
IEEE RELIABILITY SOCIETY SECTION

Received 25 November 2022, accepted 4 December 2022, date of publication 12 December 2022,
date of current version 10 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3228641

Performance Evaluation System Based on
Multi-Indicators for Signal Recognition
QINGMING LI1, SONGLIN YANG2, AND HU CHEN 3
1VES Technologies Corporation Ltd., Beijing 100192, China
2College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
3Wuhan Second Ship Design and Research Institute, Wuhan 430064, China

Corresponding author: Hu Chen (chenhu_14@163.com)

ABSTRACT Nowadays, the electromagnetic environment is becoming more and more complex, and
it is increasingly difficult to accurately identify electromagnetic signals. At the same time, the quality
of models and algorithms largely determines the final result of electromagnetic signal recognition, and
a comprehensive and holistic evaluation system is needed to assess the quality of model or algorithm
performance in the field of electromagnetic signal recognition. To address this phenomenon, this paper
uses different machine learning models and AdaBoost algorithms to identify 100 classes of WiFi radiation
source electromagnetic signals. In this paper, the classification performance, complexity and robustness of
the models are evaluated comprehensively in three aspects respectively, and a multi-dimensional evaluation
system for signal recognition is constructed, and the differences between different model algorithms in
signal recognition effects are compared and analyzed, and the correlations between each evaluation index
in different dimensions are explored. The experimental results show that different machine learning models
and algorithms have different recognition effects on electromagnetic signals, among which the recognition
accuracy of ResNet can reach more than 90%, but its computational complexity is high and easily affected by
noise. DNN has poor recognition effect and the highest computational complexity, but it is not easily affected
by noise. The AdaBoost algorithm does not necessarily improve the recognition classification accuracy of
the underlying classifier. The evaluation system established in this paper is meaningful for assessing the
performance of models and algorithms.

INDEX TERMS Evaluation systems, machine learning, ensemble learning, signal recognition.

I. INTRODUCTION
As the electromagnetic field continues to develop, the types
and numbers of radiation sources in the electromagnetic envi-
ronment are increasing. The electromagnetic environment
is becoming more complex and the accurate identification
of electromagnetic signals becomes difficult. At the same
time, model evaluation is crucial to judge the performance of
the model. The underlying performance, robustness, security,
interpretability, and deployability of a model or algorithm all
affect the quality of an AI application. A model or algorithm
needs to be thoroughly considered before it is applied to an
AI product.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu Liu .

The traditional electromagnetic signal recognition tech-
niques cannot make accurate predictive classification for
some complex classification problems. Moreover, in some
traditional machine learning algorithms, pre-processing of
electromagnetic signals is required, and this process has sig-
nificant limitations in extracting deep features of electro-
magnetic signals. In contrast, some deep learning models
have also been applied in the field of electromagnetic signal
recognition, and ensemble learning algorithms are a way
to improve the performance of the models. In this paper, a
comprehensive and integrated evaluation of the effectiveness
of a class of models and algorithms in electromagnetic signal
recognition is presented. Traditional model validation meth-
ods usually construct a validation set that is disjoint from the
training set, and then evaluate the basic performance of the
model based on the signal recognition accuracy of the model
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on the validation set. It is difficult for us to judge the accuracy
of a model or algorithm just from the accuracy rate. Nowa-
days, models are gradually moving towards lightweighting,
and the complexity of the model becomes the focus of eval-
uation [1]. Meanwhile, the property of maintaining stability
even in the case of abnormal inputs is called robustness. There
are a large number of uncertainties in the electromagnetic
space, and the electromagnetic signal is subject to various
disturbances. The robustness of many models or algorithms
has a great impact on the actual prediction results, so the
robustness of models or algorithms needs to be evaluated
and the prediction defects of models or algorithms under
certain anomalous data and data distribution changes need
to be found as early as possible. The approach proposed in
this paper allows comprehensive testing and evaluation of
the basic and business performance of the model. For the
generalization ability of the model or algorithm in the predic-
tion phase, the method tests the feasibility and compliance of
the model or algorithm to the business objectives, and then
proposes a targeted optimization scheme.

