-
ward layer, such as Multi-Layer Perceptron (MLP), and [·]
denotes the concatenation.

On the other hand, ANP [8] exploits the multi-head atten-
tion MultiHead(·, ·, ·), connecting Tx to r in graphical model,
and self-attention Self(·), both of which are proposed in [50].

r = MultiHead(Tx ,X ,Self({X ,Y })) (1)

[µz, ωz] = MeanPoolshot (Self({X ,Y })) (2)

As in NP, the value of z is the same for every shot of Tx .
However, based on the attention score with each element
of X , r is now computed in shot-dependent manner. Then,
conditioned on the encoder outputs, r and z, with the target
input Tx , the decoder computes the parameters of predictive
distribution on the target output Ty:

[µTy , ωTy ] = rFF ([Tx , r, z]) (3)

where the predictive distribution is expressed as
p(Ty|Tx , r, z) = N (µTy , 0.1+0.9·softplus(ωTy )). Eventually,
relying on the variational inference, one can obtain the loss
function, which approximates the negative ELBO by replac-
ing an intractable p(z|C) with the variational distribution
q(z|C) following [7]:

L(A)NP = −Eq(r|C)q(z|T )
[
log p(Ty|Tx , r, z)

]
+βKL (q(z|T )‖q(z|C)) (4)

As a result, based on the Kolmogorov extension and de-
Finetti theorems, the NPs become a stochastic process that

1Note that r is deterministic with zero variance.

satisfies the exchangeability and consistency [7]. However,
the NPs with latent variables are empirically shown to have
difficulty capturing the variability of the stochastic pro-
cess [42]. Empirically, we investigated this problem by illus-
trating the weight norm of the decoding layer right behind
the latent variables r̄ and z̄ in Fig. 4. The information flow is
concentrated on the deterministic path for r with the tendency
to ignore the stochastic path for z, which is known as the infor-
mation preference problem [51]. The sparsely-coded decoder
implies the redundancy of the stochastic path due to the
component collapsing behavior referred to in [46] and [45].

In order to handle the information asymmetry, several solu-
tions were proposed in studies on the generative model, such
as the KL annealing scheduler [52] and expressive posterior
approximation [53], but these are generally not robust to
changes in model architecture. Instead, we propose a simple
method to avoid the redundancy of the stochastic path in
Section V by encouraging it to acquire multi-modality within
heterogeneity and ambiguity.

B. SET TRANSFORMER
Set Transformer [54] is proven to be a flexible function
approximator that considers a high-order interaction between
set elements. It can be decomposed into the following 4 atten-
tion modules:

MAB(A,B) = LN(H + rFF(H )) ∈ Rn×d

SAB(A) = MAB(A,A) ∈ Rn×d

ISABm(A) = MAB(A,MAB(I ,A)) ∈ Rn×d

PMAk (A) = MAB(S, rFF(A)) ∈ Rk×d

where H = LN(A +Multihead(A,B,B)) is a basic building
block for every module. Here, A,B ∈ Rn×d are random sets,
and I ∈ Rm×d , S ∈ Rk×d are additional learnable parame-
ters. Note that the randomly initialized inducing points I in
ISAB have a lower cardinality than A.
A multi-head attention block (MAB(·, ·)) and set attention

block (SAB(·)) are the two main key components, which
reinforce the multi-head-attention and self-attention with a
layer normalization LN(·) and a skip connection. The induced
set attention block (ISABm(·)), withm inducing points, is fur-
ther devised as a substitute for the SAB(·) in terms of com-
putational efficiency and generalization. The output size is
fixed to k by another complex pooling module: pooling by
multi-head attention (PMAk (·)). Note that the Set Trans-
former can substitute the rFF(·) and MeanPoolshot (·) in the
encoder of NPs with more flexibility by setting k = 1.

V. METHODOLOGY
The core idea behind MAHA is inspired by representation
learning. In other words, by learning an interpretable repre-
sentation of a task, clusters of similar tasks are pre-estimated,
and a meta-learning model is trained separately for each
cluster. Since the conventional meta-learning models have
performed well on homogeneous tasks, this way of training
with representation learning allows the models to be readily
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FIGURE 3. Qualitative comparison between NP, ANP, and NP with the flexible encoder (NP+FE) on functions generated from GP. The shaded areas
correspond to the ±2 standard deviations. The prediction of ANP turns out to be wiggly, while NP and NP+FE are relatively smooth, following
Occam’s razor. Note that quantitative comparison can be looked up in Table 1.