Electromagnetic signal recognition techniques can be
divided into two main aspects, a feature engineering based
approach and a deep learning approach. In [2], a radio fre-
quency fingerprint feature extraction method based on the
accumulated distance of I/Q data components is proposed.
In [3], a signal feature extraction algorithm based on fractal
complexity is proposed. In [4], complex-valued networks
are applied for modulation identification. In [5], a radio
individual identification method combining downscaling and
machine learning is proposed. In [6], the accuracy of different
deep learning models for individual recognition of electro-
magnetic signals is compared, including traditional CNN,
ResNet and VGG networks. In [7], a zero-shot learning for
signal recognition is proposed. In [8], a modulated signal
classification method based on sliding window detection and
complex convolutional networks is proposed. In [9], the eval-
uation analysis yields the advantages of plural networks in
the signal classification task for radiation sources, such as
higher recognition accuracy and faster learning rate. In [10],
a new method for cognitive signal recognition based on
hybrid information entropy and D-S evidence theory is pro-
posed. In [11], an improved neural network pruning technique
is applied to automatic modulation classification of edge
devices. In [12], the semi-supervised learning approach is
applied to modulated signal classification. In [13], a semi-
supervised learning of digital signal modulation classification
based on generative adversarial networks is proposed. In [14],
the proposed AdaBoost algorithm periodically adjusts the
weights of weak learners that are not correctly screened.
In [15], the AdaBoost algorithm is used for radar signal
modulation recognition. In [16], ensemble learning was used
in signal modulation recognition.

In terms of model evaluation, most studies have focused
on a single performance aspect of the model. In [17],
a data distribution model was designed for an adversarial
classification task and a general approach to design robust

classifiers was proposed and then evaluated. In [18],
a hypothesis-countermeasure based security evaluation
mechanism is proposed to improve the security of the model
by considering the variation of the training and test data
distribution, and thus evaluating the impact of the attack.
In [19], the impact of attack effects on DNN-based device
identification is investigated. In [20], a constellation graph
signal dataset is proposed and the classification performance
of the model is tested for different training set percentages
under simulated channel fading. In [21], the modulation
classification performance is evaluated for complex envi-
ronments. In [22], the communication speech signals were
evaluated. In [23], a spectrum focused frequency adversarial
attack is proposed and the performance of this attack on
modulation recognition is evaluated.

In this paper, a deep learning method is used to identify
individual electromagnetic signal radiation sources and build
an evaluation systemwith different dimensions forWiFi elec-
tromagnetic signal dataset. The evaluation system provides a
more comprehensive evaluation of the model and evaluates
the effect of the model on the individual identification of
electromagnetic signal radiation sources. At the same time,
this paper investigates the effect of integrated learning on the
individual identification of electromagnetic signal radiation
sources and evaluates the integrated learning algorithm. The
integrated learning algorithm and the deep learning model are
compared and analyzed. When facing the complex electro-
magnetic environment, the model or algorithm can be better
selected and optimized according to the evaluation index.

II. EVALUATION SYSTEM
In the field of electromagnetic signal recognition, the estab-
lishment of the evaluation system needs to satisfy certain
principles. First of all, the evaluation metrics should meet
certain logical relationships between each other, and they
should reflect not only the characteristics of the machine
learning model, but also the internal connection between the
metrics. Each part of the system consists of certain indicators,
which are independent of each other and connected with each
other. The construction of the evaluation system is hierarchi-
cal, with layers of depth, forming an indivisible evaluation
system. In the face of the future complex electromagnetic
environment, many key performance indicators are becoming
more and more stringent, requiring a full range of models and
algorithms to be evaluated [24].

The design of the evaluation system and the selection
of evaluation indicators must be based on the principle of
scientificity. The evaluation system can objectively and truly
reflect the characteristics of the machine learning model in
the signal field and the real relationship between the indica-
tors objectively and comprehensively. Each evaluation index
should be typical and representative, and reflect the compre-
hensive characteristics of a specific field as much as possible.
Even when the number of indicators is reduced, it is easy to
calculate the data andmeet the reliable evaluation results. The
setting of the evaluation index system, the weight distribution
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FIGURE 1. Evaluation system process.

of each indicator problem and the division of evaluation
criteria should be combined with the conditions of the actual
problem.

In the process of evaluating the electromagnetic signal
recognition effect of machine learning models or algorithms,
it is impossible to accurately and comprehensively evaluate
machine learningmodels or algorithms by only evaluating the
recognition accuracy of electromagnetic signals. Especially
in the face of today’s complex electromagnetic environment,
a multi-dimensional evaluation system is needed to evaluate
the performance of machine learning models or algorithms.
The innovation point of this paper is mainly in the compre-
hensive evaluation of evaluation indexes of different dimen-
sions. Due to the characteristics of electromagnetic signals,
suitable evaluation indexes need to be selected to evaluate
the recognition performance ofmodels and algorithms. In this
paper, the evaluation system is divided into three dimensions
of classification performance, complexity and robustness for
comprehensive evaluation, and the recognition performance
of the model and algorithm under different dimensions are
evaluated respectively. Meanwhile, the relationship between
the evaluation indexes of different dimensions is illustrated
through the analysis of the experimental results.

The flow of the evaluation system in this paper is shown in
Figure 1. Firstly, the machine learning model and AdaBoost
algorithm are trained using the training set. Secondly, the I/Q
signals from the test set are fed into the trained model or algo-
rithm. Through the evaluation system, the performance of the
models and algorithms are tested and evaluated comprehen-
sively in terms of classification performance, complexity and
robustness.

A. CLASSIFICATION PERFORMANCE
In signal recognition classification, confusion matrix, accu-
racy, precision, recall, F1 score, etc. are generally adopted as
evaluation metrics for classification performance.

1) CONFUSION MATRIX
The confusion matrix provides an intuitive view of a model’s
classification performance. As an evaluationmethod in super-
vised learning, it can visualize the predicted and true cate-
gories of a model in multi-categorization. In the matrix, each

FIGURE 2. Confusion matrix.

row represents the predicted category of the model and each
column represents the true labeled category.

In Figure 2, TP represents that the real result is a positive
case and the predicted result is also a positive case; FP rep-
resents that the real result is a negative case and the predicted
result is a positive case; TN represents that the real result is a
negative case and the predicted result is also a negative case;
FN represents that the actual result is a positive case and the
predicted result is a negative case. The graph visually reflects
the relationship between the predicted results of the model or
algorithm and the true labels.

2) ACCURACY
Accuracy is one of the most commonly used metrics to assess
the classification performance of a model and is usually used
to describe how well a machine learning model classifies
on all categories, often in cases where all categories are
equally important. It describes the ratio between the number
of all correct predictions and the total number of predictions,
as shown by equation (1).

Accuracy = (TP+ TN ) / (TP+ FN + FP+ TN ) (1)

3) PRECISION
The precision is the ratio of the number of positive samples
predicted correctly to the number of samples predicted to be
positive, and the metric is primarily a measure of how accu-
rately the model classifies samples as positive. It is shown as:

Precision = TP/ (TP+ FP) (2)

4) RECALL
Recall mainly describes the ratio between the number of
samples that are correctly predicted as positive samples and
the total number of samples that are actually positive for the
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disease. Recall and accuracy are intertwined and a balance
between the two needs to be found based on actual needs.
Recall is expressed as:

Recall = TP/ (TP+ FN ) (3)

5) F1-SCORE
F1-score is a comprehensive evaluation metric, which is a
summation of precision and recall, and is closer to the smaller
value between the two. It is more comprehensive to reflect the
goodness of the system model. It is expressed as:

F1 = 2 (Precision× Recall) / (Precision+ Recall) (4)

B. COMPLEXITY
Complexity is a common criterion for evaluating a model.
The complexity of a model is related to the structural level of
the model, internal parameters, and other factors. The higher
the complexity of a model is not better. If a model has a
high complexity, then the results in training may not be very
good and the model appears to be underfitted. Therefore,
for different practical problems and different training sets,
the model needs to have a suitable complexity. In the case
of similar classification and prediction performance of both
models, the model with lower complexity is selected.