FIGURE 4. Stacked bar plot for the weight norm of the decoding layer.

extended to heterogeneous tasks. Please refer to Algorithm 1
and Section V-D for more details on the training process.

Compared to other meta-learning models, we used NPs
that can explicitly obtain a microscopic representation r and
a macroscopic representation z of a task. We hypothesized
that task clustering would perform well if the z could contain
information about task identities. To better encourage and
exploit such property, we redesigned the encoder-decoder
pipeline in Section V-A, and tried to improve the conventional
loss function of NPs in two aspects in Section V-B and V-C.
This section describes these methodologies step by step in
detail.

A. ENCODER-DECODER PIPELINE
We first introduce an encoder-decoder pipeline of MAHA,
namely Flexible Encoder and Linear Decoder(FELD),
of which effects are examined in detail by substituting the
correspondent within NP in Section VI.

1) FLEXIBLE ENCODER (FE)
Although the attention mechanism proposed in ANP was a
key to resolving the underfitting in NP, there is less incentive
for r to focus on task identity shared across shots. As a result,
in Fig. 3, ANP appears to strongly fit the given input-output
pairs, which leads to a wiggly prediction. Particularly within
task heterogeneity and ambiguity where the prediction space

is prone to be highly variable, the wiggly prediction of ANP
leads to poor interpolation and extrapolation performance.
(See Fig. 6.) Therefore, in MAHA, the graphical model of
NP is rather considered than that of ANP since its latent vari-
ables are shot-independent. Then, based on analysis in [55],
the problematic underfitting is dealt with by substituting
the encoder with the flexible and permutation-invariant Set
Transformer [54]. In the case of computational complexity,
O(mn) is the same as that of Set Transformer that contains a
complex module, wherem is the input variable number of the
ISAB module, and n is |T | at training and |C| at testing. Note
that this is comparable to that of ANP, which is O(|C||T |).

2) LINEAR DECODER (LD)
We avoid using a complex decoder such as [56] and weaken
the complexity to allow the task-specific parameterφ = {r, z}
to be appropriately leveraged. Specifically, we apply feature-
wise linear modulation to the target input Tx . Inspired by [57],
we composite the latent variables using a skip connection as
the following:

W = w(r, z) = LN(r + rFF(z))T (5)

where the transpose operation T permutes the last two dimen-
sions of the tensor. Among the many normalization tech-
niques, a layer normalization [58] is applied since the statistic
is computed independently for each batch instance such that
only z can still capture the heterogeneity by the pooling pro-
posed in Section V-B. Then, the prediction on Ty is conducted
by:

[µTy , ωTy ] or logit = g(Tx) ·W

whereW = w(r, z) = LN(r + rFF(z))T (6)

where g(·) implies any feature extractor. Note that it relates
to studies on few-shot classification [41] where each column
of W is computed by shots within the same way.

B. INDUCING DISENTANGLEMENT ON z
We then introduce dimension-wise pooling and an
auto-encoding structure which enable well-clustered and
interpretable task representation on the stochastic path.
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FIGURE 5. Computational diagram for r̄ and z̄ . Note that every block of the encoder outputs in regression is reshaped from
[batch, 1, 2× dim(y )× feature] into [batch, 2× dim(y ), feature] for visual comfort. Also, the value of way is set to 1 in regression such that pooling
on z is negligible. In classification, shot dimension is divided along way with subscript {1, . . . , N} and r̄ = [r̄1, . . . , r̄N ].

1) DIMENSION-WISE POOLING
We propose a simple yet powerful architecture design to
encourage the latent variables r and z to learn microscopic
and macroscopic features, respectively. By pooling each path
across different dimensions (batch for r and way for z),
the distinct variations within the information flow are now
explicitly captured:

r̄ = MeanPoolbatch(r) and (7)

[µz̄, ωz̄] = MeanPoolway([µz, ωz]) (8)

The r̄ becomes identical not only across shots but also
across batchs. Therefore, whenever it is insufficient to handle
all variations across tasks within the same batch i.e., facing
task heterogeneity, the cluster-specific information can be
referred only through the z̄ since the r̄ captures at most the
average property of the clusters. On the other hand, the z̄
allows the different way to share information and becomes
class-invariant. Then, the columns of W from the Linear
Decoder are no more independent of one another as each
column is conditioned on the same z̄ in (5), which is different
from the previous studies [41]. In Fig. 5, we illustrate how

the latent variables r̄ and z̄ are computed. Note that r̄ is
independently computed for each class, while z̄ is pooled over
the dimension of ways denoted by different colors, which pro-
vides a chance for the different classes to share information
through z̄.