In this experiment, the complexitymetric chosen is floating
point operations (FLOPs), which is a proxy for the amount of
computation and represents the number of floating point oper-
ations. FLOPs is commonly used to evaluate the complexity
of a model (algorithm) and can reflect the computational
power required by the model in the forward propagation
process. This metric allows evaluating the hardware require-
ments of the model, including the required GPU performance
and memory size.

During the training of a network model, many data pro-
cessing operations are performed. There is a large amount of
computational consumption in these operations. The overall
computation of the model is equal to the sum of the compu-
tation of each operator in the model. Equations (5) and (6)
reflect the way FLOPs are computed in the convolutional and
fully connected layers of the network model.

At a layer of the convolutional layer with the number of
input channels as Cin, the number of output channels as Cout ,
the convolutional kernel size as Kw × Kh, and the size of the
output feature map as H ×W × Cout , the FLOPs is given by
equation (5).

FLOPs = (M + A+ 1)× Cout × H ×W (5)

In the above equation,M is the number of multiplications,
A is the number of additions.+1 is the bias, which reflects the
error between the classification of the model on the sample
data and the true label, and it reflects the accuracy of the
model. Cout ×H ×W is all the elements in the output feature
map. The equations forM and A are as follows.{

M = Cin × Kw × Kh
A = Cin × Kw × Kh − 1

(6)

In a fully connected layer, since there is no weight sharing,
the number of FLOPs in that layer is the number of parame-
ters in that layer. The specific expression for its calculation is
shown by equation (7).

FLOPs = (2Nin − 1)Nout (7)

In the above equation, Nin is the number of fully connected
layer input nodes,Nout is the number of output nodes,NinNout
is the number of operations in which multiplication is per-
formed, and (Nin − 1)Nout is the number of operations in
which addition is performed.

For the electromagnetic signal evaluation system proposed
in this paper, the performance of machine learning models
and AdaBoost algorithm for electromagnetic signal recogni-
tion needs to be evaluated. However, it can be seen from the
FLOPs calculation formula that it is only applicable to the
complexity assessment of machine learning models and not
to some algorithms. Therefore, there is a certain threat to the
validity of the evaluation system proposed in this paper.

C. ROBUSTNESS
The robustness of a model or algorithm is a test of how
well it performs in the face of data anomalies. When data
changes, how well the model or algorithm tolerates such
data and whether the model’s classification and prediction
performance changes drastically. But robustness is not the
same as stability, robustness is more about the ability to
adapt to complex conditions. Electromagnetic signals may
be affected by interference such as Gaussian noise, channel
impairment, carrier frequency shift, etc., and therefore need
to be tested for robustness [25].

SIGNAL-NOISE RATIO (SNR) represents the power ratio
of signal to noise in a system. Its formula is shown by
equation (8).

SNR = 10 lg(Ps/Pn) (8)

where Ps denotes the effective power of electromagnetic
signal and Pn denotes the effective power of noise in dB.

III. CLASSIFICATION MODELS AND ALGORITHMS
A. DNN
The structure of Deep Neural Networks (DNN) is not fixed
and mainly consists of an input layer, a hidden layer and an
output layer [26].

Each layer has several neurons. Neurons between layers are
interconnected, while neurons within layers are not intercon-
nected, and neurons in the next layer connect all neurons in
the previous layer. The model structure is shown in Figure 3.
A neural network with more hidden layers is called a deep
neural network.