2) AUTO-ENCODING STRUCTURE
Although a small subsetC of T is expected to reproduce z that
is obtained by T (through the KL divergence in (4)), the repre-
sentation inferred by T is rather restricted to be underutilized
as a side effect, which is the KL collapse [51]. By dimension-
wise pooling operations, we intended to prevent z from being
redundant by allowing the information flow to go through the
stochastic path whenever heterogeneous tasks occur in batch.
Thereby, we resort to the conditional auto-encoding struc-

ture [59] on top of the dimension-wise pooling As a result,
the following loss function is derived, which differs from (4)
on i) whether the pooling operations are used or not and ii)
which set is used to compute the deterministic representation,
each of which is the result of the dimension-wise pooling and
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the auto-encoding structure:

Lpre = −Eq(r̄|T )q(z̄|T )
[
log p(Ty|Tx , r̄, z̄)

]
+βKL (q(z̄|T )‖q(z̄|C)) (9)

C. DISTILLING AN OBTAINABLE KNOWLEDGE
FROM T TO C
Optionally, we introduce an additional regularization term
that is devised to distill an obtainable knowledge from T toC ,
which is to be better aware of the task ambiguity in a limited
number of shot.

Since the output distribution accounts for a significant
portion of the variability of the NPs [42], we further minimize
KL divergence between the following output distributions:

o(Ty|C) := Eq(r|C)
[
p(Ty|Tx , r, z)

]
o(Ty|T ) := Eq(r|T )

[
p(Ty|Tx , r, z)

]
Notice that the deterministic representations are conditioned
on the different sets, one from the context set C , another
from the target set T , and we assume that the stochastic
representations z are given in advance. For a general purpose,
we derive an upper bound as follows since the KL divergence
can be computed in a closed form only in a limited family of
probability distributions:

KL
(
o(Ty|C)‖o(Ty|T )

)
= −

∫
o(Ty|C) log o(Ty|T ) dTy −H

(
o(Ty|C)

)
≈ − log o(T̂y|T )−H

(
o(Ty|C)

)
s.t. T̂y ∼ o(Ty|C)

≤ −Eq(r|T )
[
log p(T̂y|Tx , r, z)

]
−H

(
o(Ty|C)

)
where H(·) indicates entropy. The approximation is con-
ducted using aMonte Carlo sample, and the inequality is from
Jensen’s inequality on the concave log(·) function. The first
term in the last line is conceptually similar to cross-entropy,
which leads the model prediction to refer to the pseudo-
label, which we detach from the computational graph to avoid
cycle following [16]. The second term helps the model to
avoid overconfidence and degeneracy, as discussed in [60].
As a result, the loss function can be rewritten as follow by
augmenting the regularization term:

Lpost = −Eq(r|C)q(z|T )
[
log p(Ty|Tx , r, z)

]
+β1 · KL (q(z|T )‖q(z|C))

−β2 · Eq(r|T )q(z|T )
[
log p(T̂y|Tx , r, z)

]
−β3 · Eq(z|T )

[
H
(
o(Ty|C)

)]
(10)

Note that it can bridge to studies on knowledge distillation,
specifically, a self-distillation [61], [62], where a network is
trained not only with the true output Ty but also with the soft
output T̂y that is estimated by the network itself.

D. TRAINING PROCESS
We finally introduce the training process of MAHA, which
comprises 3 steps: pre-training, clustering, and post-training.

Algorithm 1MAHA
Require:Meta-train set S tr , Meta-valid set Sva

# Step 1
Initialize the network parameter θ randomly;
while not converged in Sva do
for number of tasks do

Sample a mini-batch C and T from S tr ;
Update θ with Lpre in (9);

end for
end while

# Step 2
Apply an agglomerative clustering on q(z̄|C);
Divide S tr = {S tr1 , . . . , S

tr
K } based on the clusters;

# Step 3
for k = 1, . . . ,K do
Initialize θk randomly;
while not converged in Sva do

for number of tasks do
Sample a mini-batch C and T from S trk ;
Update θk with L(A)NP in (4);

(or with Lpost in (10))
end for

end while
end for

As for pre-training, the dimension-wise pooling and the
auto-encoding structure proposed in Section V-B are used
along with FELD to minimize the loss function in (9). As for
clustering, agglomerative clustering is applied to the disen-
tangled representation from the stochastic path to estimate
the number of clusters with the highest purity value. For a
homogeneous dataset, it can be regarded as there is only a sin-
gle cluster such that the previous steps can be omitted. Please
refer to Appendix B for a detailed description of the clustering
process. As for post-training, for each cluster, separate FELD
is trained from the beginning by (4) where the tasks are no
longer uniformly sampled but statistically skewed based on
the ratio of heterogeneous tasks within the cluster. Then,
according to the Euclidean distance to the cluster centers,
FELD, in correspondence to the closest cluster is exploited
for evaluation. Note that one may optionally use (10) other
than (4) to better handle the ambiguity from the low-shot
regime. In the case of the balancing parameter, even if it is
set to 1, each term operates as intended, and it is sufficient
to explain the motivation of MAHA. As mentioned in beta-
VAE [63], the regularization term of Lpre is important in
determining the presentation quality, and the distinction term
of Lpost would be good to increase its influence when the gap
between the context set and the target set is large.

VI. EXPERIMENT
Compared to the typical meta-learning algorithm, which has
been evaluated only by homogeneous datasets, MAHA is
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differentiated in that it can be expanded even to heteroge-
neous datasets by combining representation learning. For this
purpose, we intend to show the superiority of MAHA in
both homogeneous and heterogeneous datasets in terms of
predictive performance. We also deeply examine the roles of
each methodology through empirical analysis. Compared to
other studies in NPs [7], [9], [16], [17], [42], note that we
considered both regression and classification referring to the
problem setting in Section III. Please refer to Section VIII and
Section VIII for more details on datasets and the architectural
design.

Overall, we are to answer the following three questions:
• What are the benefits of using the flexible encoder and
the linear decoder? (See Section VI-A.)

• How do the dimension-wise pooling and the auto-
encoding structure contribute to obtainingwell-clustered
representationwithin heterogeneity and ambiguity? (See
section VI-B.)

• When does the knowledge distillation become effective
in terms of predictive performance? (See section VI-B.)

A. HOMOGENEOUS DATASET
To validate the proposed FELD as an encoder-decoder
pipeline suitable for NP, we considered homogeneous
datasets that frequently appear to evaluate meta-learning
algorithms. Note that homogeneous datasets are a case in
which there is only one cluster in the task representation space
and can be regarded as a particular case of the heterogeneous
datasets, enabling fair comparison with previous studies.

1) GAUSSIAN PROCESS
Following the basic NPs [6], [7], [8], we consider functions
generated from GP with a squared exponential kernel to
validate its ability to model distributions over function as a
stochastic process:

k(x, x ′) = σ 2 exp
(
−0.5(x − x ′)2/l2

)
The experimental result in Table 1 states that although ANP
performs better than NP in terms of flexibility, the domi-
nance no longer holds when NP is equipped with the flexible
encoder (NP+FE). However, a degradation in performance
is shown when using the linear decoder in NP (NP+LD).
This is empirical evidence that NP strongly relies on the
complexity of the decoder in regression, by which the model
is prone to ignore the latent variables [51]. By exploiting the
flexible encoder to obtain more informative latent variables
by themselves such that the (shallow) linear decoder is just
enough for prediction, FELD performs better than NP and
ANP, which are equipped by the (deep) conventional decoder.
Moreover, it is noticeable that FELD outperforms NP+FE
despite a decreased model capacity due to the linear decoder.

2) MINI-ImageNet, TIERED-ImageNet
A similar tendency can be observed in classification. We con-
sider mini-ImageNet [26] and tiered-ImageNet [64], which

TABLE 1. MSE on gaussian process.

are frequently used large-scale datasets for few-shot image
classification. For mini-ImageNet, we follow the class split
of [65], which assigns 64 classes for the meta-train set,
16 classes for the meta-valid set, and 20 classes for the meta-
test set. For tiered-ImageNet, 608 classes are first grouped
into 34 higher-level nodes, divided into 20, 6, and 8 nodes
to construct the meta-train set, meta-valid set, and meta-test
set. We use the feature provided by [24], which is obtained by
pre-training a deep residual network in a supervised manner
as in [28]. However, unlike [24], [66], the meta-valid set is
used only for early stopping and hyperparameter search but
not utilized to update the parameters.