Suppose the hidden layer is k, k = 0,. . . ,K-1, the output
vector of this layer is set to hk , and the expression is shown as:

hkj = σ (x
k
j (v

k )) = σ ((wkj )
T vk + akj ) (9)

In the above equation, the offsets and weight vectors of
the nodes of neuron j in hidden layer k are denoted as akj
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FIGURE 3. DNN model structure.

and wkj . σ (x
k
j ) represents the sigmoid activation function with

the expression1/(1+ e−x
l
j ). vk represents the input vector of

layer k. The output vector yK of the last layer k of DNN is
shown as:

yKj =
ex

K
j

(
vK
)

∑
j
xKj (v

K )
= soft max

j
(zK (vK )), j = 1, · · · ,NK

(10)

B. CNN
Convolutional neural network (CNN) is a classical deep
learning network model and an effective means to extract
deep features using neural network theory. In the field of
communication, CNN has also been applied to automatic
signal recognition [27].

In the wireless domain, CNN does not operate on images,
but on I/Q samples. In the I/Q plane, various radio sig-
nal waveforms exhibit different transition patterns, which
can constitute the signal features that can eventually be
learned by CNN filters. In the field of electromagnetic sig-
nal recognition, the network model requires a more com-
prehensive extraction of the fine and deep features of the
electromagnetic signal, and generally saves the two I/Q signal
data as two independent channels and splices them into a
two-dimensional matrix, namely Input = [N × 2], where N
represents the length of the electromagnetic signal. The elec-
tromagnetic signal data input vector is extremely ‘‘narrow’’
and generally satisfies N � 2. The structural parameters of
CNN model is shown in Figure 4.

In the convolutional layer, the input data samples are pro-
cessed to obtain the corresponding feature maps, and each
convolutional kernel represents this kind of feature extractor.
The features extracted by these feature extractors are not the
same. A certain number of feature maps can be obtained
through the continuous repetition of the convolutional layer.
The output of the convolution layer is shown by equation (11).

Outm = g(
∑

W n
m ⊗ X

n
+ em) (11)

FIGURE 4. CNN model structure parameters.

In the above equation,Outm is the output of feature map m.
W n
m is the convolutional kernel parameter, and the size of the

parameter is set to control the convolutional kernel size and
training efficiency running time, etc. ⊗ is the convolutional
operation. em is the bias of each convolutional layer. g is the
activation function in the convolutional neural network.

C. AlexNet
The overall model contains five convolutional layers, two
hidden fully connected layers and one output fully connected
layer [28]. The model is able to extract deep features of
data samples to a certain extent, and optimize the structural
parameters of the model to reduce the computation of the
model in the training process and improve the generalization
ability. The Alexnet model parameters used in this paper are
shown in Figure 5.

D. ResNet
For the traditional convolutional neural network, the model
performance will gradually reach saturation and degradation
problem as the number of layers of the network increases. The
proposed residual module solves the network performance
degradation problem to some extent by adding its residual
module to this network[29]. It is shown in Figure 6. It differs
from the traditional convolutional neural network structure in
that it has a shortcut connection module.

Assuming that the fitted objective function is H(x) and
the nonlinear superposition layer is F(x). The traditional
approach is to make F(x) close to H(x), while the residual
structure is to use F(x) to approach H(x)-x. The advantage
of this structure is that it allows the network to map shallow
features to deep layers in a constant manner, and shallow and
deep layers are effectively communicated. It can be seen that
the output of the residual module is obtained by summing
the output of several convolutional layers and the cascade
between the input elements, and then the output of the resid-
ual unit is obtained by the ReLU activation function. The
residual network contains many residual modules, which are
cascaded together with each other.

The residual module structure as shown in Figure 6, which
contains two convolutional layers and a shortcut connection
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FIGURE 5. AlexNet model structure parameter.

FIGURE 6. Residual unit.

method, the definition of the process is shown as:

y = F(x, {Wi})+ x (12)

In the above equation, x and y are the input and output of
the module, Wi is the weight of each layer, and F(x, {Wi}) is
the mapping that the module needs to fit.

In the residual network, the ReLU function is chosen for
the layer-to-layer activation function, and its expression is
shown as:

f (x) = max(0, x) (13)

E. Adaboost
In the AdaBoost algorithm, the feature data training
set is first given a total number of samples N as
{(x1, y1), (x2, y2), . . . , (xN , yN )}, where each sample xi rep-
resents a sample feature and each sample i corresponds to a
sample label yi. These sample labels together form a label set
Y , i = 1, 2, · · · ,N .
When a weak classifier is generated, it changes the weight

Di+1 of the training set in the next weak classifier. When
the conditions for the final output are satisfied, these weak
classifiers are combined into a whole in a certain way to
jointly determine the output[30].

First, the weights of the training samples are initialized,
and the weights of each sample are taken as the mean value.
It is expressed as:

D1 = (w11,w12, . . . ,w1N ) = (1/N , 1/N , . . . , 1/N ) (14)

Then iteratem times according to the artificially set values,
m = 1, 2, . . . ,M , where M is the total number of iterations.
The base classifier hm is trained based on the training set in
the weight distribution Dm.

The error rate of hm is calculated during the training pro-
cess, and the formula is shown as:

em =
N∑
i=1

wmiI (hm(xi) 6= yi) (15)

In the above equation,wmi is the weight corresponding to
feature data i at m iterations; I represents the classification
result of weak classifier hm on data xi, if hm(xi) 6= yi, then
I (hm(xi) 6= yi) = 1, otherwise I (hm(xi) 6= yi) = 0.
At the end of training, the algorithm combines all base

classifiers together by a linear weighting method. The base
classifier coefficients am are selected, am ∈ R. Although am
represents the weights of the base classifiers, its essence rep-
resents the importance of each base classifier and its specific
expression is shown by equation (16).

am =
1
2
ln

1− em
em

(16)

The weight distribution of the training set is continuously
updated during the training learning process of the algorithm,
whose expression is shown as:

Dm+1 =
Dme(−αmyihm(xi))

Zm
(17)

In the above equation, Zm is the normalization factor and
its expression is shown as:

Zm =
N∑
i=1

Dme(−αmyihm(xi)) (18)

Repeating the above steps from Eq.(15) to Eq. (17),
we finally obtain a strong classifier whose expression is
shown as:

G(x) = sign(
M∑
m=1

αmhm(x)) (19)

The flow of the AdaBoost algorithm is shown in Figure 7.
First, the weights of the training samples are initialized and
fed into the weak classifier for training. During the train-
ing process, the weights of the training samples are con-
tinuously updated. The weights of those samples that were
misclassified by the previous round of the weak classifier
are increased and the weights of those samples that were
correctly classified are decreased. In the next training round,
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FIGURE 7. Flow of AdaBoost algorithm.

these misclassified samples are given larger training weights,
and finally the final output is obtained by weighted voting.

IV. SIMULATION ANALYSIS
In this section, the effectiveness of the above proposed
evaluation system will be applied to evaluate and validate
the electromagnetic signal recognition effect to illustrate its
effectiveness. Specifically, DNN, CNN, AlexNet and ResNet
will be used as classifiers to classify 100 classes of signals
fromWiFi radiation sources, and then the performance of the
model will be evaluated comprehensively by the evaluation
system. Also, the performance of the AdaBoost algorithm is
evaluated.

A. DATASET AND PARAMETER SETTINGS
A WiFi radiation source electromagnetic signal dataset is
selected in this paper. The dataset is collected wirelessly
in the laboratory and microwave darkroom for LOS, mul-
tipath and NLOS multipath channels using FSQ, FSW26
and FSV13 spectrometers to build a rich dataset. The signal
acquisition is mainly performed for 100 5GHzWiFi modules
for management frames. This contains 100 class I/Q signals.
These I/Q signals are stored in the form of a standard binary
file.mat file, which is a file format that can be flexibly called
by MATLAB, Python and other languages. The training set
contains 4000 I/Q signals, each of length 5000. The test set
contains 1000 signals, each of length 5000. The data samples
in both data sets are labeled correspondingly.