In Table 2, 3, accuracy on mini-ImageNet and tiered-
ImageNet is reported. We collect the score of various base-
lines that use either convolutional networks or deep residual
networks and do not exploit any data augmentation for a fair
comparison. While NP performs no better than a random
guess when following [6], NP+LD results in a comparable
score to the recent models in gradient-based meta-learning,
verifying the validity of the linear decoder in classification.
FELD achieves even better performance, which is remarkable
in the sense that the strength of attention modules in Set
Transformers can not be fully utilized in the low-shot regime
due to the lack of referable points in the context set. This
phenomenon is presumed to result from proper learning of
inducing points in Set Transformer’s ISAB module. Moti-
vated from the Sparse Gaussian Process [67], the inducing
points learn the pseudo-input-output pairs that are generally
worth referring to for the inference. Therefore, the given
context set is encoded along with such pseudo-set so the
attention mechanism can be appropriately leveraged.

B. HETEROGENEOUS DATASET
We verified the validity of the keymethodologies, dimension-
wise pooling and auto-encoding structure, that allow the
learning of interpretable task representation within hetero-
geneity and ambiguity. Following the experimental setting
of [20], we performed the analysis in quantitative and qualita-
tive aspects by gradually applying each of those fromwhich a
significant difference is shown in the degree of interpretabil-
ity. Furthermore, we confirmed that distillation-based reg-
ularization effectively improves generalization performance
under relatively high ambiguity.

1) SINE AND POLYNOMIAL
To verify the regression performance on the family of distinct
functions, we experiment on the toy 1D regression as in [20]
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FIGURE 6. Qualitative comparison of ANP and MAHA on various function types. The context points are selected from 40% of the entire domain for
extrapolation.

TABLE 2. Accuracy on mini-ImageNet.

TABLE 3. Accuracy on tiered-ImageNet.

and [21]. In particular, we follow [20] where each task is
randomly chosen to be one of the following one-dimensional
functions where the coefficients are uniformly sampled from

TABLE 4. MSE on sine and polynomial.

the prefixed intervals summarized in Section VIII:

Sine : y = Assin(Bsx)+ Cs
Line : y = Alx + Bl

Quadratic : y = Aqx2 + Bqx + Cq
Cubic : y = Acx3 + Bcx2 + Ccx + Dc

A small number of data points are given as context, requiring
the model to appropriately interpolate and extrapolate in a
highly variable prediction space by correctly identifying the
functional shape.

In Table 4, MSE over 4000 tasks are presented with a
95% confidence interval. Generally, all the gradient-based
meta-learning algorithms are outperformed by the NPs, and a
noticeable gain is again observed by exploiting the encoder-
decoder pipeline, FELD. By adjusting FELD to MAHA
by the pre-training and clustering process, and MAHA to
MAHA* by the optional distillation term in the post-training
process, a monotonic improvement is observed. In Fig. 6,
we illustrate the interpolation and extrapolation of MAHA in
comparison to ANP. As noted in Section V-A, the main inter-
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est of ANP is shown to fitting the context points regardless
of the functional shape, which poorly performs in predicting
the target outputs whose corresponding inputs are located
farther away from that of the context points. This tendency
can be observed during interpolation and extrapolation, lead-
ing to a wiggly prediction with significant variance. ANP’s
performance resulted from the failure to properly perform
task identification among different task groups, resulting
in overfitting to the given context points instead of proper
inference on functional shape. Several studies pointed out
the limitation of ANP that makes it generalizable neither
to different (minor) task specifications [68] nor to different
noise types [9]. By contrast, MAHA can correctly infer the
functional shape, which can be confirmed by highly accurate
and confident interpolation and extrapolation.