During the training process, the learning rate of eachmodel
is set to 0.01.

B. CLASSIFICATION PERFORMANCE EVALUATION OF
MODEL ALGORITHMS
In this section, the classification performance of the model
and algorithm are tested and evaluated. The model and

algorithm are trained to learn the training set signals and then
identify and classify the test set signals. First, the classifica-
tion performance of fourmachine learningmodels is tested by
plotting the confusion matrix of different models. Secondly,
the classification performance of the AdaBoost algorithm for
the test set signals was tested and visualized with the con-
fusion matrix. Finally, the classification performance metrics
of the different models and algorithms were calculated and
analyzed for comparison.

TABLE 1. Classification performance test results.

Table 1 shows the numerical magnitude of the recogni-
tion and classification evaluation metrics, including accuracy,
precision, recall and F1 score, for the test set by different
classification models and AdaBoost algorithms. We can see
that for the dataset used in this paper, the ResNet model
has the best classification, and the recognition accuracy can
reach 94.3%. The DNN model has the lowest recognition
accuracy, which can reach more than 77%. The recognition
and classification accuracy of CNN can reachmore than 84%,
and the recognition and classification accuracy of AlexNet
can reach more than 88%. For Precision, Recall and F1-score
metrics, ResNet has the best recognition and classification
results compared to other models and algorithms.

In terms of classification performance, all the above
four models have good recognition accuracy. Based on the
AdaBoost algorithm for DNN, CNN and AlexNet three base
classifiers for comprehensive learning, the signal data set of
this experiment is used for training and learning with the base
classifiers, and then the final output results are obtained by
weighted combination. The experimental results show that
its final recognition classification accuracy can also reach
85.8%, but there are also a small number of misclassified
samples. Through the analysis of experimental metrics, the
AdaBoost algorithm can improve the classification perfor-
mance of the base classifier to a certain extent, but its clas-
sification performance is not as good as its base classifier
of AlexNet model recognition. The analysis in this paper
suggests that for the AdaBoost algorithm, when its base clas-
sifier is a model with strong learning ability, the phenomenon
of overfitting may occur during the training process. This
phenomenon leads to the insignificant improvement of the
classification performance of AdaBoost, and even reduces the
recognition accuracy of some base classifiers.

Table 2 shows the results of the classification performance
tests for at 0 dB. The test set at 0dB is fed into the model and
algorithm for classification and recognition of signals. It can
be seen that DNN has the highest recognition accuracy of
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FIGURE 8. Model classification confusion matrix.

TABLE 2. Classification performance test results at 0dB.

76.5%, AlexNet has the lowest recognition accuracy of 6.1%.
The recognition accuracy of AdaBoost is 44.7%.

Figure 8 shows the confusion matrix of the different clas-
sification models for the recognition classification of the test
set. For 100 classes of WIFI radiation source signals, all
classification models show a straight line on the confusion
matrix. DNN can see more misclassified samples on the
confusion matrix compared to the other models.CNN and

AlexNet have better classification accuracy than DNN with
fewer misclassified samples. ResNet has the best confusion
matrix with the least misclassified samples and the clearest
straight line presented on the confusion matrix.

Figure 9 shows the confusion matrix of the AdaBoost algo-
rithm in the test set recognition classification. The confusion
matrix allows us to visualize the classification performance
of the AdaBoost algorithm. In the figure, we can clearly
see a clear line of correct classification, with fewer samples
being misclassified. Its recognition classification accuracy
can reach more than 80%. Compared with the three base
classifiers, the classification performance of the algorithm
has been improved.

C. COMPLEXITY TEST EVALUATION OF MODELS
In this section, the computational complexity of different
models is evaluated and the size of FLOPs is calculated
separately for different models and compared analytically.
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FIGURE 9. AdaBoost algorithm confusion matrix.

TABLE 3. FLOPs test results.

Table 3 shows the magnitude of the FLOPs values for
different classification models. The ResNet model has large
FLOPs and its recognition accuracy is the highest. How-
ever, the DNN model has larger FLOPs, but its recognition
accuracy is the smallest. The recognition results of the CNN
and AlexNet models are similar, but the AlexNet model has
smaller FLOPs and better model performance.

The experimental results show that the computational com-
plexity of the model has no direct effect on the model
recognition accuracy of this dataset. Among the models with
similar recognition classification accuracy, the smaller the
complexity, the better the model. Evaluating the models
requires considering the issue of model computational com-
plexity based on assessing the classification accuracy of the
models.

According to the calculation formula of FLOPs, this index
is related to the structure of the model. The index is deter-
mined by the number of convolution layers and full connec-
tion layers. The FLOPs of the models are not directly related
to the robustness of the models as can be seen from the exper-
iments in this paper. The FLOPs of the DNN are the largest
and the robustness test shows that the DNN has the best
robustness. The ResNet and AlexNet models are less robust,
but the FLOPs of the ResNet are larger and the AlexNet is
smaller. The FLOPs of AlexNet are smaller.

D. ROBUSTNESS EVALUATION OF MODEL ALGORITHMS
In this section, the robustness of different models and algo-
rithms is evaluated. The recognition classification accu-
racy of the models and algorithms under different Gaussian

noise disturbances is tested, and a comparative analysis is
performed.

Figure 10 shows the recognition accuracy of DNN, CNN,
AlexNet, ResNet and AdaBoost algorithms for signals with
signal-to-noise ratios of −10 dB to 20 dB. In general, the
recognition accuracy of all models or algorithms for this
signal dataset gradually improves as SNR increases. The
recognition accuracy of ResNet model and AlexNet stabi-
lizes above 16 dB when they tend to. However, when the
SNR is below 10 dB, the recognition accuracy of both drops
sharply, indicating that the robustness of AlexNet and ResNet
models for this electromagnetic signal dataset is poor. DNN
is not easily affected by noise, and its recognition accuracy
changes less as the SNR decreases. The recognition accuracy
of the AdaBoost algorithm decreases flatly when the SNR is
below 10 dB.

FIGURE 10. Classification performance test under different noise.

Experiments show that noise affects both the machine
learning model and the AdaBoost algorithm, with the DNN
model having the best robustness and the ResNet model
being susceptible to noise. The robustness of the AdaBoost
algorithm is better, and the algorithm improves robustness to
some extent compared to its weak classifier, but its robust-
ness performance is not higher than the performance of all
weak classifiers. Although the DNN model is less effective
in recognition and classification, the recognition accuracy of
this model is not susceptible to noise. In contrast, the ResNet
model has the best recognition performance, but it is most
susceptible to noise. This paper argues that this is because the
DNN model does not learn the deep features of the samples.
For samples with added noise, the model cannot distinguish
the effect of noise on such features, so the noise has less
impact on the classification performance of the model. On the
contrary, the ResNet model learns the deep features of the
samples. For the samples with added noise, the model can
identify the deep features affected by noise, so the model can
identify the wrong samples.

E. EVALUATION TEST SUMMARY
The above experiments evaluate the electromagnetic signal
recognition performance of some machine learning models
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and algorithms in terms of classification performance, com-
plexity and robustness, respectively. Table 4 shows the rele-
vant experimental results and inferences.

TABLE 4. Summarizing inferences.

V. CONCLUSION
In this paper, a signal identification and evaluation system
based on multidimensional fusion is studied, and the recog-
nition and classification effects of four classification models
and AdaBoost algorithm on 100 classes of individual signals
fromWIFI radiation sources are tested respectively. Through
experimental verification, the evaluation system can effec-
tively evaluate the performance of the models and algorithms
in three aspects of classification performance, complexity
and robustness, and has certain scalability. For this system,
more attention can be paid to the evaluation of model security
and the evaluation of recognition and classification effects
of models and algorithms under certain attacks in the future,
so as to form amore comprehensive and integrated evaluation
system.
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