2) MULTI-DATASET
To verify the classification performance in a heteroge-
neous dataset, four fine-grained image classification datasets
are combined to construct the multi-dataset proposed
in [20]: (Bird) CUB-200-2011, (Texture) Describable Tex-
tures Dataset, (Aircraft) FGVC of Aircraft, and (Fungi)
FGVCx-Fungi. In particular, an ablation study is conducted to
verify the validity of the dimension-wise pooling (POOL) and
the auto-encoding structure (AE) for its effect on disentan-
glement. Qualitatively, in Fig. 7, the mean value of the vari-
ational distribution q(z̄|C) is visualized through t-SNE [69].
While plausible clusters were formed except for the one that
only applied POOL, it can be seen that the margin between
different datasets was the largest when both POOL and AE
were applied. In other words, without external knowledge,
such as the number of true clusters, a combination of POOL
and AE is relatively good at task identification, not only in
terms of heterogeneity but also in terms of ambiguity. It is
mainly due to the restricted flexibility of r̄ , which encour-
ages z̄ to imply not only the heterogeneity but also the local
features that are initially in charge of the deterministic path.
Also, the auto-encoding structure allows r̄ to be inferred by
the (large) target set T , not the (small) context set C , which
is advantageous to obtain a more flexible set representation.
Then, the restricted flexibility of r̄ can be resolved so that
z̄ can provide well-clustered and interpretable task represen-
tation. The estimated purity values in Table 5 quantitatively
demonstrate that the distinct datasets are not discriminated
without either. Note that the validity of the methodologies
stands out, particularly in the low-shot regime, which implies
the difficulty of task identification within ambiguity.

One might wonder to what extent the purity value should
reach for algorithmic success. However, since there have been
limited attempts to apply representation learning to meta-
learning, to the best of our knowledge, there is still no general
way to measure the quality of task representation. A proper
way would be devised by making linear probing [70] that
frequently appears in self-supervised learning also applicable
to few-shot image classification. We leave it as future work
because it is beyond the scope of this paper.

TABLE 5. Purity value of the clustered task representation.

FIGURE 7. t-SNE visualization of the clustered task representation.

A similar tendency can be observed by the accuracy sum-
marized in Table 6. Note that results on the basic NPs are
omitted as it performs no better than a random guess. Notice-
ably, compared to the 1-shot setting, where a noticeable gain
is occurred by adjusting FELD to MAHA, in the 5-shot
setting, there is almost no difference between FELD and
MAHA. This is because the models can identify the tasks
regardless of whether the dimension-wise pooling and the
auto-encoding structure are used or not, demonstrated by
the sufficiently high purity values in Table 5. Accordingly,
the knowledge distillation, which is fundamentally devised
to regularize within ambiguity, has shown a worthwhile
improvement from MAHA to MAHA*, particularly in the
1-shot setting. Eventually, MAHA (and MAHA*) beat all the
previous works by a fairly large margin.

VII. CONCLUSION
This paper proposes a new meta-learning framework,
MAHA, that generalizes amidst heterogeneity and ambigu-
ity. We aim to disentangle the stochastic representation by
the dimension-wise pooling and the auto-encoding struc-
ture based on the newly devised encoder-decoder pipeline
to better leverage the latent variables. With the multi-step
training process, comprehensive experiments are conducted
on regression and classification. In the end, we argue that
the proposed model captures the task identity with lower
variance, leading to a noticeable improvement in perfor-
mance. By orthogonally applying to the existing work, the
compatibility and the necessity are empirically verified.
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TABLE 6. Accuracy on multi-dataset.

An interesting future work would be to apply our model
to reinforcement learning. In particular, training a pol-
icy directly from well-clustered representations for sample-
efficient exploration seems promising in an environment with
sparse rewards.

VIII. BROADER IMPACT
When training meta-learning models, there comes a cus-
tomization process based on the problem at hand. If not using
the benchmark datasets frequently appearing in academia,
it becomes unclear to which extent the distinct datasets should
be combined, expecting the model to be versatile on every
possible task generation. MAHA, in this respect, can guide
for a human to analyze and cluster the available data into
separate clusters. Moreover, MAHA mainly benefits future
AI industries where the limited communication between the
decentralized servers is available as it can infer the global
context even with a small amount of information. As a result,
we do not expect any negative societal impacts, but we believe
that MAHA possesses many implications in more realistic
scenarios.

APPENDIX A
DATASET
A. GAUSSIAN PROCESS
A batch of size 16, a context set of variable size ranged
from 5 to 10, and a target set of size 30 are considered. For
the squared exponential kernel

k(x, x ′) = σ 2 exp
(
−0.5(x − x ′)2/l2

)
the hyperparameters are chosen to be l = 0.5 and σ = 1.
Inputs are uniformly sampled from [−2.0, 2.0], and outputs
are computed based on the Cholesky decomposition of the
kernel with the noise parameter σn = 0.02 [37].

TABLE 7. Coefficient settings.

TABLE 8. Summary of mini-ImageNet, tiered-ImageNet.

B. MINI-ImageNet, TIERED-ImageNet
A batch of size 12 is considered where each batch instance is
generated by sampling five random classes from the meta set
with randomly assigned labels from {0, 1, 2, 3, 4}. Then, for
each of the chosen classes, 1 or 5 images are selected as the
context set, and 15 other images are additionally selected to
construct the target set.

C. SINE AND POLYNOMIAL
A batch of size 25, a context set of size 5 or 10, and a target
set of size 15 or 20 are considered. The input domain is fixed
to [−5.0, 5.0], and a task is defined among the four functions
whose coefficients are uniformly sampled from the intervals
summarized in Table 7.

D. MULTI-DATASET
Task generation process and size of the context/target set are
equal to the setting in mini-ImageNet and tiered-ImageNet.
However, unlike mini-ImageNet or tiered-ImageNet, images
are not pre-processed in advance by the deep residual
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TABLE 9. Summary of multi-dataset.

TABLE 10. 5-shot multi-dataset.

TABLE 11. 10-shot sine and polynomial.

TABLE 12. 1-shot multi-dataset.

TABLE 13. 5-shot multi-dataset.

network. Instead, all images in the meta-train set, meta-
valid set, and meta-test set are resized to 84 × 84 × 3,
and Conv-blocks are utilized to extract the feature from the
images. Due to extensive memory usage during the feature
extraction, a small batch of size 4 is considered, where
each batch instance is generated among the four fine-grained
image classification datasets.

APPENDIX B
AGGLOMERATIVE CLUSTERING
For the heterogeneous datasets, an agglomerative clustering
is applied to the t-SNE embeddings of µz̄ from the stochastic
path where we use the default setting of Scipy [76], an open-
source scientific tool for Python. In Table 10 to 11 and
Table 12 to 13, the clustering results for randomly generated
2500 (in regression) or 4000 (in classification) data points are
presented by cross-tabulation between the clustered index and
the true dataset label.

Note that Quad is perfectly covered by Cubic, and Quad
and Cubic mainly cover Line in Table 7. Hence, rather than

TABLE 14. Feature extractor g(·) architecture.

TABLE 15. Regression architecture.

TABLE 16. Classification architecture.

TABLE 17. Hyperparameters for regression.

four separate clusters, only two are shown in Fig. 8, each
of which implies either sine or polynomial. On the other
hand, in Fig. 9, four distinct fine-grained image classification
datasets are discriminated by separate clusters.

APPENDIX C
ARCHITECTURE DESIGN
We show the detailed architectures used for the feature extrac-
tor in Table 14. Here, Conv(d, k, s, n, p) is a convolutional
block with d output channels, k kernel size, s stride size,
n normalization, and p poolingmethod. LRN and BN indicate
a local response normalization and a batch normalization,
respectively, and MAX is a max-pooling with a kernel size
of 3 and stride 2. By default, two linear layers are commonly
exploited, which come after the convolutional layers if the
model input is a 3D image. For the convolutional layers,
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TABLE 18. Hyperparameters for classification.

FIGURE 8. t-SNE visualization from sine and polynomial.

FIGURE 9. t-SNE visualization from multi-dataset.

we follow the exact setting of [20] depending on whether the
model is for task clustering or prediction. For the dropout rate
p, please refer to Section VIII.
In Table 15 and 16, the encoder-decoder pipeline ofMAHA

is summarized. Note that the encoders for r and z are almost
the same except for the output size, which is doubled in
z due to reparameterization. Also, note that the size of
the inputs is different between regression and classification.
This is because g(X ) and Y are concatenated in regres-
sion while shots of g(X ) are first divided along way by Y
and then separately feed-forwarded in classification. Lastly,
in regression, the encoder outputs, r and (reparameterized) z,
are reshaped from [batch, 1, 256] into [batch, 2, 128] before
feed-forwarded into the decoder. By default, all networks use
the Adam optimizer with a constant learning rate and an l2
regularization of weight 1e-4.

APPENDIX D
HYPERPARAMETER
Hyperparameters are optimized with the meta-valid set.
Among the many hyperparameter optimization pro-
cesses [77], [78], we use the random search whose outcomes
are summarized in Table 17 and 18.
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